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Abstract 

 
The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, 

despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We 
measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling 
Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t·hm-2), occupied 5.66% in the biomass 
of this forest, the lowest occupied 1.03% in Betula albo-sinensis forest (1.82 t·hm-2). Our results revealed that there was a 
strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t·hm-2 and 11.6 t·hm-2, the biomass 
of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively.  

CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems 
has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In 
our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou’s evenness index (J) 
to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass onthese α 
diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory 
biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) 
and Simpson index (D) of understory increased significantly. 

Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant 
effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many 
and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was 
indispensable for future forest management. 
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Introduction 
 

In forest ecosystems, CWD contributes significantly to 
key ecological processes. It plays an essential role in 
productivity (Stevens, 1997; Janisch & Harmon, 2002), 
nutrient cycling (Currie & Nadelhoffer, 2002; Ganjegunte 
et al., 2004; Wilcke et al., 2005), carbon sequestration 
(Harmon et al., 1986; Gough et al., 2007; Woodall & 
Liknes, 2008), community regeneration (Harmon & 
Franklin, 1989; Santiago, 2000), biodiversity (Harmon et 
al., 1986; Mac Nally et al., 2001; Stevenson et al., 2006), 
and geomorphological stability (Stevens, 1997). CWD is 
particularly important for fungal biodiversity (Bader et al., 
1995; Renvall, 1995; Bredesen et al., 1997; Sippola & 
Renvall, 1999), and similar claims have been made with 
respect to bryophytes (Söderström, 1988; Andersson & 
Hytteborn, 1991) and saproxylic insects (Grove & Meggs, 
2003; Similä et al., 2003). 

Important insights into CWD dynamics have been 
gained by linking stand assessments to CWD 
characteristics (i.e., amount, type, diameter class and 
decay class), and which are a reflection of historical and 
present conditions (Hansen et al., 1991; Hardt & Swank, 
1997; Sturtevant et al., 1997; Siitonen et al., 2000; Yan 
et al., 2007). In this respect, differences in CWD 
characteristics can be associated with stand age (Spies et 
al., 1988; Sturtevant et al., 1997; Yan et al., 2007), 
structure (Sturtevant et al., 1997; Motta et al., 2006; 
Schlegel & Donoso, 2008), productivity (Spetich et al., 

1999; Brais et al., 2005), natural disturbances and 
management history (Hansen et al., 1991; Hardt & 
Swank, 1997; Eaton & Lawrence, 2006; Motta et al., 
2006; Shinwari, 2001; Passovoy & Fulé, 2006). Given 
that the absolute amounts of CWD vary along 
productivity gradients (Sippola et al., 1998), it is 
important to relate information on CWD to trees within 
the same forest type (Krankina & Harmon, 1995; 
Nilsson et al., 2002).  

To develop forest management strategies that mimic 
natural processes and structures, baseline information on 
CWD from natural forests is needed (Kuuluvainen, 2002). 
The Qinling Mountains in central China provide an 
important climate boundary between the southern 
subtropics and the north temperate zone (Yu et al., 
2013a). The region is distinguished by its high plant and 
animal diversity (Kang & Chen, 1996), including the last 
remaining natural habitat of the endangered Giant Panda 
(Ailuropoda melanoleuca) and Japanese Crested Ibis 
(Nipponia nippon). Dominant tree species include Pinus 
tabulaeformis, Quercus aliena var. acuteserrata, Pinus 
armandi, Betula albo-sinensis and Larix principis-
rupprechtii (Lei et al., 1996; Yu et al., 2013b).  

Little quantitative information has been reported on 
CWD characteristics in the Qinling Mountains, despite its 
ecological significance. The objectives of our study were 
to (1) quantify the types, decay stages and diameter 
classes of CWD in five forest types, (2) calculate their 
live biomass and CWD, and (3) assess diversity in these 
plant communities, and its relationship to CWD.  
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Materials and Methods 
 
Study area: Taking an area of 2037 hm2, the study area is 
located on the Huoditang Experimental Forest Farm of 
Northwest A&F University in the Qinling Mountains 
(33°18'� 33°28'N, 108°21'� 108°39'E), Shaanxi Province, 
China (Fig. 1), the altitudes ranging from 800 to 2500m. 
The climate is characteristic of warm temperate zone, 
with a mean annual temperature range of 8� 10oC, annual 
precipitation ranging from 900� 1200mm, and a frost-free 
period of 170 days.  

The study area had intensively selective logging in 
60s~70s of the 20th century, since then there were no 
massive anthropogenic interferences to happen, except for 

slightly tapping lacquer trees and illegal tree felling. Since 
the natural forest protection project was initiated 1998, 
the human activities or special managements have almost 
vanished in this region. The forests used for the current 
research was an average of 55-years old, mean stand 
height, diameter at breast height (DBH) and stand density 
are 16 m, 22 cm and 1585 trees� ha-1 respectively. Forest 
types are dominated by one or more tree species, 
including P. tabulaeformis, Q. alienavar. acuteserrata, P. 
armandi, B. albo-sinensis and L. principis-rupprechtii. An 
abrupt and broken topography consists of granite and 
gneiss parent material. The average slope is 35° and a 
mean soil depth of 45 cm. The soil is classified as 
mountain brown earth.  

 

 
 

Fig. 1. Study location in Shaanxi Province, China. 
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Experimental design and field sampling: Five stands 
were selected with a minimum area of 60 m × 60 m (P. 
tabulaeformis, P. armandi, and B. albo-sinensis) or 40 m × 
90 m (Q. aliena var. acuteserrata and L. principis-
rupprechtii), site conditions were similar in each of the five 
forest types (Table 1). In July of 2012, each stand was 
divided into 6 sample plots with an area of 20 m × 30 m. 

We used the USDA Forest Service and Long Term 
Ecological Research (LTER) definition of CWD 
(diameter ≥ 10 cm at the widest point). CWD was 
categorized in each plot by species, and assigned as logs, 
snags, or stumps, as follows (Harmon et al., 1996; 
Ringvall & Ståhl, 1999). Downed or leaning deadwood (> 
45°from vertical) with a minimum diameter ≥ 10 cm at 
the widest point and length ≥ 1 m, was defined as a log. 
Deadwood ≤ 45°from vertical and the diameter at the 
widest point ≥ 10 cm was defined as a snag, and 
deadwood ≤ 45°from vertical with a height ≤ 1 m and 
diameter ≥ 10 cm at the widest point, defined as a stump. 
Each piece of CWD was assigned to one of five decay 
classes, as per Yan et al. (2007). In addition to CWD, 
living trees were recorded in each plot by species, DBH 
and abundance. 

We set five 2 m × 2 m shrub, and 1 m × 1 m nested 
herbal subplots in the four corners and the middle of the 
each sample plot. Species, height, abundance and cover 
percentage were recorded in the subplots. This work was 
conducted based on Forestry Standards “Observation 
Methodology for Long-term Forest Ecosystem Research” 
of People’s Republic of China (Wang et al., 2011). 
 
Calculation of biomass and species diversity: A total of 
225 CWD samples were collected. When sufficient sound 
wood was present, the CWD was cut by handsaw into 
disks, roughly 5 cm thickness. For the more advanced 
decay classes, the CWD samples were simply transplanted 
onto aluminum plates. Samples were immediately sealed in 
plastic bags, transported to the laboratory, and the sample 
volume (Vsample) determined gravimetrically by water 
displacement. The CWD samples were then dried to a 
constant weight at 70oC. The sample density (Dsample) was 
estimated as the ratio of dry mass to Vsample. 

Prior to calculating CWD biomass, Smalian's formula 
was used to calculate the volume for each sample of logs 
and stumps, from the length and cross-sectional areas at 
the basal and distal ends of an assumed cylinder (Wenger, 
1984). It should be noted that this formula tends to 
slightly overestimate volume due to the natural taper of 
the material (Baker et al., 2007). For snags, we inserted 
the height and diameter of each relevant sample into a 
species-specific wood volume equation. Finally, the 
product of Dsample and the calculated sample volume was 
computed (t·hm-2).  

The biomass of living trees was calculated using a 
series of regression models developed for each of the tree 
species (Table 2) (Chen & Peng, 1995). Aboveground 
biomass of shrub, herb and litter was quantified by a 
harvesting method, and underground biomass of shrub 
and herb was quantified by full-dig method. 
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Table 2. The regression model of biomass and height in the five forest types. 

Forest types Contents Regression equation Correlation 
coefficient 

Reliability of 95 % of 
the estimated accuracy 

Q. aliena var. acuteserrata Stem lnWS=0.99253ln(D2H)-3.78818 0.99763 94.24 

 Bark lnWBA=0.75632ln(D2H)-3.92450 0.99708 95.37 

 Branch lnWB=3.4993lnD-6.50726 0.96524 84.27 

 Leaf lnWL=2.29344lnD-4.88581 0.97832 84.45 

 Root lnWR=2.76345lnD-4.20817 0.99106 89.15 

 Height 1/H=8.01921/D2.59222+0.05263 0.78814 95.60 

P. armandi Stem lnWS=1.02363ln(D2H)-4.49970 0.99802 97.09 

 Bark lnWBA=0.88417ln(D2H)-5.38472 0.99698 96.73 

 Branch lnWB=2.57551lnD-4.08452 0.98656 90.60 

 Leaf lnWL=2.75687lnD-5.75891 0.98004 81.56 

 Root lnWR=0.97120ln(D2H)-5.26301 0.97927 92.13 

 Height 1/H=1.34537/D1.70800+0.07143 0.88076 98.52 

P. tabulaeformis Stem lnWS=1.04086ln(D2H)-4.63143 0.99558 93.70 

 Bark lnWBA=0.77396ln(D2H)-4.69348 0.99037 93.12 

 Branch lnWB=2.57733lnD-4.08026 0.99159 86.37 

 Leaf lnWL=2.57495lnD-5.11712 0.98652 73.77 

 Root lnWR=2.28692lnD-4.14198 0.98792 82.60 

 Height 1/H=0.82960/D1.40330+0.07692 0.92899 97.80 

B. albo-sinensis Stem lnWS=0.91035ln(D2H)-3.79326 0.99721 88.77 

 Bark lnWBA=0.81021ln(D2H)-4.27750 0.99674 91.22 

 Branch lnWB=3.35934lnD-5.93511 0.98584 84.64 

 Leaf lnWL=2.39007lnD-5.56930 0.98709 85.19 

 Root lnWR=2.68879lnD-4.33607 0.99292 88.04 

 Height 1/H=4.98842/D2.43072+0.06061 0.87234 93.51 

L. principis-rupprechtii Stem lnWS=0.99794ln(D2H)-4.29251 0.99312 86.62 

 Bark lnWBA=0.80398ln(D2H)-4.53535 0.98872 83.76 

 Branch lnWB=2.04597lnD-2.55078 0.97720 82.50 

 Leaf lnWL=1.90488lnD-3.44704 0.97436 76.46 

 Root lnWR=2.18625lnD-3.46236 0.98725 90.67 

 Height 1/H=1.90568/D1.90809+0.06897 0.86281 95.39 

Note: D= Diameter at breast height; H= Height of tree; WS= Dry weight of stem; WBA= Dry weight of bark; WB= Dry weight of 
branch; WL= Dry weight of leaf; WR= Dry weight of roots 

 
Species richness (S), the Shannon-Wiener index (H), 

Simpson index (D) and Pielou’s evenness index (J)were 
used to estimate plant community diversity, as follows:  
 
S = total number of species,  
 

∑
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21
(Berger & Parker, 1970) 

where S and Pi are as defined above. 
 

max/ HHJ = (Hurlbert, 1971) 
 

Hmax is the maximal Shannon-Wiener diversity index. 
 
Statistical analyses: The effect of CWD type, decay 
class, and diameter class, on CWD biomass was tested 
using a One-Way ANOVA. Significant effects were 
followed by a Least Squares Difference (LSD) test to 
compare differences between CWD types, decay classes, 
diameter classes and forest types, separately. The 
dependence of the CWD biomass on forest biomass was 
analyzed with Pearson’s correlation coefficient (r). All 
statistics were analyzed using the SAS 8.0 Statistical 
Package, with a P-value of 0.05 set as the limit for 
statistical significance. 
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Results 
 
CWD biomass: Logs were the largest CWD biomass 
component in all forest types, followed by the snags, then 
stumps. Log biomass was significantly higher in P. 
tabulaeformis forest than the other four forest types (Table 
3), followed by P. armandi, Q. alienavar.acuteserrata and 
L. principis-rupprechtii. Although B. albo-sinensis forest 
had the lowest log biomass, it was not significantly lower 
than L. principis-rupprechtii. P. armandi forest had the 
highest snag biomass, followed by Q. aliena var. 
acuteserrata and P. tabulaeformis (the latter of which were 
not significantly different), then L. principis-rupprechtii 
and B. albo-sinensis. 

P. tabulaeformis stand had the highest CWD 
biomass for decay classes 1, 4 and 5 (p<0.05; Table 4). 
For decay class 2, the highest biomass was shared 
between P. tabulaeformis and P. armandi. Both P. 
armandi and Q. aliena var. acuteserrata had the greatest 
CWD biomass for decay class 3. Visual inspection 
indicated no consistent trends in CWD abundance across 
decay classes for the five forest types. In the case of B. 
albo-sinensis stand, CWD was present for only decay 
classes 1 and 2 (Table 4).  

In terms of CWD size, only P. tabulaeformis stand 
had representation in the largest diameter class (>40 cm), 

while in B. albo-sinensis stand all CWD was < 30 cm 
diameter (Table 5). L. principis-rupprechtii stand had the 
highest CWD biomass in the smallest size class (p<0.05), 
P. tabulaeformis, P. armandi and Q. aliena var. 
acuteserrata in the next size class (20-30 cm), both P. 
tabulaeformis and P. armandi in the 30-40 cm size class. 
B. albo-sinensis stand had markedly lower amount of 
CWD (Table 5).  

 
Relationship between biomass of CWD and forest: 
Forest biomass, including biomass of the living trees, 
shrub, herb, litter and CWD, across the five forest types 
had a significant variability ranged from 176.68 t·hm-2 (B. 
albo-sinensis forests) ∼255.25 t·hm-2 (Q. aliena var. 
acuteserrata forests) (Table 6). For all sample plots, 
Pearson’s correlation coefficient (r) was 0.50 (P=0.005, 
n=30) (Fig. 2). This result revealed that there was a strong 
correlation between biomass of CWD and forest, but the 
correlation was different at various forest types. Analyzed 
by forest types (n=6, in each group), the correlation was 
highly significant in Q. aliena var. acuteserrata forest 
(r=0.97, P=0.0013), B. albo-sinensis forest (r=0.95, 
P=0.0034) and L. principis-rupprechtii forest (r=0.96, 
P=0.0024), but not in P. tabulaeformis forest (r=-0.13, 
P=0.7991) or in P. armandi forest (r=-0.16, P=0.7648). 

 
Table 3. Biomass of the three CWD types in five forest types (t·hm-2). 

CWD types 
Forest types 

Logs Snags Stumps 
P. tabulaeformis 10.92(3.75)a 1.46(0.31)b 0.19(0.17)a 
P. armandi 7.15(2.54)b 3.63(0.53)a 0.18(0.04)a 
Q. alienavar.acuteserrata 6.75(1.84)b 1.61(0.31)b 0.19(0.06)a 
L. principis-rupprechtii 4.19(1.87)bc 0.92(0.18)c 0.12(0.04)ab 
B. albo-sinensis 1.55(0.90)c 0.24(0.09)d 0.03(0.03)b 
Note: Mean in each column with different letter is significantly different at p� 0.05, standard error is provided in brackets 

 
Table 4. Biomass in the CWD decay classes for five forest types (t·hm-2). 

CWD decay classes Forest types 
1 2 3 4 5 

P. tabulaeformis 3.81(0.41)a 3.47(0.37)a 2.79(0.13)b 1.73(0.11)a 0.77(0.06)a 
P. armandi 1.81(0.37)b 3.73(0.28)a 3.78(0.52)a 1.24(0.06)b 0.40(0.08)b 
Q. alienavar.acuteserrata 0.25(0.06)d 1.87(0.26)b 4.57(0.94)a 1.32(0.13)b 0.54(0.07)b 
L. principis-rupprechtii 1.75(0.33)b 1.87(0.34)b 1.03(0.21)c 0.37(0.04)c 0.21(0.03)c 
B. albo-sinensis 0.87(0.09)c 0.95(0.04)c 0 0 0 
Note: Mean in each column with different letter is significantly different at p� 0.05, standard error is provided in brackets 

 
Table 5. Biomass of the CWD diameter classes in five forest types (t·hm-2). 

CWD diameter classes 
Forest types 

10-20 20-30 30-40 >40 
P. tabulaeformis 1.66(0.24)b 4.16(0.56)a 5.47(0.61)a 1.28 
P. armandi 0.71(0.07)c 5.06(0.44)a 5.19(0.48)a 0 
Q. alienavar.acuteserrata 0.74(0.09)c 4.66(0.38)a 3.15(0.35)b 0 
L. principis-rupprechtii 2.51(0.34)a 2.29(0.13)b 0.43(0.08)c 0 
B. albo-sinensis 0.5(0.04)d 1.32(0.14)c 0 0 
Note: Mean in each column with different letter is significantly different at p� 0.05, standard error is provided in brackets 
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Fig. 2. Relationship between biomass of CWD and forest in 
each stand. 
 
Biodiversity traits of various forest types: The effect of 
CWD biomass on four kinds of α diversity index was 
different among tree, shrub and herb in five forest types 
(Fig. 3). Especially for the impacts of CWD biomass on 
understory biodiversity were more obvious. With the 
increase of CWD biomass, the species richness (S), 
Simpson index (D) and Shannon-Wiener index (H) of 
understory increased at linear trend. Overall, the impacts 
of CWD biomass on understory four kinds of α diversity 
index were higher than that of trees. There was a positive 
correlation between CWD biomass and species richness 
(S), Shannon-Wiener index (H), Simpson index (D) in all 
five forest types (Table 7). As to Pielou’s evenness index 
(J), the correlation was significant in P. tabulaeformis 
forest, L. principis-rupprechtii forest and B. albo-sinensis 
forest, but not in Q. aliena var. acuteserrata forest or in 
P. armandi forest. When trees, shrubs and herbs were 
analyzed separately, the correlation was more apparent in 
five forest types (Table 8). Compared to trees, the 
correlation between CWD biomass and species richness 
(S), Shannon-Wiener index (H), Simpson index (D) were 
more significant at understory, and the correlation 
coefficient (r) were also higher at understory. 
 
Discussion 
 
Character of CWD biomass: The global range in CWD 
biomass varies from 8 t·hm-2 to 200 t·hm-2 (Chen & 
Harmon, 1992). The accumulation in CWD is expected to 
be dynamically mediated by the various CWD production 
and decomposition-controlling factors (Stevens, 1997). 
Overall, the comparatively low CWD biomass could be 
explained by some aspect of carbon cycling in the five 
forests-either low rates of CWD input, and/or high rates 
of CWD decomposition (Baker et al., 2007). In present 
study, most importantly, the small quantity in CWD is 
possibly related to the near-mature forest developmental 
stage caused by the logging practice. This lower CWD 
biomass also seems to be caused by 1) the small pre-
existing (before selective logging) or/and freshly created 
(natural disturbances, such as wind, rain, snow, fire, 

lightning, insect, invasion of fungi, etc.) CWD amount, 2) 
CWD amount declination over time due to decomposition 
(Harmon et al., 1986; Spies et al., 1988; Yan et al., 2007), 
3) lower  tree density and crown density in the study area. 
In forest ecosystems, different CWD types (i.e., logs, 
snags and stumps) can be an indicator of origin and 
legacy of CWD. In addition, it can be used to reflect 
forest management and stand development history. Yan et 
al. (2007) concluded that a higher proportion of CWD due 
to stumps in a given site may suggest extensive 
anthropogenic disturbances in the past, such as clear-
cutting or selective logging. In 60~70s of the 20th 
century, intensively selective logging had occurred in this 
area. In present forests investigated, our data showed that 
logs were a principal CWD input source, followed by 
snags, which is in accordance with suggestions from other 
reports (Harmon et al., 1986; Keller et al., 2004). 
Generally, in natural forests most of CWD derive from 
gradual accumulation after ecosystems suffering from 
severe disturbances (e.g., wind throw) (Harmon et al., 
1986). However, a surge in CWD biomass can be 
suddenly created by serious windstorms. For instance, in 
1986, a catastrophic tornado produced up to 1000 ha of 
logs in the Changbai Mountain (Chen & Harmon, 1992). 
Thus, we believe that the substantial biomass in logs in 
this study area should primarily result from the latest local 
pulses in mortality, driven by a combination of strong 
winds and steep topography. The production in snags is 
expected to be relative to its shade intolerance. The trees 
grew well before canopy closing, thereafter, turned weak 
to contribute to the susceptibility of attack by insects and 
diseases following canopy closing (Stevens, 1997). The 
snags in the five forest types likely resulted from diseases 
and pests. The snags in P. armandi forest were mainly 
caused by a recorded infestation of Dendroctonus 
armandi. This explanation might reveal why snags in P. 
armandi forest had the highest biomass. 

Our study showed that CWD in the five forest 
types had significantly different decomposition stages 
and diameter classes. The difference can partly be 
attributed to the vegetation composition, disturbance 
type and stand age. Also, the decomposition of CWD is 
complex and controlled by different factors such as the 
type of wood, humidity of wood, mean annual 
temperature and decomposers (Harmon et al., 1986; 
Mackensen et al., 2003; Garrett et al., 2007; Bond-
Lamberty & Gower, 2008; Beets et al., 2008; Garrett et 
al., 2008). Such latest wind throw events could be 
propitious to shaded light on the origination for the 
high biomass in the early stage of decay class, 
especially in steep topography and younger stands. 
Carmona et al. (2002) and Motta et al. (2006) reported 
that the biomass of CWD in advanced decomposition 
classes increased with stand ages. It is generally 
acknowledged that CWD with similar ages is more 
abundant following severe disturbance events (Yan et 
al., 2006). Noticeably, the occurrence of large living 
trees is an essential prerequisite for creating large size 
CWD, but these are scarce in the five forest types. The 
removal of large logs after intensively selective 
loggings might partially explain why CWD with large 
size (> 40 cm) was scarce in our study area. 
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Fig. 3. The effect of the CWD biomass on α diversity index among tree, shrub and herb in the five forest types. 
 

Table 6. Biomass in five forest types (t·hm-2). 
Forest types Tree Shrub Herb Litter CWD Total 
P. tabulaeformis 205.11b 

(26.57) 
3.39ab 
(0.64) 

0.45a 
(0.08) 

0.37c 
(0.05) 

12.57a 
(4.03) 

221.89b 
(27.99) 

P. armandi 191.52b 
(21.57) 

4.21a 
(0.81) 

0.51a 
(0.11) 

0.65a 
(0.04) 

10.96ab 
(2.99) 

207.85bc 
(23.26) 

Q. alienavar.acuteserrata 242.79a 
(15.31) 

3.16b 
(0.61) 

0.24c 
(0.04) 

0.51b 
(0.03) 

8.55b 
(1.74) 

255.25a 
(17.66) 

L. principis-rupprechtii 180.19bc 
(14.35) 

2.14c 
(0.34) 

0.32b 
(0.07) 

0.39c 
(0.06) 

5.23c 
(1.77) 

188.27cd 
(16.07) 

B. albo-sinensis 171.09c 
(11.55) 

2.91b 
(0.12) 

0.38ab 
(0.06) 

0.48b 
(0.05) 

1.82d 
(0.99) 

176.68d 
(12.78) 

Note: Mean in each column with different letter is significantly different at p� 0.05, standard error is provided in brackets 
 

Table 7. Correlation analysis between CWD biomass and α diversity index. 
α diversity index 

Forest types 
S D H J 

P. tabulaeformis 0.91103 P=0.0115 0.85298 P=0.0308 0.88901 P=0.0178 0.82054 P=0.0454 
P. armandi 0.97333 P=0.0011 0.95615 P=0.0028 0.9849 P=0.0003 0.7815 P=0.0664 
Q. aliena var. acuteserrata 0.99525 P<0.0001 0.94735 P=0.0041 0.97494 P=0.0009 0.5755 P=0.2321 
L. principis-rupprechtii 0.99905 P<0.0001 0.95481 P=0.003 0.98767 P=0.0002 0.88406 P=0.0194 
B. albo-sinensis 0.99718 P<0.0001 0.94843 P=0.0039 0.98404 P=0.0004 0.93792 P=0.0057 
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Relationship between biomass of CWD and forest: Our 
results revealed that there was a strong correlation between 
CWD and forest biomass. This conclusion has been reported 
by several studies (Sippola et al., 1998; Siitonen et al., 2000; 
Pedlar et al., 2002; Aakala et al., 2008). However, the 
dependence of the CWD biomass on forest biomass was 
different in forest types. Q. aliena var. acuteserrata, B. albo-
sinensis and L. principis-rupprechtii all have significant 
positive correlation between the biomass of CWD and forest. 
Yet when the CWD biomass were 9.9 t·hm-2 and 11.6 t·hm-2, 
the forest biomass of P. armandi and P. tabulaeformis 
reached the maximum, respectively. Moreover, the diameter 
classes, decomposition stages, species composition and 
quantities of CWD played a crucial role in forest biomass. 
Aakala et al. (2006) considered that the influence of the 
disturbance history of the stands was also an important factor 
for the dependence of the CWD biomass on forest biomass. 
 
Impacts of CWD biomass on understory biodiversity: In 
our study, we found the impacts of CWD biomass on 
understory biodiversity were more obvious. With the 
increase of CWD biomass, the species richness (S), 
Shannon-Wiener index (H) and Simpson index (D) of 
understory increased significantly. Previous studies have 
reported the CWD could profoundly influence biodiversity 
(Brassard & Chen 2006), allow greater numbers of 
individuals and species to co-exist (Grove & Meggs, 2003), 
facilitate seed germination and seeding growth (Scheller & 
Mladenoff, 2002), initiate tree regeneration (Motta et al., 
2006), and positively correlate with forest biodiversity 
(Tilman et al., 1996). These results have significantly 
enhanced our understanding of the impacts of CWD on 
biodiversity. However, little attention has been given to 
quantitative research, in particular understory four kinds of 
α diversity index were varied by CWD dynamics. 

The reasons for the impacts of CWD biomass on 
understory biodiversity were diversity. With the increase of 
CWD biomass, the habitat fragmentation enhanced, the 
environmental heterogeneity enlarged, the habitat diversity 
increased, the species replacement rate accelerated. CWD 
contributes greatly to the structural complexity of the forest 
floor, this structural complexity increases the range of 
microclimates and microhabitats available for exploitation. 
Moreover, CWD may form gap, provide moisture and 
increase soil nutrients, these factors are necessary for 
understory to grow. 

This study reported the CWD characteristics in the five 
forest types. A comparably low estimation in CWD biomass 
was a consequence of the present forest developmental stage. 
A small pre-existing or/and freshly created biomass before 
or/and after selective logging, removal of large logs, 
decomposition and human activities also contributed to the 
lower CWD biomass in the five forest types. Our results 
revealed that there was a strong correlation between CWD 
and forest biomass, moreover, CWD biomass affects the 
diversity of plant community. However, we currently do not 
fully understand how CWD characteristics, in particular the 
extent of decay and diameter classes, influence the plant 
communities. Some researchers suggested that plant species 
richness and abundance was highly correlated with CWD 
decay extent, size, and species type, and that unique plant 
community compositions were associated with specific 
CWD attributes (Lõhmus & Lõhmus, 2001; Humphrey et 
al., 2002; Lõhmus et al., 2007). Therefore, further research is 
required to reveal how CWD attributes (for example, types, 
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decay stages, diameter classes and tree species) affect the 
plant communities in the Qinling Mountains. In addition, 
eco-forestry emphasized its importance to reserve CWD, but 
how many and how characteristic of CWD should be 
retained need further research. So, development of CWD 
reasonable strategies is indispensable for future forest 
management. 
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