EVALUATION OF PHYTODIVERSITY FOR ALLELOPATHIC ACTIVITY AND APPLICATION TO MINIMIZE CLIMATE CHANGE IMPACT: JAPANESE MEDICINAL PLANTS

MUHAMMAD IBRAR SHINWARI^{1*}, OSAMU IIDA², MARYUM IBRAR SHINWARI⁵ AND YOSHIHARU FUJII^{3,4}

¹Department of Environmental Science, International Islamic University Islamabad, Pakistan ²Research Center for Medicinal Plant Resources, Tanegashima Station, Japan, ³International Agro-Biological Resources and Allelopathy, Tokyo University of Agriculture and Technology, Tokyo ⁴National Institute for Agro-Environmental Sciences, Tsukuba, Japan, ⁵Pakistan Scientific & Technological Information Centre, Islamabad, Pakistan *Corresponding author e-mail: m.ibrar@iiu.edu.pk

Abstract

Climate change impact is ready to interfere in agro-ecosystems. Improvement of adaptations of crops to forthcoming climatic changes must be focused in research. In the present study, leaf liter of 160 medicinal plant samples (156 species) belonging to 134 genera and 74 families were collected from Research Center for Medicinal Plant Resources, Tanegashima, Japan and subjected to evaluation of their allelopathic effects using the Sandwich method. Lettuce (*Lactuca sativa* L.) was used as a test plant material in the bioassay because of its reliability for germination. Top ten medicinal plant species found with maximum inhibition activity were *Melia azedarach* (Meliaceae) followed by *Tylophora tanakae* (Ascepiadaceae), *Cinchona* sp. (Rubiaceae), *Flueggea virosa* (Phyllanthaceae), *Hibiscus acetosella* (Malvaceae), *Justicia procumbens* (Acanthaceae), *Terminalia chebula* (Combretaceae), *Hibiscus syriacus* (Malvaceae), *Lycium chinense* (Solanaceae) and *Elaeocarpus japonicas* (Elaeocarpaceae). Moreover, the presented results also showed minimum growth inhibition or maximum growth stimulation by *Ligustrum japonicum* (Oleaceae) followed by *Vitex rotundifolia* (Lamiaceae) and *Alpnia intermedia* (Zingiberaceae). These results may be utilized as benchmark information for further research on the elucidation of chemicals involved in the allelopathy in nature. The information obtained could also be helpful in the development of new and potent bioactive chemicals from natural products.

Key Words: Allelopathic activity, Medicinal Plants, Sandwich Method, Climate Change

Introduction

Diversity of medicinal plants is an important global wealth crucial for human health as well as pharmaceutical industry. Regeneration and propagation practices such an important resource has definitely been emphasized due to its value. But secondary metabolites (allelochemicals) released from plants and crops may have adverse effects in agricultural fields and managed forest ecosystems that are reduction of crop production etc. However, this property can also be utilized to combat future ecological threats. The potential of each species to release such phytochemicals is variable and unexplored. Therefore, it is worthwhile to determine the allelopathic potential of various plant species in general and medicinal plants specifically.

Globally studies have been made to know the living organism's interactions among themselves in ecological systems. The term Allelopathy has been applicable to those plants species that release chemicals into the environment either from their underground or aerial parts through root exudation, leaching by rains or dews, and volatilization or plant tissue decaying. The phyto-chemicals excreted into the environment affect other organisms, like plants, microorganisms and animals through inhibitory or excitatory means. These metabolites accumulate and persist for a reasonable time, thereby put significant impact on the growth and development of neighboring plants (Putnam & Duke, 1974, Rice, 1984).

In the past, many techniques were applied for assessment of allelopathic potential. For example, water extraction method applied on medicinal plants reflected relatively high allelopathic potential (Fujii, *et al.*, 1990). About 78 medicinal plants were evaluated for allelopathic activity through the solvent (methanol and water) extraction method (Fujii, et al., 1991). In another research endeavor, 239 medicinal plant species were evaluated for allelopathic potential through Sandwich method. This method was used because it was reportedly took less time to evaluate allelopathic activity of leaf litter leacheate of a huge number of samples in the laboratory (Fujii, et al., 2003). Allelopathic potential of 20 medicinal plants and weeds was determined through Sandwich method resulted maximum growth inhibition of radical occurred in Pyrus pashia followed by Solanum surattense and Solanum villosum (Shinwari, et al., 2013a). Sandwich method has been applied as a latest technique by most of the researchers to evaluate allelopathy in medicinal plants against lettuce seeds (Shinwari, et al., 2013a, Shinwari, et al., 2013b, Anjum, et al., 2010).

It has been reported that allelopathic potential of medicinal plant species found at Research Center for Medicinal Plant Resources, Tanegashima Station, Japan had never been determined. Therefore, the allelopathic potential of 156 medicinal plant species (160 samples) was evaluated through newly developed sandwich method as a standard bioassay to utilize this unexplored important resource.

Materials and Methods

Plant materials: Leaves of 156 medicinal plant species (160 samples) has been collected from Research Center for Medicinal Plant Resources, Tanegashima, Japan and evaluated for their allelopathic potential through Sandwich method (Shinwari, *et al.*, 2013a, Shinwari, *et al.*, 2013b, Fujii, *et al.*, 2003, Shiraishi, *et al.*, 2002).

Method: Three replications each of 10 mg oven dried leaves were placed in each well of the six-well multi-dish plastic plate of each sample (Fujii, *et al.*, 2003, Fujii, *et al.*, 2004, Shinwari, *et al.*, 2013a, Shinwari, *et al.*, 2013b). Lettuce seedlings elongation percentage (radicles and hypocotyls) were calculated with reference to the control.

The "SDV" (standard deviation value) for allelopathy evaluation (Fujii, *et al.*, 2003, Fujii, *et al.*, 2004) and the mean/ standard deviation were calculated for the statistical analysis while criterion of SDV were evaluated.

Results

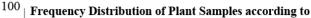
The percentages of elongation of the radicle and hypocotyl of the lettuce seedlings for all the tested species are given in Table 1. The mean and standard deviation of the percentages were calculated and the criteria of the standard deviation were evaluated. The criteria of *,**,***,**** in table 1 refer to radicle elongation that is lower than the mean value minus $1(\sigma), 1.5(\sigma), 2(\sigma)$ and $2.5(\sigma)$; that is SDV=40,35, and 25, respectively.

Results of all species have been evaluated statistically and compiled in a presentable form. Inhibition potential between 80 to 100 % against lettuce root growth has been found in 3 species viz., Melia azedarach (Meliaceae), Tylophora tanakae (Ascepiadaceae) and Cinchona sp. (Rubiaceae) between 60-79% in 10 species viz. Flueggea virosa, Hibiscus acetosella , Justicia procumbens, Terminalia chebula, Lycium chinense, Hibiscus syriacus, Elaeocarpus japonicus, Murraya paniculata, Geranium thunbergii and Melastoma sanguineum, between 40-59 in 27 species, between 20-39 in 67 species and the remaining 52 species showed level of inhibition below 19 %. For lettuce hypocotyl, ten species viz., Melia azedarach, Tylophora tanakae, Cinchona sp., Hibiscus syriacus, Flueggea virosa, Hibiscus acetosella, Justicia procumbens, Distylium Murraya paniculata, racemosum and Peucedanum japonicum indicted inhibition from 40 to 79% though remaining 55 plant species reflected inhibition below 39% while 95 species indicated stimulatory effect.

Discussion

About 40 species showed 40% or more inhibition for lettuce root. It has been described in literature that maximum allelopathic effect has been found on root growth rather than shoot growth, has been confirmed by the present results (Devi, et al., 1997). Growth of hypocotyls and radicle of lettuce seedlings has been mentioned in the form of either inhibition or promotion. Negative values indicated promotion when compared to the corresponding controls (Table 1). In one of the latest study, 170 plant species (176 samples) from Peru have been subjected to screening for allelopathic activity by Sandwich method. The results reflected that Aristeguieta ballii (Asteraceae) with high allelopathic potential against lettuce, with a full inhibition of germination of seed of the tested plant. Moreover, there was a strong allelopathic effect that was noticed in the experimentation with the other 11 species from Peru, mostly from the families Asteraceae. Anacardiaceae, Fabaceae, and Solanaceae (Morikawa, et al., 2012).

The present experimental results indicated maximum (more than 80%) inhibition by *Melia azedarach*


(Meliaceae) followed by Tylophora tanakae (Asclepiadaceae) and Cinchona sp. (Rubiaceae) (Table 1). Melia azedarach L. (commonly called Chinaberry; known as 'Syringa' at South Africa), is a tree found in North and South America, Asia, North Australia and Africa. In one of the previous study, application of aqueous extracts from dried and fresh fruits and foliage of Melia azedarach for germination and growth stimulation of tomato resulted inhibitory activity on germination and radicle growth at all concentrations, and the inhibitory effect increased as the concentration of the extract increased. While the extracts from dried leaves of *M. azedarach* had the greatest effects (Tur, et al., 2012). In another study, it has been observed that M. azedarach foliage possessed secondary metabolites that are water soluble cause inhibition in uptake of water and Echinochloa crus-galli a-amylase activity during the process of germination (Phuwiwat, et al., 2012). Besides this, positive inhibitory effect of M. azedarach has also been reported against germination and growth of Lactuca sativa seeds while using classic reflux and ultrasonic techniques to get vegetable material extracts. It has been also been concluded that extraction in alcohol reflected better results as compare to water extraction technique for phytotoxics of M. azedarach. On the other hand, classic reflux method has proved to be better than ultrasounds extraction method (Lungu, et al., 2011).

Various species of the genus Tylophora has been traditionally employed as herbal drugs due to their potent therapeutic potential. Phytotoxic and anti-cancer activity of derivatives of *Tylophora* genus has already been established (Bashir, *et al.*, 2009, Wenli & Wing, 2004) reflecting the growth inhibitory potential of this genus as confirmed by current results i.e., Tylophora tanakae that emerged as containing the second strongest inhibitory potential among 160 plant samples. Genus Cinchona emerged as the third strongest inhibitory potential containing plant in the present study (Table 1). However, in another investigation, inhibitory effect of quinoline from the genus Cinchona on seed germination was found very strong even by the alkaloids itself. When this finding has been evaluated for allelopathic significance, it has been observed that testing the soil contain two years growth of Cinchona plants, high concentrations of quinoline alkaloid found in the root zone while the soil has received very low concentrations and no toxicity has been observed on seeds germination near the plants. It has been concluded that although laboratory results showed seed germination inhibition by alkaloids Cinchona, but results obtained from field conditions reflects that the alkaloid was found ineffective in natural environment (Aerts, et al., 1991).

Moreover, in the present study 71-80% inhibition have also been observed among 7 medicinal plant species; Flueggea virosa (Phyllanthaceae), Hibiscus acetosella (Malvaceae), Justicia procumbens (Acanthaceae), Terminalia chebula (Combretaceae), Hibiscus syriacus (Malvaceae), Lycium chinense (Solanaceae) and Elaeocarpus japonicas belongs to family Elaeocarpaceae (Graph 1). While 51-70% inhibition have been found among 23 medicinal plants. Results indicated that members of 3 families viz., Meliaceae, Ascepiadaceae and Rubiaceae caused maximum inhibition (>80%) radicle growth of lettuce. It has also been observed that 7 families viz., Phyllanthaceae, Malvaceae, Acanthaceae, Combretaceae, Combretaceae, Malvaceae, Solanaceae and Elaeocarpaceae resulted strong inhibition (70-79%) on growth of lettuce

radicle (Table 1). The results obtained can be used as baseline data for futre research to focus phyto-chemicals that reflect allelopathy in nature. This may help to develop potent and novel bioactive chemicals.

The present results also showed minimum growth inhibition or maximum growth stimulation by Ligustrum japonicum (Oleaceae) followed by Vitex rotundifolia (Lamiaceae) and Alpnia intermedia (Zingiberaceae) (Table 1). It has been found in latest research that certain secondary metabolites that stimulate growth may be involved in inducing tolerance against several abiotic stresses like heat. Hence, these allelochemicals may be applied at different phonological stages to augment the stress tolerance. Such kind of biological measures may be used to minimize the impacts of future climatic changes. Availability of sufficient food is necessary to ensure food security sustainability. Climate change has become a great threat that may decrease production by temperature increase and changed rainfall patterns that is expected to depress agricultural yields in most the ecological zones increasingly (Lobell et.al., 2011). Loss of production may also happen because of weather extremes like maximized events of floods, dryness and heat. Discovery of growth stimulatory allelochemicals may help to at least minimize such losses in production in future.

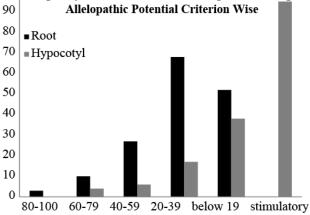


Table 1. Allelopathic potential determination of 156 medicinal plant species (160 Samples) from Japan

Family	Species Name (Scientific)	Extensio	Extension (%) †	
			Hypocotyl	Criterion‡
Meliaceae	Melia azedarach L.	14.1	23.5	****
Ascepiadaceae	Tylophora tanakae Maxim. ex Franch. & Sav	14.3	39.8	****
Rubiaceae	Cinchona sp.	15.7	28.0	****
Phyllanthaceae	Flueggea virosa (Willd.) Royle	20.8	55.7	***
Malvaceae	Hibiscus acetosella L.	23.4	55.1	***
Acanthaceae	Justicia procumbens L.	24.7	43.6	***
Combretaceae	Terminalia chebula Retz.	26.4	63.6	***
Malvaceae	Hibiscus syriacus L.	27.8	39.6	***
Solanaceae	Lycium chinense Mill.	27.8	78.2	***
Elaeocarpaceae	Elaeocarpus japonicas Siebold et Zucc.	28.6	61.9	***
Rutaceae	Murraya paniculata (L.) Jack	30.4	57.3	**
Geraniaceae	Geranium thunbergii Siebold et Zucc.	32.8	86.4	**
Melastomataceae	Melastoma sanguineum Sims.	33.0	88.3	**
Apocynaceae	Allamanda neriifolia Hook.	40.4	62.7	*
Rosaceae	Spiraea nipponica Maxim. var. tosaensis (Yatabe) Makino	41.3	68.6	*
Convolvulaceae	<i>Ipomoea pes-caprae</i> (L.) Sweet	42.4	98.5	*
Campanulaceae	Adenophora triphylla (Thunb.) A. DC.	43.4	73.4	*
Capparaceae	Crataeva religiosa G. Forst.	44.6	64.2	*
Acanthaceae	Strobilanthes cusia (Nees) Kuntze	46.2	132	*
Lauraceae	Actinodaphne longifolia (Blume) Nakai	46.5	87.3	*
Hamamelidaceae	Distylium racemosum Siebold et Zucc. (S1)	47.5	56.0	*
Apiaceae	Peucedanum japonicum Thunb. (S1)	47.7	43.4	*
Rubiaceae	Uncaria rhynchophylla (Miq.) Miq.	47.7	96.0	*
Verbenaceae	Duranta plumieri Tacq.	50.4	103	
Solanaceae	Brunfelsia latifolia (Pohl) Benth.	51.1	115	
Cornaceae	Cornus brachypoda C. A. Mey.	52.0	114	
Vitaceae	Vitis thunbergii Siebold et Zucc.	52.0	93.5	
Fabaceae	Desmodium oxyphyllum DC.	52.2	99.5	
Theaceae	Eurya emarginata (Thunb.) Makino	52.4	70.6	
Celastraceae	Catha edulis (Vahl) Endl.	53.4	119	
Moraceae	Ficus virgate Reinw. ex Blume	55.4	93.9	
Myrtaceae	Myrtus communis L.	56.0	101	
Celastraceae	Microtropis japonica (Franch. et Savat.) H. Hallier	56.3	95.4	
Myrtaceae	Psidium cattleianum Sabine var. lucidum hort.	56.5	100	
Rosaceae	Rubus grayanus Maxim.	58.2	107	
Fabaceae	Lespedeza cuneata (Du Mont. d. Cours.) G. Don	58.3	124	
Lycopodiaceae	Lycopodium cernum L.	58.3	82.3	

	Table 1.(cont'd)	Extension (9/) +		
Family	Species Name (Scientific)	Extension (%) † Radicle Hypocotyl		
Symplocaceae	<i>Symplocos lucida</i> Sieb. et Zucc.	58.4 88.2		
Apocynaceae	Ervatamia coronaria (Jacq.) Stapf	58.8 75.9		
Styracaceae	Stryrax japonica Siebold et Zucc.	59.9 80.9		
Staphyleaceae	Euscaphis japonica (Thunb.) Kanitz	60.4 80.1		
Asteraceae	Cirsium spinosum Kitam.	61.0 98.1		
Theaceae	Camellia japonica L.	61.8 107		
Adoxaceae	Sambucus sieboldiana (Miq.) Blume ex Graebn.	61.8 99.1		
Malpighiaceae	Malpighia glabra L.	61.9 85.0		
Sabiaceae	Meliosma rigida Siebold et Zucc.	62.4 91.2		
Rutaceae	Zanthoxylum schinifolium Siebold et Zucc.	63.4 96.9		
Rutaceae	Evodia meliifolia (Hance) Benth.	63.8 90.8		
Convolvulaceae	Ipomoea batatus (L.) Lam.	63.9 100		
Lamiaceae	Ajuga pygnaea A. Gray	64.2 96.5		
Menispermaceae	Cocculus laurifolius DC.	64.2 89.3		
Elaeagnaceae	Elaeagnus umbellata Thunb.	64.5 98.5		
Fabaceae	Crotalaria sessiliflora L.	64.9 118		
Magnoliaceae	Michelia figo (Lour.) Spreng.	65.3 84.7		
Myrtaceae	Pimenta dioica (L.) Merr.	65.5 91.6		
Urticaceae	Debregeasia edulis (Siebold et Zucc.) Weddell	65.7 134		
Burseraceae	Canarium album (Lour.) Raeusch.	66.9 80.2		
Lauraceae	Neolitsea sericea (Blume) Koidz.	67.1 100		
Ebenaceae	Diospyros morrisiana Hance	67.3 125		
Passifloraceae	Passiflora edulis Sims	67.9 98.1		
Symplocaceae	Symplocos tanakae Matsumura	68.2 95.6		
Aquifoliaceae	Ilex liukiuensis Loes.	68.8 113		
Moraceae	Ficus religiosa L.	69.0 125		
Boraginaceae	Ehretia microphylla Lam.	69.3 113		
Lauraceae	Lindera citriodora (Siebold et Zucc.) Hemsl.	69.4 124		
Ericaceae	Vaccinium bracteatum Thunb.	69.4 98.1		
Vitaceae	Ampelopsis leeoides (Maxim.) Planch.	69.5 124		
Lauraceae	Litsea coreana Léveillé	69.9 84.5		
Annonaceae	Cananga odorata (Lam.) Hook. fil. et Thoms.	70.4 102		
Sapotaceae	Achras zapota L.	70.9 114		
Malpiginiaceae	Helicteris isora L.	71.5 84.8		
Magnoliaceae	Michelia compressa (Maxim.) Sarg.	71.5 107		
Apocynaceae	Ochrosia oppositifolia (Lam.) K. Schum.	71.5 111		
Ebenaceae	Diospyros japonica Siebold et Zucc.	71.7 129		
Lamiaceae	Premna microphylla Turcz.	72.0 121		
Phyllanthaceae	Breynia officinalis Hemsl.	72.3 107		
Poaceae	Arundinaria yakushimensis S. Hatusima et Muroi	72.4 97.7		
Myrtaceae	Psidium gaujava L.	72.4 127		
Malvaceae	Hibiscus tiliaceus L.	72.6 111		
Goodeniaceae	Scaevola sericea Vahl	72.8 118		
Adoxaceae	Viburnum suspensum	72.9 115 73.7 149		
Rubiaceae Gleicheniaceae	Psychotria serpens Lindl.	73.7 149 74.0 100		
Cycadaceae	<i>Dicranopteris linearis</i> (Burm. fil.) Underw. <i>Cycas revoluta</i> Thunb.	74.0 100 74.5 108		
Lamiaceae	Vitex cannibifolia Sieb. et Zucc.	75.0 107		
Stachyuraceae	Stachyurus praecox Siebold et Zucc. var. lancifolius (Koidz.) Hara	75.1 133		
Lauraceae	Litsea japonica (Thunb.) Juss.	75.4 105		
Myrtaceae	Rhodomyrtus tomentosa Wight	75.4 92.8		
Hamamelidaceae	Distylium racemosum Siebold et Zucc.	76.1 112		
Ulmaceae	Celtis bonienensis Koidz.	76.6 87.9		
Lauraceae	Lindera strychnifolia (Siebold et Zucc.) F. Vill.	76.6 76.9		
Lamiaceae	Callicarpa takakumensis Hatusima	76.9 76.6		
Caesalpiniaceae	Cassia fistula L.	77.3 120		
Malvaceae	Hibiscus hamabo Siebold et Zucc.	77.9 141		
Verbenaceae	Lantana camara L.	78.0 150		

	Table 1.(cont'd)				
Family	Species Name (Scientific)	Extension Radicle H	C riterion (
Juglandaceae	Juglans ailanthifolia Carr.	78.4	113		
Myrtaceae	Syzygium jambos Alston	78.4	91.4		
Ranunculaceae	Clematis terniflora DC.	78.9	109		
Myrtaceae	Melaleuca leucadendron L.	79.0	113		
Lardizabalaceae	Stauntonia hexaphylla (Thunb.) Decne.	79.3	122		
Boraginaceae	Messerschmidia argentea (L. fil.) Johnston	79.5 79.8	111		
Lamiaceae	Callicarpa japonica Thunb. var. luxurians Rehd.	79.8 79.8	114 82.2		
Menispermaceae Calycanthaceae	<i>Tinospora crispa</i> (L.) Miers <i>Calycanthus fertilis</i> Walt.	79.8 79.9	82.2 100		
Orobanchaceae	Aeginetia indica L. var. gracilis Nakai	80.2	85.6		
Papaveraceae	Macleaya cordata (Willd.) R. Br.	80.2 80.6	112		
Myrtaceae	Syzigium aromaticum Merr. et Perry	80.6	81.3		
Menispermaceae	Cocculus orbiculatus (L.) Forman	80.8	146		
Ochnaceae	Ochna serrulata (Hochst.) Walp.	81.1	135		
Urticaceae	Oreocnide pedunculata (Shirai) Masamune	81.1	126		
Theaceae	Camellia lutchuensis T. Ito et Matsumura	81.3	107		
Menispermiaceae	Stephania japonica (Thunb.) Miers	81.6	124		
Berberidaceae	Mahonia japonica (Thunb.)	82.3	71.5		
Lamiaceae	Salvia japonica Thunb.	82.8	154		
Apocynaceae	Rauvolfia verticillata Baill.	83.5	115		
Zingiberaceae	Alpinia katsumadai Hayata	83.7	98.4		
Pittosporaceae	Pittosporum tobira (Thunb.) Aiton	84.0	104		
Lamiaceae	Vitex trifolia L.	84.4	93.7		
Fagaceae	Quercus glauca Thunb.	84.6	118		
Myrtaceae	Eucalyptus citriodora Hook.	84.8	112		
Cupressaceae	<i>Thujopsis dolabrata</i> (L. fil.) Siebold et Zucc.	84.9	144		
Theaceae	Camellia sasangua Thunb.	84.9 85.1	118		
Dioscoraceae	Dioscorea alata L.	85.3	128		
Sapindaceae	Euphoria longana Lam.	85.7	122		
Fagaceae	Pasania edulis Makino	86.4	207		
Fagaceae	Quercus acuta Thunb. ex Murray	86.8	91.5		
Theaceae	Ternstroemia gymnanthera (Wight et Arn.) Bedd.	87.0	145		
Vitaceae	<i>Ampelopsis brevipedunculata</i> (Maxim.) Trautv. var. <i>heterophylla</i> (Thunb.) Hara		141		
Ulmaceae	Aphananthe aspera (Thunb.) Planch.	88.7	126		
Rubiaceae	Paederia scandens (Lour.) Merrill	88.9	123		
Rubiaceae	Gardenia jasminoides Ellis forma grandiflora (Lour.) Makino	89.0	120		
Phyllanthaceae	Glochidion obovatum Siebold et Zucc.	89.4	119		
Lauraceae	Cinnamomum sieboldii Siebold et Zucc.	90.2	116		
Araliaceae	Schefflera octophylla (Lour.) Harms	90.5	94.6		
Lamiaceae	Vitex trifolia L. var. bicolor (Willd.) Moldenke	90.6	75.7		
Cupressaceae	Chamaecyparis obtusa (Siebold et Zucc.) Siebold et Zucc. ex Endl.	91.2	128		
Zingiberaceae	Alpinia formosana K. Schum.	92.3	112		
Verbenaceae	Clerodendrum trichotomum Thunb. var. yakusimense (Nakai) Ohwi	92.3	127		
Zingiberaceae	Alpinia speciosa (Wendl.) K. Schum.	93.1	112		
Anacardiaceae	Mangifera indica L.	93.3	106		
Moraceae	<i>Ficus sarmentosa</i> Roxb. var. <i>nipponica</i> (Franch. et Savat.) Corner	94.2	110		
Myoporaceae	Myoporum bontioides (Siebold et Zucc) A. Gray	95.8	107		
Lauraceae	Cinnamomum daphnoides Siebold et Zucc.	95.8 96.1	111		
		90.1 97.3	127		
Apiaceae	Peucedanum japonicum Thunb.(S2)				
Magnoliaceae	Magnolia stellata (Siebold et Zucc.) Maxim.	97.5	139		
Podocarpaceae	Podocarpus nagi (Thunb.) Zoll. et Moritzi	97.7	107		
Euphorbiaceae	Ricinus communis L. f. sanguineus hort.	97.8	76.8		
Asteraceae	Farfugium japonicum (L.) Kitamura	97.9	108		
Lamiaceae	<i>Vitex rotundifolia</i> L. fil.	98.1	117		

Table 1.(cont'd)				
Family	Species Name (Scientific)	Extension (%) † Criterion:		
		Radicle Hypocotyl		
Valerianaceae	Patrinia villosa (Thunb.) Juss.	98.3 105		
Schisandraceae	Illicium verum Hook. fil.	99.3 142		
Rutaceae	Zanthoxylum ailanthoides Siebold et Zucc.	99.6 130		
Aquifoliaceae	<i>Ilex integra</i> Thunb.	99.8 108		
Myrtaceae	Feijoa sellowiana O. Berg	102 129		
Verbenaceae	Stachytarpheta dichotoma Vahl	103 115		
Myrtaceae	Callistemon rigidus R. Br.	104 121		
Aquifoliaceae	<i>Ilex rotunda</i> Thunb.	104 161		
Zingiberaceae	Alpnia intermedia Gagnep.	109 126		
Lamiaceae	Vitex rotundifolia L. fil. forma albescens Hiyama	110 128		
Oleaceae	Ligustrum japonicum Thunb.	111 110		
	Mean (M)	71.0 104		
	Standard Deviation (σ)	20.7 26.2		
	Mean -1 (σ)	50.3 77.4		
	Mean -1.5 (σ)	40.0 64.3		
	Mean -2 (σ)	29.7 51.3		
	Mean -2.5 (σ)	19.3 38.2		

† Table 1: Percentage growth rate, compared to that of the control; \pm stronger inhibitory activity in the radicle: $*M-1(\sigma)$, $**M-1(\sigma)$, $**M-1(\sigma)$, $**M-2(\sigma)$, and $***M-2(\sigma)$.

Acknowledgements

Financial support for this research study by Ministry of Agriculture, Forestry and Fisheries of Japan, National Institute for Agro-Environmental Sciences, Tsukuba, Japan, Higher Education Commission of Pakistan and Pakistan Museum of Natural History Islamabad has been highly appreciated.

References

- Aerts, R.J., W. Snoeijer, E. van der Meijden and R. Verpoorte. 1991. Allelopathic inhibition of seed germination by Cinchona alkaloids? *Phytochem.*, 30(9): 2947-2951.
- Anjum, A., U. Hussain, Z. Yousaf, F. Khan and A. Umer. 2010. Evaluation of allelopathic action of some selected medicinal plants on lettuce seeds by using sandwich method. J. Med. Plant Res., 4: 536-541.
- Bashir, A., N. Ali, S. Bashir and M.I. Choudhary. 2009. Biological activities of aerial parts of *Tylophora hirsuta* Wall Afr. J. Biotechnol., 8(18): 4627-4631.
- Devi, S.R., F. Pellissier and M.N.V. Prasad 1997. Allelochemicals. In: *Plant Ecophysiology*. (Ed.): M.N.V. Prasad, John Wiley & Sons, Inc., New York.
- Fujii, Y., M. Furukawa, Y. Hayakawa, K. Sugawara and T. Shibuya. 1991. Survey of Japanese medicinal plants for the detection of allelopathic properties *Weed Res. Japan.*, 36: 36-42.
- Fujii, Y., S. Parvez, M.M. Parvez, Y. Ohmae and O. Iida. 2003. Screening of 239 Medicinal plant species for allelopathic activity using the sandwich method. *Weed Biol. Manag.*, 3(4): 233-241.
- Fujii, Y., T. Shibuya, K. Nakatani, T. Itani, S. Hiradate and M.M. Parvez. 2004. Assessment method for allelopathic affect from leaf litter leachates. *Weed Biol. Manag.*, 4: 19-23.
- Fujii, Y., T. Shibuya and T. Yasuda. 1990. Survey of Japanese weed and crops for the detection of waterextractable allelopathic chemicals using Richard's function fitted to lettuce germination test. *Weed Res. Japan.*, 35: 362-370.

- Lobell, D.B., W. Schlenker and J.C. Roberts. 2011. Climate trends and global crop production since 1980. Report published in *Science*, May 2011. www.sciencexpress.org / 5 May 2011 / Page 1 / 10.1126/science.1204531
- Lungu, L., C.V. Popa, J. Morris and M. Savoiu. 2011. Evaluation of phytotoxic activity of Melia azedarach extracts on Lactuca sativa. *Romanian Biotechnological Letters.*, 16 (2):6089- 6095
- Morikawa, C.I.O., R. Miyaura, M.D.L.T. Figueroa, E.L.R. Salgado and Y. Fujii. 2012. Screening of 170 Peruvian plant species for allelopathic activity by using the Sandwich Method. *Weed Biol. Manag.*, 12:1-11
- Phuwiwat, W., W. Wichittrakarn, C. Laosinwattana and M. Teerarak. 2012. Inhibitory effects of Melia azedarach leaf extracts on seed germination and seedling growth of two weed species. *Pak. J. Weed Sci. Res.*, 18: 485-492.
- Putnam, A.R. and W.B. Duke. 1974. Biological suppression of weeds evidence for allelopathy in accessions of cucumber *Sci.*, 185:370-71
- Rice, E.L. 1984. Allelopathy. (2nd edition) Academic Press
- Shinwari, M.I., M.I. Shinwari and Y. Fujii. 2013a. Allelopathic activity of medicinal plants and weeds from Pakistan. *Allelopathy J.*, 32 (2):223-232
- Shinwari, M.I., M.I. Shinwari and Y. Fujii. 2013b. Allelopethic evaluation of shared invasive plants and weeds of Pakistan and Japan for environmental risk assessment. *Pak. J. Bot.*, 45(S1): 467-474.
- Shiraishi, S., I. Watanabe, K. Kuno and Y. Fujii. 2002. Allelopathic activity of leaching from dry leaves and exudates from roots of ground cover plants assayed on agar. *Weed Biol. Manag.*, 2: 133-142.
- Tur, C.M., J. Borella and L.H. Pastorini. 2012. Alelopatia de extratos aquosos de cinamomo (Melia azedarach L.-Meliaceae) sobre a germinação e crescimento inicial do tomate (*Lycopersicon esculentum* Mill. - Solanaceae). *Biotemas*, 25(3): 49-56.
- Wenli, G. and L. Wing. 2004. Novel mode of action of tylophorine analogs as antitumor compounds. *Cancer Res.*, 64: 678-688.

(Received for publication 15 January 2016)