FLORISTIC COMPOSITION, LIFE FORM AND CHOROLOGY OF PLANT LIFE AT KHULAIS REGION, WESTERN SAUDI ARABIA

EMAD A. ALSHERIF^{*}, AHMAD M. AYESH AND SAYED M. RAWI

Department of Biology, Faculty of Sciences and Arts-Khulais, King Abdulaziz University, Saudi Arabia *Corresponding author's e-mail: emad_702001@yahoo.com

Abstract

Floristic composition of Khulais region, West Saudi Arabia, is lacking. Therefore, the present study has been undertaken to assess its Floristic composition, Life form and chorology. Results revealed that the region consider a hot-spot in the Kingdom in term of plant diversity and more diverse compared with other well studied regions in Saudi Arabia and neighboring countries. A total of 251 plant species belonging to 160 genera and 50 families were identified. The major plant families that contributed in the formation of vegetation of the area in question were Poaceae (42 species) followed by papilonaceae (20 species), Euphorbiacea and Asteraceae (18 and 15 species, respectively), while eighteen families each was represented by only one species. Therophytes exhibited the maximum number of species (41.2%), followed by Chaemophytes (31.4%), Hemicryptophytes (13.7%) and Phanerophytes (10%), while the least frequent life form class was Geophytes. Chorological characteristic of the recorded flora showed that Saharo-Arabian and Sudanian elements constitute 43.6% of the total flora. It is concluded that the area is botanically virgin and not explored extensively and intensively even though rich in vegetation, provided floristic checklist, and strongly recommend further detailed study.

Introduction

Saudi Arabia, a part of the Arabian Peninsula, covers more than 2 million sq kms and comprises several distinct physiographical regions, such as mountains, Valleys (Wadis), sandy and rocky deserts, salt pans (Sabkhahs) and lava areas (Harrats), etc. The overall climate of the country, except for Asir Province, is classified as an "arid province" within Thornthwaite's global climatic classification, and as "dry climates" in Koppen's classification (Al-Nafie, 2008). The flora of Saudi Arabia consider the richest biodiversity areas in the Arabian Peninsula and comprises important genetic resources of crop and medicinal plants and xerophytic vegetation which make up the prominent features of the plant life in the kingdom (Zahran, 1982). Species belonging to Saudi Arabia are distributed into three general categories, namely: the species of the Saharo-Sindian Zone, Sudano-Deccanian zone (in a broad sense) and the species of the Tropical African- Indian category (Alfarhan, 1999; Thomas et al., 2008). A total of 2250 species (including pteridophytes and gymnosperms) in 142 families are recorded in the flora of the Kingdom of Saudi Arabia (Collenette, 1998). Besides its large number of endemic species, the components of the flora are the admixture of the elements of Asia, Africa and Mediterranean region. According to Collenette (1998), the greatest species diversity in Saudi Arabia occurs in Asir and Hijaz, the western mountainous area of the Kingdom, which borders the Red Sea which can be attributed to a greater rainfall and range of altitude from sea level up to 9,300. Many previous studies showed that topography of the area and the climatic factors are the main factors affecting the degree of speciation (Abulfatih, 1992; El-Kady et al., 1995; Shaltout & Mady 1996; Shaltout et al., 1997). Till now there is not a complete survey for flora of Saudi Arabia because of its wide area and the change in climate (the increase of rainfall in last three years), so it is still more floristic works is need to fulfill gaps in Saudi flora. Khulais region, the target area in the present study, is one of the most prominent hydrological areas located in the western region of Saudi Arabia, stretches between longitudes $15^{\circ} 39^{\circ}$ and 40° to the east and latitudes 22° and $30^{\circ} 22^{\circ}$ north, it lie within the greatest plant diversity of Saudi Arabia (Al-Nafie, 2004), containing fertile valleys with many tributaries and characterized by presence of many different habitats and agricultural activities. Its climate is characterized by high temperature in summer and warm temperature through the rest of the year, rainfall is scarce but it is increased in the last three years. Literature dealing with the flora and plant ecology of the studied area are very little (Milad, 2006). Because of floristic studies help us to assess the plant wealth and its potentiality of any given area and understanding the basic aspects of biology such as speciation, isolation, endemism and evolution, the goal of the present work is to study the floristic composition, life form and chorology of Khulais flora.

Materials and Methods

Khulais region lie between longitudes $15^{\circ} 39^{\circ}$ and 40° to the east and latitudes 22° and 30° 22° north north within the territory of the Arabian Shield which includes the chains in the western highlands of the Hijaz and Asir and the western part of the Nagd plateau (Fig. 1). Soils are made up of basic volcanic rocks of basaltic composition, its texture ranging between silty clay to coarse sandy and the pH ranging between 7.75 to 8.05, while soil salinity ranging from 0.4 to 7.4 mM/cm. The climate characterized by high temperature in summer and warm in the winter (Appendix 1). The area has an arid climate, the annual average rainfall is 35.1 mm. The rainfall apart from its scantiness, is irregular and variable, it ranges between 0 to 70 mm. In the last two years heavy but sporadic rainfall occurred on one or two days, e.g., 777 mm was recorded at February, 12th 2010 and at March, 15th and 16th 2011. Air temperature reach a monthly maximum of 37.4 in June and a minimum of 13.2 in January. An extensive survey was carried out during the period of September 2010 to the September 2011. However, it was not possible to survey quantitatively the entire project area, even then every effort was made to include the entire representative, topographic and physiographic condition in the study area. The collected specimens were identified with the help of various Floras, Collenette (1985; 1998), Chaudhary (2001), Miller & Cope (1996), Migahid (1996), and Boulos (1999; 2000; 2002; 2005). The voucher specimens are deposited in the Department of Biology, Faculty of Sciences and Arts-

Khulais, King Abdulaziz University. Life form classes were constructed by following Raunkiaer (1934). When several life forms were given for a taxon, the most representative taxon was chosen; variation in the life form in the field was not considered. To avoid the diverse conceptions of different authors for chorological units which have resulted in different names for the two main regions in Saudi Arabia, the general approach and terminology of Zohary (1973) for the Saharo-Arabian and Sudanian regions, which are well known, will be used.

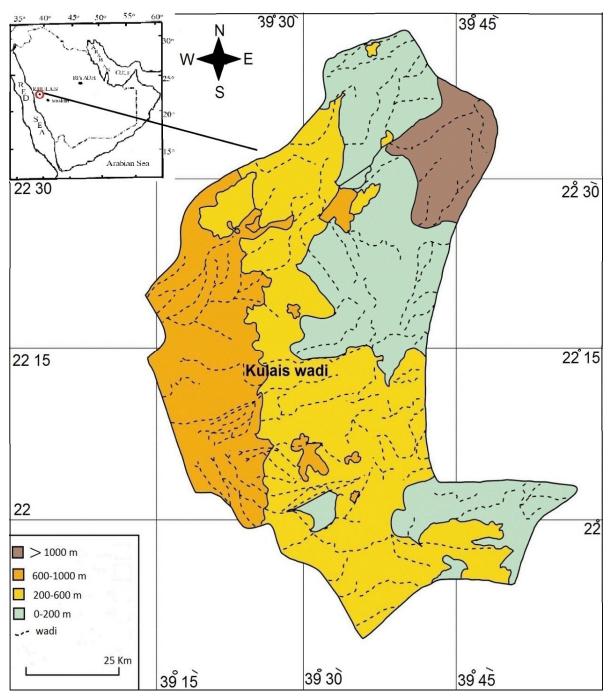


Fig. 1. Location map of the studied area showing wadi tributaries and topography, modified after El-Abdaly (2004).

2009 and other values for last two years.						
	Rainfall	Temperature (°C)			Relative	
	(mm)	Max.	Min.	Mean.	humidity	
T	(10)	(28.4)	(13.2)	(20.8)	(51.1)	
January	27.5	28.4	18.8	23.3	65	
D - b - m - m -	(0)	(28.1)	(15)	(21.5)	(51.4)	
February	0	30.5	18.6	24.1	62.1	
N 1	(10)	(31.4)	(16.7)	(24)	(43)	
March	50.1	31.6	20.5	25.4	56	
A	(2.2)	(31.1)	(18.4)	(26.2)	(37.5)	
April	0	33.8	22.2	27.8	54.1	
X	(1.1)	(35.8)	19.5)	(27.6)	(47.1)	
May	0	36.1	24	30.1	52.5	
T	(0)	(37.4)	(21.9)	(29.6)	(35)	
June	0	37.2	25.2	31.26	55.7	
x 1	(0)	(37.2)	(24.4)	(30.8)	(47.6)	
July	0	40.7	27.9	33.8	49.1	
	(1.1)	(36.9)	(25.2)	(31)	(32.3)	
August	0	38.6	28.3	33.2	54.7	
a . 1	(2)	(34)	(24.6)	(29.3)	(46.6)	
September	0.1	37.6	26.6	31.6	65.5	
	(1.1)	(36.7)	(22.9)	(29.8)	(46.3)	
October	0	39.2	24.5	30.9	61.9	
NT 1	(6.61)	(32.4)	(19.1)	(25.7)	(36.5)	
November	0.1	36.3	22.4	28.7	53.4	
	(1.9)	(29.3)	(16)	(22.6)	(51)	
December	2.1	32	19.8	25.7	57.5	

Appendix 1. Some Climatic data for the studied area. Value in parentheses represent the period from 2000 to
2009 and other values for last two years.

Data obtained from Department of Hydrology, Ministry of Agriculture and Water, Riyadh

Results and Discussion

The merger of different habitats within the studied area presents a wealth of flora. A total of 250 plant species belonging to 160 genera and 50 families were identified (Appendix 2). The major plant families present in the area in question were Poaceae (42 species) followed by papilonaceae (20 species), Euphorbiacea and Asteraceae (18 and 15 species, respectively), while 18 families were represented by only one species. More than 59% of the recorded species (Appendix 2) belong to only 10 species rich families. A comparison of families in terms of the largest number of species recorded in this investigation and in similar studies in different regions of Saudi Arabia, such as: Hosni & Hegazi (1996) in the Asir Mountains, Mosallam (2007) in Taif, Alatar et al., (2011) in Al-Jufair Wadi and Al-Turki & Al-Olayan(2003) in Hail region. Also similar results were obtained in neighboring countries, such as Egypt (Abd EL-Ghani and Abd El-Khalik 2006; Abd El-Ghani and El-Sawaf 2004) and Jebel Marra of the Sudan (Wickens, 1976). It is well known that Poaceae, Leguminosae and Asteraceae constitute the main bulk of plant species in Saudi Arabia (collentte 1999; Al-Nafie, 2008). Poaceae (the largest family in our list) is not only the largest family in the Flora of Suadi Arabia (Collentte, 1999), but also the largest and most widespread family of flowering plants in the world (Good, 1974). This can be attributed to their wide ecological range of tolerance, and to their efficient seed dispersal capability. An outstanding feature of floristic composition of the flora of Saudi Arabia is that a few families are of floristically important as in most tropical and subtropical deserts, most plant species belong to a limited number of plant families. In the present study among 50 families, 18 families or 36% of the total number of families, are represented by one species per family. This is a common feature of desert flora and consider an indication that only a few of the large number of species that belong to these old plant families have adapted and survived in this harsh environment, while other species that could not survive have become extinct. The number of species per genus in the present study is 1.5 (250/160), a ratio less than that recorded in total area of the kingdom (Al-Nafie, 2008) which is 2.6 (840/2172). Pielou (1975) and Magurran (1988) stated that, in intuitive terms, taxonomic diversity will be higher in an area in which the species are divided amongst many genera as opposed to one in which most species belong to the same genus and still higher as these genera are divided amongest many families as opposite few families.

Family	Sp. No.	Species name	Life form	Chorotype
Acanthaceae	1	Blepharis attenuate Napper	Ch	IT+SA
Aizoaceae	2	Aizoon canariense L.	Th	\mathbf{SU}
	3	Gisekia phranaceoides L.	Th	TR
	4	Sesuvium sesuviodes(Fenzl) Verdc.	Ch	TR
	5	Trianthema portulacastrum L.	Th	AM
	6	Trianthema sedifolia Visiani	Ch	AM
	7	Zaleya pentandra (L.) C. Jeffrey	Th	\mathbf{SU}
Amaranthaceae	8	Aerva javanica (Burm. f.) Juss. ex Schul.	Th	TR
	9	Aerva lanata (L.) Juss.	Th	TR
	10	Amaranthus albus L.	Th	AM
	11	Amaranthus graecizan L.	Th	Cosm
	12	Amaranthus hybridus L.	Th	Cosm
	13	Amaranthus viridis L.	Th	Cosm
	14	Digera muricata (L.) Mast.	Th	TR
Amaryllidaceae	15	Pancratium sickenbergi Asch.&Schweinf.	Ge	IT+SA
Apocynaceae	16	Rhazya stricta Decne.	Ch	SA+SU
Arecaceae	17	Nannorrhops ritchieana (Griff.) Aitch.	Ph	SA+IT
Asclepiedaceae	18	Calotropis procera (Aiton) W.T.Aiton	Ph	SA
-	19	Caralluma acutangula (Decne.) N.E.Br.	Th	SA+SU
	20	Cynanchum acutum L.	Ch	SA
	21	Glossonema boveanum subsp. nubicum (Decne.) bullock	He	SU
	22	Leptadenia pyrotechnica (Forssk.) Decne.	Ph	SA+SU
	23	Odontanthera radians (Forssk.) D.V.Field	Ch	TR
	24	Oxystelma esculentum (L.F.) R.Br.	He	TR
	25	Pergularia tomentosa L.	Ch	SA+SU
Asphodelaceae	26	Asphodelus tenuifolius (Cav.) Baker	Ge	SA+SU
Asteraceae	27	Asteriscus hierochunticus (Michon) Wiklund	Th	SA
	28	Conyza bonariensis (L.) Cronquist	Ch	SA+SU
	29	Dicoma tomentosa Cass.	Ch	SU
	30	Echinops hussonii Boiss.	He	SA+ME
	31	Echinops polyceras Boiss.	Не	IT
	32	Echinops spinosus L.	He	ME+SU
	33	Flaveria trinervia (Spreng.) Mohr	Th	SU
	34	Iphiona scabra DC.k	Ch	SA
	35	Launea capitata (Spreng.) Dandy	Th	SA
	36	Launea nucronata subsp. cassiniana (Jaub.&Spach) N.Kilian	He	SA
	30			SA
	38	Launaea nudicaulis (L.) Hook. f.	Ch Ch	SA SA+SU
		Pluchea dioscoridis (L.) DC.	Ch Ch	
	39	Pulicaria orientalis Jaub. & Spach	Ch	SA+SU
	40	Pulicaria crispa (Cass.) Oliv. & Hiern	Ch	SA+SU
	41	Sonchus oleraceus L.	Th	ME+IT
Boraginaceae	42	Anchusa milleris Spreng.	Th	SA
	43	Arnebia decumbens (Vent.) Coss.&Kralik	Th	SA+SU
	44	Arnebia hispidissima (Lehm.) DC.	Th	SA+SU
	45	Heliotropium arbainense Fresen.	Ch	SA
	46	Heliotropium bacciferum Forssk.	Ch	SA+SU
	47	Heliotropium digynum(Forssk.)	Ch	SA
	48	Heliotropium kotschyi (Burnge) Gurke	Ch	SA
	49	Moltkiopsis ciliata (Forssk.) I.M.Johnst.	Ch	SA
	50	Trichodesma africanum (L.)R.Br.	Th	SA

Appendix 2. List of plant species recorded in the studied area with their families, life forms and chorotypes.

Family	Sp. No.	Species name	Life form	Chorotype
Brassicaceae	51	Anastatica hierochuntica L.	Th	SA
	52	Capsella pursa pastoris (L.) Medik.	Th	Cosm
	53	Farsetia longisiliqua Decne	Ch	SU
	54	Farsetia stylosa R. Br.	Ch	SU
	55	Morettia canescens Boiss.	Ch	ME
	56	Schouwia purpurea (F0rssk.) Schweinf.	Th	ME+SA
Burseraceae	57	Commiphora kataf (Forssk.)Engl.	Th	\mathbf{SU}
Caesalpiniaceae	58	Senna italica Mill.	Ch	SU
	59	Senna holosericea (Fresen.) Greuter		
	60	Parkinsonia aculeate L.	Ph	AM
Capparaceae	61	Capparis cartilaginea Decne.	He	SU
	62	Capparis spinosa L.	Ch	ME
	63	Capparis decidua (Forssk.) Edgew.	Ph	SA+SU
	64	Cadaba farinosa Frossk.	Ch	\mathbf{SU}
	65	Cadaba glandulosa Frossk.	Ph	TR
	66	Diptergium glaucum Decne.	Th	SU
	67	Mareua crassifolia Frossk.	Ph	SA+SU
	68	Mareua oblongifolia (Frossk.) A.Rich.	Ph	SU
Caryophyllaceae	69	Cometes surattensis L.	Th	SU
	70	Gypsophila capillaries (Forssk.)C.Chr.	Ch	IT
	71	Paronychia arabica (L.) DC.	Th	SA
	72	Polycarpaea robbairea (Kuntze) Greuter & Burdet	Th	SA+SU
	73	Spergularia fallax (Lowe) E.H.L. Krause	Th	SA
Chenopodiacea	74	Anabasis setifera Moq.	Ch	SA
	75	Chenopodium murale L.	Th	Cosm
	76	Chenopodium album L.	Th	Cosm
	77	Haloxylon salicornicum (Mo.) Bun. ex Boiss.	Ch	IT
	78	Haloxylon scoparium Pomel	Ch	IT
	79	Salsola imbricata Forssk.	Ph	SU
	80	Salsola tetrandra Forssk.	Ch	SA
	81	Salsola spinescens Moq.	Ch	Cosm
	82	Suaeda aegyptiaca (Hasselq.) Zohary	He	SA
	83	Suaeda monica Frossk.ex J.F. Gmel.	Ch	SU
	84	Sueda vermiculata Forssk. ex J.F. Gmel.	Ch	SA
Cleomaceae	85	Cleome amblyocarpa Barratte& Murb.	Ch	SA+SU
	86	Cleome brachycarpa DC.	Ch	SA
	87	Cleome droserfolia (Forssk.)Delile	Ch	SU
	88	Cleome paradoxa R.Br.exDC.	Ch	SU
	89	Cleome scaposa DC.	Th	TR
	90	Gynandropsis gynandra (L.)Briq.,Ann.	Ch	TR
Convolvulaceae	91	Convolvulus arvensis L.	Ge	Cosm
	92	Convolvulus asyrensis Kotchy	Ch	ME
	93	Convolvulus cephalopodus Alfarhan	Ch	SA
	94	Convolvulus deserti Hochst. & Steud.	Ch	SA
	95	Convolvulus Fatemensis Kunze	Ch	SA
	96	Convolvulus glomeratus Choisy	Ch	SU
	97	Convolvulus spicatus Hallier f.	Ch	SA
	98	Cressa cretica L.	He	ME+IT
	99	Ipomea aquatica Forssk.	Ch	Cosm

Family	Sp. No.	Species name	Life form	Chorotype
Cucurbitaceae	100	Citrullus colocynthis (L.) Schrad.	Th	SA
	101	Momordica balsamina L.	Th	TR
Cyperaceae	102	Cyperus conglomerates Rottb.	Ge	SA
	103	Cyperus lavigatus L.	Ge	Cosm
	104	Cyperus rotundus L.	Ge	Cosm
Euphorbiaceae	105	Andrachne aspera Spreng.	Ch	SU
	106	Chrozophora brocchiana Vis.	Ch	SU
	107	Chrozophora oblongifolia (Delile) Spreng.	Ch	SU
	108	Chrozophora plicata (Vahl.) Spreng.	Th	\mathbf{SU}
	109	Chrozophora tinctoria (L.) Raf.	Th	SA+ME
	110	Euphorbia arabica T. Anderson	Th	SA
	111	Euphorbia cuneata Vahl	Ph	SA+SU
	112	Euphorbia granulata Frossk.	Th	SU
	113	Euphorbia inaequilatera Sond.	Th	SU
	114	Euphorbia hirta L.	Th	Cosm
	115	Euphorbia peplus L.	Th	ME +IT
	116	Euphorbia prostrata Ait.	Th	Cosm
	117	Euphorbia retusa Frossk.	Th	SA
	118	Euphorbia scordifolia Jacq.	Th	SU
	119	Euphorbia serpens Kunth	Th	AM
	120	Erythrococca abyssinica Pax.	Th	TR
	121	Phyllanthus rotundifolius Willd.	Th	Cosm
	122	Ricinus communis L.	Ph	TR
Frankiniaceae	123	Frankenia revolute Frossk.	Ch	ME
Geraniaceae	124	Monsonia heliotropioides (Cav.) Boiss.	Th	SU
luncaceae	125	Juncus rigidus Desf.	Ge	IT+SA
Lamiaceae	126	Lavandula coronopifolia Poir.	Ch	SA+ SU
	127	Salvia aegyptiaca L.	Ch	SA+ SU
Liliaceae	128	Dipcadi erythraeum Webb & Berth.	Ge	SA
Lythraceae	129	Ammannia baccifera L.	Th	TR
Malvaceae	130	Abutilon fruticosum Guill. & Perr.	Ch	SU
	131	<i>Abutilon pannosum</i> (G. Forst.) Schltdl.	Ch	TR
	132	Malva parviflora L.	Ch	ME+IT
	132	Sida rhambifolia L.	Th	TR
Menispermaceae	135	Cocculus pendulus (J.R. & G. Forst.) Diels	Ch	SU
Mimosaceae	135	Acacia ehrenbergiana (Forssk.) Hayne	Ph	SU
viiniosaceae	135	Acacia hamulosa Benth.	Ph	SU
	130	Acacia raddiana Savi	Ph	SU
	138	Acacia tortilis (Forssk.) Hayne	Ph	SU
	138	Pithecellobium dulce (Roxb.) Benth.	Ph	TR
	140	Prosopis Juliflora (Sw.) DC.	Ph	SA
Molluginaceae	140	Glinus lotoides L.	Th	ME+IT
violiugiliaceae	141	Mollugo cerviana (L.) Ser.	Th	TR
Moringaceae	142	Moringa peregrine (Forssk) F.	Ph	SU
Neuradaceae	143	Neurada procumbens L.	Th	Cosm
		-		
Nyctaginaceae	145 146	Boerhavia diffusa L. Boorhavia renovas I	Ch Ch	SA+TR TP
	146	Boerhavia repens L.	Ch	TR
Dalmana	147	<i>Commicarpus boissieri</i> (Heimerl) Cufod.	Th	SU
Palmeae	148	Phoenix dactylifera L.	Ph	SA
	149	Hyphaene thebaica (L.) Mart.	Ph	TR+SA

Appendix 2. (Cont'd.).

Appendix 2. (Cont'd.).				
Family	Sp. No.	Species name	Life form	Chorotyp
Papilionaceae	150	Astragalus annularis Forssk.	Th	SA
	151	Astragalus corrugates Bertol	Th	SA
	152	Astragalus vogelii (Webb) Bornm.	Th	SA
	153	Astragalus tribuloides Delile	Th	SA+IT
	154	Crotalaria microphylla Vahl	Th	SA+SU
	155	Crotalaria senegalense (Pers.) DC.	Th	SU
	156	Indigofera argenata L.	Ch	SU
	157	Indigofera carulea Roxb.	Ch	SU
	158	Indigofera hoschstettei Baker	Ch	SU
	159	Indigofera oblongifolia Forssk.	Ch	SU
	160	Indigofera spinosa Frossk	Th	ME
	161	Melilotus indica L.	Th	IT+SA
	162	Onobrychis ptolemaica (Delile) DC.	Ch	SU
	163	Rhynchosia minima (L.) DC.	Ch	SU
	164	Sesbania sesban (L.) Merr.	Ph	TR
	165	Taverniera lappacea (Forssk.) DC.	Ch	SU
	166	Trigonella hamosa L.	Th	SA
	167	Trigonella stellata Forssk.	Th	SU
	168	Tephorosia apollineae (Delile) DC.	Ch	SU
	169	Tephorosia nubica (Boiss.) Baker	Th	SA
Poaceae	170	Aeluropus massuensia L.	Ch	IT+SA
	171	Avena barbata Pott ex Link	Th	ME
	172	Brachiaria eruciformis (Sm.) Griseb.	Th	TR
	173	Brachiaria leersioides (Hochst.) stapf	Th	TR
	174	Brachypodium distachyum (L.) P. Beauv.	Th	ME+IT
	175	Bromus madritensis L.	He	ME+IT
	176	Cenchrus ciliaris L.	Не	SA+SU
	170	Cenchrus ennisetiformis Hochst. & Steud.	Th	AM
	178	Cymbopogon schoenanthus (L.) Spreng.	Th	SA
	170	Cynodon dactylon (L.) Pers.	Ge	Cosm
	180	Dactyloctenium aegyptium (L.) P. Beauv.	Th	Cosm
	180	Dichanthium annulatum (Forssk.) Stapf	He	SA
	181		Th	TR+SA
		Dichanthium foveolatum (Delile) Roberty		TR+SA TR
	183 184	Digitaria ciliaris (Retz.) Koeler	Th Th	TR
		Echinochloa colona (L.) Link		
	185	Eragrostis minor Host.	Th	TR
	186	Eremopyrum bonaepartis (Spreng.) Nevski	Th	IT
	187	Lamarckia aurea (L.) Moench	Th	ME+IT
	188	Lasiurus hirsutus (Forssk.)	Не	SU
	189	Latipes sengalensis Kunth	Не	TR
	190	Leptochloa fusca (L.) Kunth	He	TR
	191	Leptothrium senegalense (Kunth) Clayton	Th	TR
	192	Lolium rigidum Gaudin	Th	ME+IT
	193	Lolium perenne L.	Не	ME+IT
	194	Ochtochloa compressa (Forssk.) Hilu	Не	TR
	195	Panicum coloratum L.	He	SA
	196	Panicum turgidum Forssk.	He	SA+SU
	197	Pennisetum setaceum (Forssk.) Chiov.	He	SA
	198	Pennisetum divisum (J.F. Gmel.) Henrard	He	SA
	199	Phalaris minor Retz.	Th	ME+IT
	200	Phragmites australis (Cav.)Trin ex Steud.	He	Cosm
	201	Poa annua L.	Th	Cosm

Appendix 2.	(Cont'd.).

Family	Sp. No.	Species name	Life form	Chorotype
	202	Poa bulbosa L.	He	ME+IT
	203	Polypogon monospliensis (L.)	Th	SA+ME
	204	Rostraria cristata (L.) Tzvelev	Th	ME+IT
	205	Setaria verticillata (L.) P. Beauv.	Th	Cosm
	206	Sorghum halepense (L.) Pers.	Th	TR
	207	Stipa capensis Thunb.	Th	IT+SA
	208	Stipa parviflora Desf.	He	IT
	209	Stipagrostis plumosa (L.) Mun. ex T. And.	He	IT+SA
	210	Tragus racemosus (L.) All.	Th	SU+SA
	211	Trisetaria macrochaeta (Boiss.) Maire	Th	SA
Polygalaceae	212	Polygala erioptera DC.	Th	SA
Polygonacae	213	Polygonum aviculare L.	Th	Cosm
,8-	214	Polygonum argyrocoleum G. Kunze	Th	IT
	215	Polygonum equisetiforme Sm.	He	ME+IT
	216	Rumex vesicarius L.	Th	SA
Portulacaeae	217	Portulaca oleraceae L.	Th	Cosm
	218	Portulaca quadrifida L.	Th	Cosm
	219	Ochradenus arabicus Chaudhary, Hillc. & A.G.Mill	He	SA
Resedaceae	220	Ochradenus baccatus Del.	He	SA
cosociatoria	221	Reseda luteola L.	Th	ME+IT
	222	Oligomeris linifolia (Fahl ex Hornen) J.F. Macbr.	Th	ME+IT
Rhamnaceae	222	Ziziphus spina christi (L)Desf	Ph	SA+SU
Rutaceae	223	Haplophyllum tuberculatum (Forssk.) A.Juss.	Ch	SATSU
Scrophulariaceae	224	Kichxia floribunda (Boiss.) Taeckh. & Boulos	Ch	SA
scrophulanaceae	225	Lindenbergia indica O. Kuntze	Ch	SU+SA
	220	Scrophularia arguta Soland.ex Ait.	Th	SU+SA SU+SA
Solanaceae	227	Datura innoxia Mill.	Th	Cosm
Solallaceae	228 229		Ph	SA+SU
	229	Lycium shawii Roem. & Schult.	Ph Th	SA+SU SU
	230 231	Solanum incanum L.	Th	ME+IT
		Solanum nigrum L.		
	232	Solanum sinaicum Boiss.	Th	SA ME+IT
P	233	Withania somnifera (L). Dunal.	Ch	
Famaricaceae	234	Tamarix aphylla (L.) Karst.	Ph	SU
C.1.	235	<i>Tamarix nilotica</i> (Ehrenb.) Bunge	Ph	SA
Filiaceae	236	Corchorus depressus (L.) Stocks	Ch	ME+SA
	237	Corchorus olitorius L.	Th	TR
T. (*	238	Corchorus trilocularis L.	Th	TR
Jrticaceae	239	Forsskaolea tenacissima L.	Ch	SA+SU
Zygophyllaceae	240	Fagonia indica Burm. f.	Ch	SA
	241	Fagonia mollis Delile.	Ch	SA
	242	Fagonia ovalifolia Hadidi	Th	SA+SU
	243	Zygophyllum coccienum L.	Ch	SA
	244	Zygophyllum album L.F.	Ch	SA
	245	Zygophyllum quatarense Hadidi	Ch	SA
	246	Zygophyllum simplex L.	Ch	SA
	247	Tribulus macropterus Boiss.	Th	SU
	248	Tribulus pentandrus Forssk.	Ch	SA
	249	Tribulus terrestris L.	Th	ME+SU
	250	Tribulus pterocarpus Forssk.	Ch	SU
Vitaceae	251	Cissus quadrangularis L.	Ch	SA+SU

Appendix 2. (Cont'd.).

The life forms are: Ph, phanerophytes; Ch, chamaephytes; G, geophytes; He, hemi-cryptophytes and Th, therophytes. The chorotypes are: COSM, cosmopolitan AM, American; IT, Irano-Turanian; ME, Mediterranean; SA, Saharo-Arabian; SU, Sudano-Zambezian and TR, Tropical

Life forms of the prevailing flora exhibited a great diversity and reflect reflects a typical desert flora. The most frequent life form class was Therophytes with the maximum number of species (41.2%), followed by Chaemophytes (31.4%), Hemicryptophytes (13.7%) and Phanerophytes (10%), while the least frequent life form class was Geophytes (3.4%) (Fig. 2). Life-form spectrum in the present study is characteristic of an arid desert region with the dominance of therophyes and study support the concept of Cain (1950) and Dechenes (1969) that dry climate, overgrazing and trampling which is so prevalent on grasslands, tend to increase the percentage of therophytes through the introduction and spread of weedy grasses and forbs of this life form. Moreover, the high proportion of therophytes is also attributed to human activities according to Barbero et al. (1990). Therophytes (annuals and biennials) not surprisingly account for 50-60% of the total species of the region, they usually bloom and form luxurious growth in rawdhat, wadis and at the base of stable dunes, where moisture accumulates after sufficient rain. It is also necessary to point out that the increase in both Leguminosae and therophytes in a local flora can be considered a relative index of disturbance for Mediterranean ecosystems (Abdel Ghani & Abd El-Khalik, 2006). These results agree with the life form spectra in desert habitats in other parts of Saudi Arabia (e.g. El-Demerdash et al. 1994; Collenette, 1999; Chaudhary, 2001; Al-Turki & Al-Olayan 2003; El-Ghanem et al. 2010; Alatar et al. 2011, Daur, 2012) A similar result was obtained by Abd El-Ghani (1998) for the northern part of the Eastern Desert of Egypt. The low

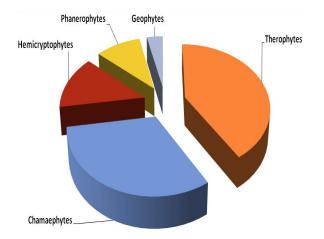


Fig. 2. Proportinal percentage of life forms for the study area.

Conclusion

The present study is the first floristic study of Khulais wadi and showing the importance of the region in term of plant diversity (low ratios). Species numbers were very high compared to different hotspot regions in Saudi Arabia, such as: Asir Mountain, 189 speices (Al-Yemeni & Sher, 2010), Bisha, Asir, 145 spp. (Heneidy & Bidak, 2001) and Sudera, Taif, 234 spp, percent of Phanerophytes recorded in this study in agree with white and Leonard (1991) Statement that south and south-western Arabian Peninsula are very poor in tree.

Figure 2 showed that chorological characteristic of the recorded flora showed that Saharo-Arabian region elements recorded the highest number (24.5%) followed by Sudanian elements (20.1%). In addition to plant species that belong to the Saharo-Arabian and the Sudanian elements presented in the target region it has a large number of plant species which dominate in other uniregional region, such as Tropical (31 species), Irano-Turanian and American (7 species for each), while Mediterranean elements showed the least species number (6 species). The highest Bioregional elements was recorded by Saharao-Arabian- Sudanian and the Plurirgional was twenty three species. The studied area belong to The Nubo-Sindian Province which is a part of the Sudanian Region (Zohary, 1973) or Nubo-Sindian local centre of endemism belonging to the Saharo-Sindian regional zone (White & Leonard, 1991) stretches in Saudi Arabia over a narrow strip along the Red Sea coast north of Makkah as well as along Arabian Gulf coast. Saharo-Arabian elements showed the highest species number because plant species in this region show the usual ways of adaptation to aridity and very high temperature in such a harsh environment. Vegetation cover is mainly concentrated in depressions, lower ground areas such as rawdhat, wadis and ravines, where water usually accumulated. Vegetation can also be found over stable sand dunes as well as hollows between them and sand sheets that cover hamadas and stony plains (Fig. 3).

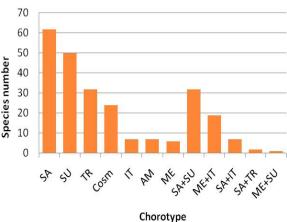


Fig. 3. Chorological types of the recorded species. bbreviations are in Appendix 2.

(Mosallam, 2007). This can be mainly due to the presence of various habitats each with particular features as regard the soil characteristics, rock type, water resources and agricultural activities. Although present study tried to record flora of different habitats yet it was a glimpse of the area. It is believed that there is ample opportunity that many plant species were left unrecorded hence need long-term comprehensive study to document.

Acknowledgement

This work was funded by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, under grant no 349-858-/1431. The authors, therefore, acknowledge with thanks DSR support for Scientific Research. Sincere gratitude and appreciation are also due Dr. Jacob Thomas, King Saud University for his identification of some species.

References

- Abd El-Ghani, M.M. 1998. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. J Arid Environ., 38: 297-313.
- Abd El-Ghani, M.M. and K.N. Abdel-Khalik. 2006. Floristic Diversity and Phytogeography of the Gebel Elba National Park, South-East Egypt. *Turk J Bot.*, 30: 121-136.
- Abd El-Ghani, M.M. and N. El-Sawaf. 2004. Diversity and distribution of plant species in the agro-ecosystem of Egypt. Syst Geogr Pl., 74: 319-336.
- Abulfatih, H.A. 1992. Vegetation zonation along an altitudinal gradient between sea level and 3000 meters in Southwestern Saudi Arabia. J. King Saud Univ. Scien., 1: 57-97.
- Alatar, A., El-Sheikh, M.A. and J. Thomas. 2011. Vegetation analysis of Wadi Al-Jufair, a hyper-arid region in Najd, Saudi Arabia. Saudi Journal of Biological Sciences. (In press)
- Alfarhan, A.H. 1999. A phytogeographical analysis of the floristic elements in Saudi Arabia. *Pak. J. Bio. Sci.*, 2(3): 702-711.
- Al-Nafie, A. 2004. Plant Geography of Saudi Arabia, Riyadh (In Arabic).
- Al-Nafie, A. 2008. Phytogeography of Saudi Arabia. Saud. J. Biol. Scien., 15(1): 159-176.
- Al-Turki, T.A. and H.A. Al-Qlayan. 2003. Contribution to the flora of Saudi Arabia: Hail region. Saud J Biol Scien 10: 190-222.
- Al-Yemeni, M. and H. Sher. 2010. Biological spectrum with some other ecological attributes of the flora and vegetation of the Asir Mountain of South West, Saudi Arabia. *Af. J. Biotechy.*, 9(34): 5550-5559.
- Barbero, M., G. Bonin, R. Loisel and P. Quzel. 1990. Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. *Veget.*, 87: 151-173.
- Boulos, L. 1999. Flora of Egypt, Vol. 1. Azollaceae-Oxalidaceae. Al Hadara Publishing, Cairo, 417pp.
- Boulos, L. 2000. Flora of Egypt, Vol. 2. Geraniaceae-Boraginaceae. Al Hadara Publishing, Cairo, 352pp.
- Boulos, L. 2002. Flora of Egypt, Vol. 3. Verbenaceae-Compositae. Al Hadara Publishing, Cairo, 373pp.
- Boulos, L. 2005. Flora of Egypt, Vol. 4. Monocotyledons (Alismataceae-Orchidaceae). Al Hadara Publishing, Cairo, 617pp.
- Cain, S.A. 1950. Life forms and phytoclimates. Bot. Rev., 16: 1-32.
- Chaudhary, S. 2001. *Flora of the Kingdom* o/Saudi Arabia. Ministry of Agriculture and Water, Riyadh. 2(3): 1-432.
- Collenette, S. 1985. An illustrated guide to the flowers of Saudi Arabia. Corpion publishing Ltd., London.

- Collenette, S. 1998. Checklist of botanical species in Saudi Arabia. International Asclepiad Society, UK. pp. I-80.
- Collentette, S. 1999. Wild Flowers of Saudi Arabia. National Commission for Wildlife Conservation and Development, Riyadh.
- Daur, I. 2012. Plant flora in the rangeland of western Saudi Arabia. *Pak. J. Bot.*, 44: 23-26.
- Deschenes, J.M. 1969. Life form spectra of contrasting slops of the grazed pastures of Northern New Jersey. *Neturalise Can.*, 96: 965-978.
- El-Abdaly, M.H. 2004. Rural Urbanization in Khulais Governorate. M.Sc. Thesis, Om Elqorq University (In Arabic).
- El-Demerdash, M.A., A.K., Hegazy and A.M. Zilay. 1994. Distribution of plant communities in Tihamah coastal plains of Jazan region, Saudi Arabia. *Vegetat.*, 112: 141-151.
- El-Ghanem, W.A., L.M. Hassan, T.M. Galal and A. Badr. 2010. Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia. *Saud. J. Biol. Scien.*, 17: 119-128.
- El-Kady, H.F., M. Ayyad and R. Born Karnum. 1995. Vegetation and recent land-use history in the desert of Maktala, Egypt. Ad. Geo. Ecol., 28: 109-123.
- Good, R. 1974. The Geography of the Flowering Plants. Fourth Edition. London: Longman Group Limited.
- Heneidy, S.Z. and L.M. Bidak. 2001. Biodiversity of plant species in Bisha, Asir region, Souwthwestern Sadi Arabia. *Pak. J. Biol. Scie.*, 4(11): 1323-1330.
- Hosni, H.A. and A.K. Hegazy. 1996. Contribution to the flora of Asir, Saudi Arabia. *Candollea*, 51: 169-202.
- Magurran, A.E. 1988. Ecological Diversity and Its Measurements. New Jersey: Princeton University Press.
- Migahid, A.M. 1996. Flora of Saudi Arabia. King Saud University Press, Riyadh, edn 4, 1 1-251 21-282 and 3:1-150.
- Milad, M. 2006. Flora Study Series in Saudi Arabia: A Study of the Soil of Makkah-Madinah Road until Rabigh. Umm Al-Qura Univ. J. Sci. Med. Eng., 18(1): pp. 13-29.
- Miller, A.G. and T.A. Cope. 1996. Flora of the Arabian Peninsula. I: 1- 586. Mosallam HAM 2007. Comparative Study on the Vegetation of Protected and Nonprotected Areas, Sudera, Taif, Saudi Arabia. *Int. J. Agric. Biol.*, 9(2): 202-214.
- Pielou, E.C. 1975. Ecological diversity. 1st Edn., Wiely Interscience, New York.
- Raunkiaer, C. 1934. Life forms of plants and statistical geography, Oxford, 632 P.
- Shaltout, K.H. and M.A. Mady. 1996. Analysis of raudhas vegetation in central Saudi Arabia. J. Ar. Env., 34: 441-454.
- Shaltout, K.H., E.F. El-Halawany and M.M. El-Garawany. 1997. Coastal low land vegetation of eastern Saudi Arabia. *Biod Cons.*, 6: 1027-1040.
- Thomas, J., A.H. Alfarhan, A. Ali, A.G. Miller and L. Othman. 2008. An account on the eastern limits of Afro-Arabian plants in South Asia. *Bas App Dryd Res.*, 2: 12-22.
- White, F. and J. Leonard. 1991. Phytogeographical links between Africa and Southwest Asia. *Fl. Veg. Mundi.*, 9: 229-246.
- Wickens, G.E. 1976. The flora of Jebel Morra (Sudan Republic) and its geographical affinities. Kew Bulletin Additional Series V. London: HMSO.
- Zahran, M. 1982. Vegetation Types of Saudi Arabia. King Abdel Aziz University Press, Jeddah, Saudi Arabia.
- Zohary, M. 1973. Geobotanical foundations of the Middle East, 2 vols. Gustav Fischer Verlag, Stuttgart.

(Received for publication 12 October 2011)