ANTIMICROBIAL POTENTIAL OF DIFFERENT SOLVENT EXTRACTS OF TOBACCO (NICOTIANA RUSTICA) AGAINST GRAM NEGATIVE AND POSITIVE BACTERIA

JEHAN BAKHT^{1*}, AZRA¹ AND MOHAMMAD SHAFI²

¹Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, KPK Pakistan ²Department of Agronomy, University of Agriculture Peshawar, KPK Pakistan * Corresponding author email: jehanbakht@yahoo.co.uk

Abstract

The present study was aimed to evaluate the antimicrobial activity of tobacco extracts from *Nicotiana rustica* at different concentration in different polar solvents. For this purpose 6 different extracts were prepared, using 5 different polar solvents viz., ethanol, ethyl acetate, n-hexane, acetone, butanol and water. Four different concentrations (6, 12, 18 and 24 mg Disc⁻¹) of each extract were subjected for preliminary antibacterial screening against 7 pathogenic bacteria by Kirby-Bauer Disk Diffusion method. The result of *In vitro* antibacterial screening showed that 6 extracts from *Nicotiana rustica* had different ranges of antibacterial activities. The ethyl acetate extracts showed more potent effects followed by butanol, very little in the ethanol extracts while no significant inhibitory effects were observed in acetone or hexane extracts. When tobacco extracts were studied for their antibacterial potential against gram-positive bacteria and gram-negative bacteria, ethyl acetate extracted samples were more effective against *Bacillus cereus, Staphylococcus aureus*, and *Erwinia carotovora* at highest concentrations. Hexane and acetone extracted samples did not inhibit the growth of both gram +ive and –ve bacteria.

Introduction

Plants have been used as a valuable source of natural products for maintaining human health since ancient times in all parts of the world. During the last decade more intensive studies have been devoted to natural therapies (Rahman *et al.*, 2004; Agra *et al.*, 2007a; Ushimaru *et al.*, 2007). Researchers are employing extracts for their antibacterial, antifungal and antiviral activities. It is reported that more than 400, 000 plant species of tropical origin have medicinal properties (Lopez *et al.*, 2001; Odugbemi, 2006). As a result of microbial resistance to available antibiotic and increasing popularity of traditional medicine, researchers around the globe are investigating the antibacterial compounds in different plants species (Yildirim *et al.*, 2000 and 2001; Naz *et al.*, 2010; Bakht *et al.*, 2011a, b, c, d; 2012; 2013).

Solanaceae family includes different crop species such as tomato, potato pepper and tobacco etc., however, tobacco is the major member of this family. The principal specie producing commercial tobacco is Nicotiana tabacum. Commercial tobacco can also be obtained from its other sister species such as Nicotiana rustica, which is smaller in height with fewer leaves than N. tabacum. Nicotine inhibits the growth of pathogens in dose dependent manner (Maria et al., 2007; Wang et al., 2008; Suresh et al., 2008). It is equally effective against grampositive and gram-negative bacteria along with the acidfast Mycobacterium phlei and the opportunist fungi Candida albicans and Cryptococcus neoformans. Levels of inhibition (≥50%) occurred when most of the affected organisms were cultured with nicotine at 100-250 µg ml⁻¹. The above mentioned concentrations of nicotine can be found In vivo (Russel et al., 1981), especially in the oral cavity of smokeless tobacco users, making these findings physiologically relevant. With these considerations, the present study was initiated to investigate the effect of different solvents extracts of N. rustica on microbial activity of gram +ive and -ve bacteria.

Materials and Methods

Plant material: The present study was conducted at the Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar KPK Pakistan. The tobacco plant specie *Nicotiana rustica* used in the present research work was collected from the farmer's tobacco fields at Jamal Garhi Mardan Khyber Pukhtun Khwa Province of Pakistan. Plants were washed with distilled water to remove dirt and soil particles. The plants were cut into small pieces and dried in shaded area at room temperature for a period of seven days. The dried plants leaves were grinded and sieved through sever.

Procedure for plant extracts: Six hundred grams of dried powdered plant material of tobacco (*Nicotiana rustica*) were taken into separate round bottom flasks and filled with 95% ethanol until dipped and fixed with the condenser. The material was boiled at 50°C for 24 hrs and filtered with the help of vacuum pump using Buchner funnel. Ethanol was isolated from the mixture of the extract through rotary evaporator at 60°C under reduce pressure. Ethanol extract was collected from the flask and dried through water bath at 60°C. After drying, the extract was weighed and stored into a vile. Extract from the same plant material was collected exhaustively and this procedure was repeated thrice for the same plant material.

Part of the crude extract was used for further fractionation. The extract for fractionation was suspended into 100 ml distilled water having methanol (water: methanol at the ratio of 8:2) and made the total volume up to 200 ml and poured into a separating funnel, defatted it with 200 ml n-hexane. The compounds soluble in n-hexane separated in the upper phase were collected and the lower aqueous phase was extracted thrice with n-hexane for maximum recovery. Extract was dried through water bath and weighed and stored into a vile. The same procedure was adopted for ethyl acetate, acetone, butanol and water.

Antibacterial activity bioassay: Antibacterial activities of the different extracts against various microorganisms were determined by Kirby Baur Disc Diffusion method (Table 1). For gram +ve organisms, Azithromycin (30 μ g disc⁻¹) was used as positive control while solvent media as negative control. In case of gram –ive organisms, Ciprofloxacin (30 μ g disc⁻¹) was used as positive and solvent media as negative controls.

Result and Discussion

Analysis of the data revealed that ethanol extracted samples from *Nicotiana rustica* did not inhibit the activity of *Bacillus cereus* when compared with their respective controls (Table 2). Zero percent inhibition of *Bacillus cereus* was recorded by ethanol extracted sample from *Nicotiana rustica* (Table 2). In case of *Staphylococcus aureus*, ethanol extracted samples were more effective to control the growth of *Staphylococcus aureus* at highest concentration (i.e., 37% at 24 mg of sample disc⁻¹) when compared with other concentrations. Similar results were also

reported by Wang et al., (2008). It is clear from the result that ethyl acetate extracted samples had a profound inhibition effects against B. cereus and S. aureus and was more effective to control the growth of B. cereus and S. aureus (Table 2). On the average, ethyl acetate extracted samples were more effective against B. cereus than S. aureus. Our results also showed that acetone extracted samples had no inhibiting effects on B. cereus and recorded zero percent inhibition. In case of S. aureus, highest inhibition was achieved at higher concentration when compared with other concentrations (Table 3). Butanol extracted samples also inhibited the growth of B. cereus and S. aureus. However, butanol extracted samples inhibited the growth of S. aureus more than B. cereus, maximum control being noted at highest concentration of 24 mg of sample disc⁻¹ (Table 3). Water extracted samples were effective to control both B. cereus and S. aureus at higher concentration only (Table 4). These results are similar to those reported by Bakht et al., (2012).

Table 1. Microbial strains tested for susceptibility to *Nicotiana rustica* extracts.

Microbial species	Gram strain type	Details of the microbial strains used
Bacillus cereus	Positive	Clinical isolate obtained from Microbiology Laboratory, Quaid-e- Azam University Islamabad Pakistan
Erwinia carotovora	Negative	Department of Plant Pathology, University of Agriculture Peshawar KPK Pakistan
Escherichia coli	Negative	ATCC # 25922
Agrobacterium tumefacian	Negative	Recombinant DNA Technology of IBGE, University of Agriculture Peshawar KPK Pakistan
Pseudomonas aeruginosa	Negative	ATCC # 9721
Salmonella typhi	Negative	Clinical isolate obtained from Microbiology Laboratory, Quaid-e- Azam University Islamabad Pakistan
Staphylococcus aureus	Positive	ATCC # 6538

B. cereus and S. aureus (gram +ive).

							Zone of inhi	bition	in mr	n			
Plant	Conc.				Bacil	llus cereus				Sta	phyloc	coccus aureus	
extract	mg/disc		duri plicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl/disc		duri plicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	-	-	-	0			-	-	-	0		
Ethanol	12	-	-	-	0			-	-	-	0		
Ethanor	18	-	-	-	0			08	08	07	30		
	24	-	-	-	0	27		10	8	11	37	27	
	06	14	12	15	52	27	-	07	08	08	30	27	-
Etherl anotata	12	20	18	17	67			07	09	11	37		
Ethyl acetate	18	21	22	22	81			16	13	15	56		
	24	26	25	25	93			22	18	20	74		

							Zone of inhi	bition	in mn	n			
Plant	Conc.				Bacil	lus cereus				Sta	phylo	coccus aureus	
extract	mg/disc		duri duri	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹		duri plicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	-	-	-	0			-	-	-	0		
Acetone	12	-	-	-	0			-	-	-	0		
Acetone	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0	27		-	-	-	0	27	
	06	8	6	8	26	27	-	10	8	7	30	27	-
D (1	12	8	10	11	44			10	8	11	44		
Butanol	18	14	11	12	44			14	11	13	48		
	24	12	16	14	52			16	15	15	56		

 Table 3. Antibacterial activity of acetone and butanol extracted samples from Nicotiana rustica (NR) against

 B. cereus and S. aureus (gram +ive).

Table 4. Antibacterial activity of water extracted samples from $Nicotiana\ rustica\ (NR)$ against

B. cereus and S. aureus (g	ram +ive).
----------------------------	------------

							Zone of inhi	bition	in mn	n			
Plant	Conc.				Bacil	lus cereus				Sta	phylo	coccus aureus	
extract	mg/disc		duri duri	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6μl disc ⁻¹		duri plicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	-	-	-	0			-	-	-	0		
Water	12	-	-	-	0	27		-	-	-	0	27	
w ater	18	07	10	08	30	21	-	-	-	-	0	21	-
	24	10	08	11	37			11	10	08	37		

Our results also indicated that ethanol extracted samples were effective to control *E. carotovora* and *E. coli* at higher concentration when compared with other concentrations (Table 5). These results suggested that n-hexane extracted samples showed zero percent inhibition against *E. carotovora* and *E. coli* at any concentration (Table 5). Similar results are also reported by Zaidi *et al.*, (2005), Suresh *et al.*, (2008) and Bakht *et al.*, (2012). The data further revealed that ethyl acetate extracted samples were more effective to control *E. carotovora* (100% Zone of Inhibition (ZI) than *E. coli* (74% ZI). Acetone extracted samples recorded zero percent inhibition against *E. coli* at any concentration when compared with positive control. The results further showed maximum control of both

the micro-organisms at higher concentration when compared with other treatments (Table 6). The data also indicated that ethyl acetate and acetone reduced the growth of *E. carotovora* than *E. coli*. Maximum inhibition of *E. carotovora* was achieved at higher concentrations of ethyle acetate and acetone extracted samples from tobacco (Table 6). Similarly, maximum control (59% ZI) against *E. carotovora* was recorded in butanol extracted samples when compared with *E. coli* (Table 7). In case of water extracted samples, maximum (34% ZI) inhibition was observed against *E. coli* compared with *E. carotovora* at 24 mg sample disc⁻¹ concentration (Table 7). These results agree with those reported by Bakht *et al.*, (2012).

 Table 5. Antibacterial activity of ethanol and n-hexane extracted samples from Nicotiana rustica (NR) against

 E. carotovora and E. coli (gram -ive).

							Zone of inhi	bition	in mr	n			
Plant	Conc.			E	rwini	a carotovora		E. co	li				
extract	mg/disc		l duri eplicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹		l duri eplicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	-	-	-	0			-	-	-	0		
Ethanol	12	-	-	-	0			-	-	-	0		
Ethanoi	18	-	-	-	0			05	05	06	14		
	24	07	05	05	22	27		09	08	08	23	25	
	06	-	-	-	0	27	-	-	-	-	0	35	-
	12	-	-	-	0			-	-	-	0		
n-Hexane	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0			-	-	-	0		

					21	curororu una	(g	• • •)	-				
							Zone of inhi	bition	in mr	n			
Plant	Conc.			E	rwinia	a carotovora		E. co	li				
extract	mg/disc		[duri eplicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹		[duri eplicat	0	% ZI	+VE control 30 μg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	18	20	21	74			12	14	16	40		
Etheril a antata	12	25	22	25	89			20	22	23	63		
Ethyl acetate	18	28	27	25	100			22	24	25	69		
	24	29	27	30	100	27		25	26	27	74	25	
	06	-	-	-	0	27	-	-	-	-	0	35	-
Asstans	12	-	-	-	0			-	-	-	0		
Acetone	18	05	06	07	26			-	-	-	0		
	24	06	07	07	26			-	-	-	0		

 Table 6. Antibacterial activity of ethyl acetate and acetone extracted samples from Nicotiana rustica (NR) against

 E. carotovora and E. coli (gram -ive).

Analysis of the data also revealed that ethanol and nhexane extracted samples were ineffective to control the growth of Agrobacterium tumefacien and Pseudomonas aeruginosa (0% ZI) at any concentration (Table 8). These results agree with those reported by David & Obuotor (2000) when they studied the effect of methanolic extract of N. tabacum leaves against Pseudomonas aeruginosa. Similar results were also reported by Bakht et al., (2012). Ethyl acetate extracted samples were more effective in controlling Agrobacterium tumefacien (86% ZI) than Pseudomonas aeruginosa (73% ZI) at higher concentration (Table 9). Acetone extracted samples were ineffective against Agrobacterium tumefacien and Pseudomonas aeruginosa causing zero percent inhibition (Table 9). Butanol extracted samples were more effective to control *Pseudomonas aeruginosa* (71% ZI) than *Agrobacterium tumefacien* (57% ZI) at higher concentration (Table 10). Our results also suggested that water extracted samples were ineffective to control *Agrobacterium tumefacien* and *Pseudomonas aeruginosa* at any concentration (Table 9). These results agree with those reported by Stojanovic *et al.*, (2000). Our data also suggested that ethanol, acetone, n-hexane and water extracted samples did not control *S. typhae* at any concentration (0% ZI). The data further suggested that ethyl acetate extracted samples inhibited the growth of *S. typhae* by 63% compared with other solvents (Table 11). Similar results are also reported by Zaidi *et al.*, (2005) and Bakht *et al.*, (2012).

 Table 7. Antibacterial activity of butanol and water extracted samples from Nicotiana rustica (NR) against

 E. carotovora and E. coli (gram -ive).

							Zone of inhi	bition	in mr	n			
Plant	Conc.			ŀ	Erwinie	a carotovora		E. co	li				
extract	mg/disc	Z	[duri	ng	%	+VE control	-ve control	Z	duri	ng	%	+VE control	-ve control
		re	eplicat	tes	ZI	30 µg disc ⁻¹	6µl disc ⁻¹	re	plicat	es	ZI	30 µg disc ⁻¹	6µl disc ⁻¹
	06	07	08	10	30			08	10	12	29		
Butanol	12	09	10	12	37			14	15	17	43		
Butanoi	18	11	12	14	44			17	19	19	51		
	24	15	16	16	59	27		18	21	21	57	25	
	06	-	-	-	0	27	_	-	-	-	0	35	_
XX 7 /	12	-	-	-	0			-	-	-	0		
Water	18	08	08	10	30			06	06	07	17		
	24	10	10	12	37			10	13	13	34		

 Table 8. Antibacterial activity of ethanol and n-hexane extracted samples from

 Nicotiana rustica (NR) against A. tumefacien and P. aeruginosa (gram -ive).

							Zone of inhi	bition	in mr	n			
Plant	Conc.			Agro	bacter	rium tumefacien	ı			Psei	ıdomo	nas aeruginosa	
extract	mg/disc	ZI	duri	ng	%	+VE control	-ve control	ZI	duri	ng	%	+VE control	-ve control
		re	plicat	es	ZI	30 µg disc ⁻¹	6µl disc ⁻¹	re	plicat	es	ZI	30 µg disc ⁻¹	6µl disc ⁻¹
	06	-	-	-	0			-	-	-	0		
Ethanol	12	-	-	-	0			-	-	-	0		
Ethanor	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0	30		-	-	-	0	35	
	06	-	-	-	0	30	-	-	-	-	0	33	-
n havana	12	-	-	-	0			-	-	-	0		
n-hexane	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0			-	-	-	0		

							Zone of inhi	bition	in mr	n			
Plant	Conc.			Agro	bacter	ium tumefacien	1			Psei	ıdomo	nas aeruginosa	
extract	mg/disc		duri duri	0	% ZI	+VE control 30 µg disc ⁻¹	-ve control 6µl disc ⁻¹		l duri plicat	0	% ZI	+VE control 30 µg disc ⁻¹	-ve control 6µl disc ⁻¹
	06	10	10	11	33			12	13	13	37		
Ethyl acetate	12	10	12	14	40			20	20	21	57		
Ethyl acetate	18	19	20	22	66			26	27	27	77		
	24	20	22	23	73	20		29	29	32	86	25	
	06	-	-	-	0	30	_	-	-	-	0	35	-
A	12	-	-	-	0			-	-	-	0		
Acetone	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0			-	-	-	0		

 Table 9. Antibacterial activity of ethyl acetate and acetone extracted samples from Nicotiana rustica (NR) against

 A. tumefacien and P. aeruginosa (gram -ive).

 Table 10. Antibacterial activity of butanol and water extracted samples from Nicotiana rustica (NR) against

 A. tumefacien and P. aeruginosa (gram -ive).

							Zone of inhi	bition	in mr	n			
Plant	Conc.			Agro	bacter	rium tumefacien	1			Psei	ıdomo	nas aeruginosa	
extract	mg/disc		duri	0	%	+VE control	-ve control		[duri	0	%	+VE control	-ve control
		re	plicat	tes	ZI	30 µg disc ⁻¹	6µl disc ⁻¹	re	eplicat	es	ZI	30 µg disc ⁻¹	6µl disc ⁻¹
	06	07	08	10	27			08	10	12	29		
Butanol	12	12	12	13	40			14	15	17	43		
Butanoi	18	14	15	17	50			18	21	21	57		
	24	16	16	18	57	20		23	26	26	71	35	
	06	-	-	-	0	30	-	-	-	-	0	33	-
Water	12	-	-	-	0			-	-	-	0		
vv ater	18	-	-	-	0			-	-	-	0		
	24	-	-	-	0			-	-	-	0		

 Table 11. Antibacterial activity of ethanol, ethyl acetate, acetone, butanol, n-hexane and water extracted samples from Nicotiana rustica (NR) against S. typhe.

					Zone of inhibit		
Plant extract	Conc.			L L	S. typhae (Grai	m negative)	
T fant extract	mg/disc	ZI du	ring rep	licates	% ZI	+ve Ctrl 30 μg disc ⁻¹	-ve Ctrl 6µl disc ⁻¹
	06	-	-	-	0		-
Ethanol	12	-	-	-	0		-
Luidilloi	18	-	-	-	0		-
	24	-	-	-	0		-
	06	07	08	08	18		-
Ethyl acetate	12	09	10	12	25		-
Ethyl acetate	18	15	15	16	38		-
	24	24	26	26	63		-
	06	-	-	-	0		-
Acetone	12	-	-	-	0		-
	18	-	-	-	0		-
	24	-	-	-	0	40	-
	06	07	09	09	20	40	-
Butanol	12	09	11	11	25		-
Butanoi	18	13	12	12	30		-
	24	14	15	15	38		-
	06	-	-	-	0		-
n Hawana	12	-	-	-	0		-
n-Hexane	18	-	-	-	0		-
	24	-	-	-	0		-
	06	-	-	-	0		-
Watan	12	-	-	-	0		-
Water	18	-	-	-	0		-
	24	-	-	-	0		-

References

- Agra, M.F., P.F. Freitas and J.M. Barbosa-Filh. 2007. Synopsis of the plants known as medicinal and poisonous in Northwest of Brazil. *Rev. Bras. Farmacogn.*, 17: 114-140.
- Bakht, J., M. Tayyab, H. Ali, A. Islam and M. Shafi. 2011a. Effect of different solvent extracted samples of *Allium sativum* on bacteria and fungi. *Afr. J. Biotechnol.*, 10: 5910-5915.
- Bakht, J., A. Islam, M. Tayyub, H. Ali and M. Shafi. 2011b. Antimicrobial potentials of *Eclipta alba* by disc diffusion method. *Afr. J. Biotechnol.*, 10: 7668-7674.
- Bakht, J., H. Ali, M.A. Khan, A. Khan, M. Saeed, M. Shafi, A. Islam and M. Tayyab. 2011c. Antimicrobial activities of different solvents extracted samples of *Linum usitatissimum* by disc diffusion. *Afr. J. Biotechnol.*, 10: 19825-19835.
- Bakht, J., A. Islam and M. Shafi. 2011d. Antimicrobial potential of *Eclipta alba* by well diffusion method. *Pak. J. Bot.*, 43: 161-166.
- Bakht J, Azra and M. Shafi. 2012. Antimicrobial activity of Nicotiana tobacum using different solvent extracts. Pak. J. Bot., 44: 459-463.
- Bakht, J., S. Khan and M. Shafi. 2013. Antimicrobial potential of fresh Allium cepa against gram positive and gram negative bacteria and fungi. Pak. J. Bot., 45: 1-6.
- David, A.A. and E.M. obuotor. 2000. Antibacterial activity of Nicotiana tabacum leaves. Fitoter., 71: 199-200.
- Lopez, A., J.B. Hudson and G.H. Towers. 2001. Antiviral and antimicrobial activities of Colombian medicinal plants. J. *Ethnopharmacol.*, 77: 189-196.
- Maria, C.S., M. Souza, A. Pinheiro, M. Ferreira, R. Goncalves, T. Cristin and M. Peralta. 2007. Evaluation of antitubercular activity of nicotinic and isoniazid analogues. *Arkivoc*, 15: 181-191.
- Naz, S., S. Jabeen, S. Ilyas, F. Manzoor, F. Aslam and A. Ali. 2010. Antibacterial activity of *Curcuma longa* varieties against different strains of bacteria. *Pak. J. Bot.*, 42: 455-462.

- Odugbemi, T.O. 2006. Outlines and pictures of medicinal plants from Nigeria, University of Lagos Press, Lagos, Nigeria. page. 91.
- Rahman, M.A. J.S. Mossa, M.S. Al-Said and M.A. Al-Yahya. 2004. Medicinal plant diversity in the flora of Saudi Arabia, 1: A report on seven plant families. *Fitoter.*, 75: 149-161.
- Russel, M., M.J. Jarvis, G. Devitt and C. Feyerabend. 1981. Nicotine intake by snuff users. *British Med. J.*, 283: 814-817.
- Stojanovic, G., R. Palic, S. Alagic and Z. Zekovic. 2000. Chemical composition and antimicrobial activity of the essential oil and CO₂ extracts of semi-oriental tobacco *Otalja. Flavor and Frag. J.*, 15: 335-338.
- Suresh, K., S.S. Babu and R. Harisaranraj. 2008. Studies on In vitro antimicrobial activity of ethanol extract of Rauvolfia tetraphylla. Ethnobot. Leaflets, 12: 586-90.
- Ushimaru, P.I., T.N. Mariama, C. Luiz, B. Di Luciano and F.J. Ary. 2007. Antibacterial activity of medicinal plant extract. *Braz. J. Microbial.*, 38: 717-719.
- Wang, H., M. Zhao, B. Yang, Y. Jiang and G. Rao. 2008. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. *Food Chem.*, 107: 1399-1406.
- Yildirim, A., A. Mavi and A.A. Kara. 2001. Determination of antioxidant and antimicrobial activities of *Rumex cripus* L. extracts. J. Agric. & Food Chem., 49: 4083-4089.
- Yildirim, A., A. Mavi, M. Oktay, A.A. Kara, M.F. Algur and V. Bilalolu. 2000. Comparison of antioxidant and antimicrobial activities of tilia (*Tilla argenta Desf* Ex DC), sage (*Salvia triloba* L.) and black tea (*Camellia sinensis*) extracts. J. Agric. & Food Chem., 48: 5030-5034.
- Zaidi, M.I. and A. Gul. 2005. Antibacterial activity of nicotine and its cobalt complex. *Sarhad J. Agric.*, 21: 287-291.

(Received for publication 15 June 2010)