PAKISTANI ANTI-MASTITIS MEDICINAL PLANTS AND THEIR SCIENTIFIC VALIDATION AGAINST MULTIDRUG RESISTANCE MASTINOGEN STAPHYLOCOCCUS AUREUS

AKASH TARIQ^{1,2,3*}, MUHAMMAD ADNAN^{1*}, MUSHTAQ AHMAD^{4,5}, SHEHLA SHINWARI⁴, RAHILA AMBER⁶, SEHRISH SADIA⁷ AND SAKINA MUSSARAT¹

¹Department of Botany, Kohat University of Science and Technology, Kohat-26000, Pakistan ²Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu-610041, Sichuan, China

³University of Chinese Academy of Sciences, Beijing, China

⁴Department of Plant Science, Quaid-i-Azam University, Islamabad 45320, Pakistan

⁵Chengdu Institute of Biology, University of Chinese Academy of Sciences, Chengdu-610041, China

⁶Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Pakistan

⁷College of Life Sciences, Beijing Normal University, Haidian District, Beijing-100875, China *Corresponding author's emails: akash.malik786@mails.ucas.ac.cn; ghurzang@hotmail.com;

Ph: +92-333-9056624; *Fax*; +92-0922-554556

Abstract

Mastitis is an infectious disease of livestock affecting agricultural economy especially in developing countries. Present review was designed to gather literature about the traditional uses of Pakistani anti-mastitis plants and their *In vitro* background against a common multidrug resistant mastitis causing bacteria *Staphylococcus aureus*. Different online search engines were used use to collect data such as Web of Science, Scopus, Google Scholar and Pub Med.Traditional healers of Pakistan used 38 plants for the treatment of mastitis in buffaloes and cows. Zingiberaceae, Asteraceae, Rutaceae and Solanaceae (3 plants each) were the most preferred plant families while the roots, fruits and seeds were the most commonly used parts for the treatment of mastitis against *S. aureus*, however, ethanolic, aqueous and methanolic extracts shown greater inhibition zone (10-25mm). Variety of phytochemical classes was identified from in-vitro tested plants such as saponins, glycosides, alkaloids, carbohydrates flavonoids and terpenoids. Literature review showed that *S. aureus* is resistant (60-100%) to commonly used antibiotics against mastitis. In Pakistan large number of plants are being used against *S. aureus* while large number of plants is still unexplored. There is a dire need to expedite detailed ethnopharmacological studies on unexplored anti-mastitis plants for the replacement of current drugs with new plant based drugs.

Key words: Livestock, Mastitis, Ethnoveterinary plants, Pakistan.

Introduction

Mastitis is an infectious and costly disease of dairy animals affecting industrial economy around the globe especially in developing countries (Yousaf et al., 2012). It is an udder disease and change the color, odor and taste of the milk. The main causative agent of mastitis is Staphylococcus aureus (Rossi et al., 2011) while there are many other bacterial species involved in causing mastitis such as Corynebacterium pyogenes, Pseudomonas mendocina, Klebsiella pneumoniae, Escherichia coli and Micrococcus pyogenes (Yousaf et al., 2012; Dharajiya et al., 2012). As mastitis decreases the quantity and quality of milk, therefore the income of local farmers also decreases. Depletion in dairy sources results in loss of economics for example, worldwide about \$35 billion and \$2 billion in the United States (Kenyanjui et al., 2009; Mubarack et al., 2011). Dairy animals not only helpful for food industries, infact large number of Pakistan inhabitants (75%) living in rural areas are dependent on agriculture (Dilshad et al., 2010). Almost 30-35 million people living in rural areas of Pakistan have household holdings of 5-6 sheep/goat and 2-3 cattle/buffalo each family and their 30-40 percent income come from livestock (Iqbal et al., 2005). Pakistan is the5th largest milk producer (31 million tons of milk annually) country in the world (Kenyanjui et al., 2009; Hassan et al., 2014).Worldwide there are different antibiotics being used against mastitis and most of the mastinogens have now been resistant to many commonly used antibiotics (Roesch et al., 2006). Present of drug residues in milk possibly affects the health of consumers because it may interfere with intestinal flora, allergic reactions, resulting in ineffectiveness of antibiotic treatment (Bharti et al., 2012). Large number of Pakistani farmers cannot afford modern health facilities due to financial constraints which lead toward poor health of their livestock and economic loss. Ethnomedicines of plants are considered as best alternatives for the treatment of various diseases (Ali & Qaiser, 2009; Hamayun et al., 2006; Shinwari et al., 2006; Walter et al., 2011). Rural population of Pakistan is highly dependent on natural resources because of rich traditional knowledge transferred to them from their ancestors (Sarwat et al., 2012; Gul et al., 2012; Deeb et al., 2013). They are using different plants for the treatment of their livestock diseases especially mastitis for compensating their income and improving their livelihood (Sindhu et al., 2010).

To best of our knowledge present review is the first attempt to gather fragmented literature on Pakistani antimastitis plants and their in-vitro validation against most common mastinogen Staphylococcus *aureus*. This review would disclose scientific gaps in present knowledge and help researchers to carry out future researches for the development of safe and novel plant based veterinary drugs for the treatment of mastitis.

Methodology: Present study was designed by gathering fragmented literature (mostly published) about Pakistani anti-mastitis plants, their scientific validation against most common mastinogen Staphylococcus aureus. Different search engines like Flora of Pakistan, Google Scholar, Web of Science and Pub Med were searched for the collection of our desired data. Search indicators such as anti-mastitis plants of Pakistan, anti-bacterial activities of medicinal plants, drug resistivity of S. aureus etc were used to collect data from search engines. Total 62 researches published in various journals were considered for this review. Different criteria's were followed for the selection of articles such as i) Detailed information about ethnoveterinary plants of Pakistan ii) those anti-bacterial studies in which the units of concentration (mg/ml) and inhibition zone (mm) were same iii) recent reports on S. aureus drugs resistance were included. Data was organized in the form of three tables using Microsoft Excel and Word 2007. Information about phytochemical compounds of anti-mastitis plants was also reported and mentioned.

Ethnoveterinary practices used to treat mastitis in Pakistan: In Pakistan agriculture is a main sector for income generation and dairy animals are playing an important role in growing agricultural economy. Pakistan is among leading countries for producing milk due to greater dependency of rural population on livestock (cows and buffaloes). In Pakistan dairy animals are exposed to numerous infections and diseases and mastitis is one of the most common diseases among them because the causal agent is commonly occurring bacteria S. aureus (Sharif & Muhammad, 2009). In Pakistan traditional medicines use is common because of low socioeconomic situation of local farmers and inhabitants. Local inhabitants of the rural regions cannot afford modern allopathic drugs and facilities because of low accessibility to the modern drugs in city areas and financial constraints (Hassan et al., 2014). Local farmers of Pakistan use large number of medicinal plants for treating their dairy animals. In present review total 38 anti-mastitis plants were reported (Table 1) to be used in Pakistan. Ethnoveterinary practices are also common in other regions of Pakistan but still there is a lack of proper documentation due to negligence scientific of ethnoveterinary medicines in Pakistan. Asteraceae, Rutaceae, Solanaceae and Zingiberaceae were reported to be more frequently used anti-mastitis plant families in Pakistan. Not only in Pakistan, infact throughout the world these families are frequently being used in ethnoveterinary practices (Dilshad et al., 2010; Yigezu et al., 2014) possibly because of higher abundance or potent therapeutic potential.

Different plant parts were reported to be used against mastitis but roots, seeds and fruit were most commonly used parts in Pakistan. Present findings are in contrast with several studies from other countries (Grade et al., 2009; Monteiro et al., 2011), however, higher utilization of roots in ethnoveterinary practices have also been documented in other regions of the world (Lulekal et al., 2014). Use of seeds and fruits does not endanger plants life but harvesting roots can cause plants death and considered as serious conservation issue. Farmers in Pakistan have rich traditional knowledge for formulating herbal recipes to treat mastitis. Local farmers have good knowledge about using appropriate amount of plant parts in formulations and the proper dosage (Table 1). Different additives or vehicles (honey, salt, water and flour) are being used in different recipes in order to reduce bitter taste of plant remedies and to confirm ample dose. Recovery time of ethnoveterinary medicines was reported to be range in5-7 days indicating strong healing properties and potential of anti-mastitis of Pakistan.

In vitro activities of anti-mastitis plants against Staphylococcus aureus: Pakistani farmers strongly believe in high effectiveness of traditional medicines because of fewer side effects than modern allopathic drugs. Present review reported 38 medicinal plants from Pakistan but only 13 plants have been reportedly evaluated throughout the world for their In vitro authentication against most common mastinogen S. aureus. In vitro investigated plants shown good activities against S. aureus (Table 2). Interestingly, many parts of plant have been reported to be used in extract formation; however, roots, seeds, fruits and whole plants were commonly used giving an indication about the reliability and potency of traditional medicines practices. Present review showed that different extract of plants were used at different concentrations (mg/ml) against S. aureus, however, aqueous, methanol and ethanol extracts are most widely used extraction techniques. Present findings are in line with other studies in which methanolic and ethanolic extracts are most preferred extraction techniques (Ncube et al., 2008) because these solvents have polar nature and easily degrade cell wall and release polyphenols from the cell of plants (Shinwari et al., 2013). Among all reported extracts, ethanolic and methanolic extracts had shown good inhibition zones ranging from 15-25 and 10-20 mm respectively against S. aureus (Agrawal et al., 2013; Shiri et al., 2013; Doss et al., 2012; Gull et al., 2012). Moreover, other solvent extraction techniques such as ethyl acetate, benzene and chloroform etc have shown satisfactory activities against reported bacteria. No detailed phytochemical studies (pure compounds) on In vitro studied plant parts were reported, however several classes of compounds have been reportedly isolated from the studied plant parts such as glycosides, flavonoids, terpenoids. alkaloids. steroids. saponins. and carbohydrates that are responsible for anti-bacterial activities. Moreover, plant extracts had shown more potent effects than antibiotics against mastitis. There is a dire need to expedite In vitro studies as well as clinical trials on ethnoveterinary anti-mastitis plants that could lead toward the screening of novel compounds and development of veterinary drugs.

		Table 1. E	thnomedicinal uses	Table 1. Ethnomedicinal uses of Pakistani medicinal plants against Mastitis.		
Botanical name	Local name	Area	Part used	Recipes	Dairy animal	References
Allium cepa L. Liliaceae	Piaz	Faisalabad	Bulb	500-1000 g piaz alone or in combination with ajvain	Cow	(Bilal et al., 2009)
Allium sativum L. Alliaceae	Lehson	Sargodha	Rhizome	250g, grinded powder with butter is given orally for almost 7 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Amaranthus graecizans L. Juncacaeae	Kahan	Karak	Whole plant	100 g of plant is taken and grind to make fine powder and mixed with sugar and given for one week	Cattles	(Shah <i>et al</i> ., 2012)
Amomum subulatum Roxb. Zingiberaceae	Baree Ilaichee	Sargodha	Fruit	25g, given orally for 3 days	Cows and buffaloes	(Dilshad et al., 2010)
Brassica campestris L.Brassicaceae	Sarsoon	Sargodha	Seeds oil	500ml, given orally for 10 days.	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
<i>Capparis decidua</i> (Forssk.) Edgew. Capparidaceae	Karir	Sargodha	Fruit	50g, administered orally for 3 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
<i>Capsicum annuum</i> L. Solanaceae	Lal mirch	Sargodha	Fruit/ whole plant	50g, administered orally for 8 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Capsicum frutescens L. Solanaceaea	Surkh mirch	Faisalabad	Fruit	125g fruit pulverized cooked in water givenPO 4-5 days	Livestock	(Deeba et al., 2009)
Centratherum anthelmisticum L Asteraceae	Kali Zeeri	Sargodha	Seeds	50g of seeds are mixed with wheat flour and administered orally for 5 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Citrullus colocynthis L. Cucurbitaceae	Indryan/Kor tuma	Sargodha	Fruit	2-3 pieces given orally daily for 5 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010; Khatibi &Teymorr 2011)
Citrus limon (L.) Burm. f Rutaceae	Khatian	Sargodha	Fruit	250g, cut the fruit and place it in dew drops for a complete night and dust common salt before given, it should be given orally for 5 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Citrus limon L. OsbeckRutaceae	Nimbu	Himalaya	Fruit	Fruit juice is mixed with sugar and this pasteis fed to animals and applied topically (to themammary glands) for 10–15 days	Livestock	(Abbasi <i>et al.</i> , 2013)
Citrus reticulata Blanco.Rutaceae	Malta	Bannu	Leaves	Fresh heated leaves decoction is prepared and apply externally, while the dried leaves decoction is given orally.	Cattles	(Khan <i>et al.</i> , 2013)
Cuminum cyminum L. Asteraceae	Sufaid zeera	Sargodha	Seeds	1 kg, given orally for 6 days.	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Curcuma longa L. Zingiberaceae	Haldi	Sargodha	Roots	25g, proper grinding of roots with sugar and administered orally for 7 days.	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Foeniculum vulgare Mill Apiaccae	Saunf	Sargodha	Seeds	50g, roasted seeds mixed in vegetable oil (125ml) and drenched for 4 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
<i>Galium aparine</i> L. Rubiaceae	Banafsha	Sargodha	Vine	500g, given as decoction drench for 3 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Gossypium hirsutum L. Malvaceae	Paiway/ waraiwain	Sargodha	Flowers	250g, of flowers are boiled in about 1L water and drenched for 3 days	Cows and buffaloes	(Dilshad <i>et al.</i> , 2010)
Lepidium sativum L. Brassicaceae	Halia	Sargodha	Seeds	500g, of seeds put in 2L of milk and boiled, givenorally for 8 days	Cows and buffaloes	(Dilshad et al., 2010)

Table 1. Ethnomedicinal uses of Pakistani medicinal plants against Mastitis.

Botanical name	Local name	Area	Part used	Recipes	Dairy animal	References
Linum usitatissimum L. Linaceae	Alsi	Sargodha	Seeds	25g of seeds are mixed with 3-4 Citrus limonextract and add sugar, administered orally for 5 days	Cows and buffaloes	(Dilshad et al., 2010)
Narcissus tazetta Linn Amaryllidaceae	Gul-e-Nargis	Allai valley	Roots	10 gm of roots is grind and make powder mix with salt and given to cattle's two time in a day for the period of 10 days	Cattles	(Haq, 2012)
Nigella sativa L. Ranunculaceae	Kaoolnji	Sargodha	Seeds	50g of seeds are boiled in either 250 ml or 2L of and drenched for three days in winter season.	Cows and buffaloes	(Dilshad et al., 2010)
Oryza sativa L. Poaceae	Chawal/Moonji	Sargodha	Seeds	500g boiled in 2L milk + sugar 500g and administered orally for 8 days	Cows and buffaloes	(Dilshad et al., 2010)
Piper nigrum L. Piperaceae	Kali mirch	Faisalabad	Pepper corn	Pepper corn 30g + Capsicumannuum L. fruit 125 g ⁺ Capsicum frutescens L. fruit125 g Grated given PO f or 6-7 days	Livestock	(Deeba <i>et al.</i> , 2009)
Bistorta amplexicaul L. Polygonaceae	Anjbar	Sargodha	Bark	125g, of bark is boiled in 250 ml to 1L water and given orally for 4 days.	Cows and buffaloes	(Dilshad et al., 2010)
<i>Protulaca oleracea</i> Linn. Portulacaceae	Loonrak	Dera Ghazi Khan	Whole plants	Given orally	Livestock	(Gulshanet al., 2012)
Rosa indica L. Rosaceae	Gulab	Sargodha	Petals	750g of petals are boiled in I L of milk and drenched regularly for for 7 days	Cows and buffaloes	(Dilshad et al., 2010)
Saccharum officinarum L. Poaceae	Kamad	Sargodha	Extract	2 L, drenched daily for 7 days	Cows and buffaloes	(Dilshad <i>et al</i> ., 2010)
Sesamum indicum L. Pedaliaceae	Meetha tael	Sargodha	Seed oil	250 ml, mixed oil in 1.5L of milk whey, and given orally for 7days	Cows and buffaloes	(Dilshad et al., 2010)
Sorghum halepense (L.) Pers Poaceae	Barron gass	Poonch valley, Azad Kashmir	Root	Root decoction is mixed with mud of pound and pasted on teats of cattle to cure mastitis	Cow and buffaloes	(Khan et al., 2012)
Thymus serpyllum L. Lamiaceae	Sattar, Jangli Podina	D.I.Khan	Leaves	Its paste applied to udder	Livestock	(Marwat <i>et al.</i> , 2009)
Trachyspermum ammi L.Apiaceae	Ajvain	Faisalabad	Seeds	80-100 g seed are taken and decoction is given to cattle's	To treat mastitis	(Bilal <i>et al.</i> , 2009)
Trichodesma indicum L. Boraginaceae	Kalar booti	Poonch valley, Azad Kashmir	Roots	Root decoction is used	Cow and buffaloes	(Khan et al., 2012)
Trigonella foenumgraceum L. Papilionaceae	Matheray	Sargodha	Seeds	25g, paste is made with handful of wheat flour and vegetable oil and given orally for 5 days.	Cows and buffaloes	(Dilshad et al., 2010)
Triticum aestivum L. Poaceae	Gandam/kanakHarmal	Sargodha	Fruit + Stem crushing (Hay)	50 g $+$ 2 kg, furnigation of harmal by putting it on fired hay under the affected udder for 4 days	Cows and buffaloes	(Dilshad et al., 2010)
Vernonia anthelmintica Wild. Asteraceae	Kali zeri	Faisalabad		Seed 30 g+ Burntmilk fat 60 gMixture given for 2 days	Livestock	(Deeba et al., 2009)
Withania somnifera L. Solanaceae	Aksan	Himalaya	Root	200 g fresh roots are crushed and paste isapplied topically up to a week	Livestock	(Abbasi <i>et al.</i> , 2013)
Zingiber officinale Roscoe Zingiberaceae	Sund	Sargodha	Rhizome	125g, grinded finely with sugar, given orally for 5 days	Cows and buffaloes	(Dilshad et al., 2010)

Plant species	Part used	Extract	Phytochemistry Concentration (mg/ml)	Concentration (mg/ml)	Inhibition (mm)	Reference
		Chloroform		100	14	
Allium cepa	Bulb	Ethanol	Alkaloids, Saponins, Terpenoids, Reducing sugars	100	14 8	(Yousufi, 2012; Jadon &Dixit, 2014)
		Pure inice		200	10	
	Bulb	Aqueous decoction		200	6	(Jadon & Dixit, 2014)
		Aqueous		100	19.3	
Allian active	Bulb	Ethanol	Alkaloids, Saponins, Flavonoids, Terpenoids, Cardiac glycosides,	100	12.6	(Gull et al., 2012)
Autum sauvam		Methanol	Resins	100	11	
	:	Chloroform		100	15	
	Bulb	Ethanol Aqueous		100	15 19	(Yousufi, 2012)
Amomum subulatum	Oil extract	·	Proteins, Crude fiber, Starch, Volatile and non-volatile ether, Alcohol	750,000	14	(Ritender <i>et al.</i> , 2013; Gopal <i>et al.</i> , 2012)
		Benzene		100	10	
		Petroleum ether		100	15	
		Chloroform		100	10	
		Ethyl acetate		100	10	
	Roots	Methanol	NA	100	10	
		Ethonol		50	15	
		EULADO		100	20	
		Aqueous		001	10	
				50	10	
		Benzene		100	10	
		Petroleum ether		100	10	
		Chlorotorm		100	01	
	Stems	Ethyl acetate	NA	00	15	
Brassica campestris		Methanol		50	15	(Agrawal et al., 2013)
		Ethanol		50	202	
		Achievine		50	10	
		snoonhe		100	10	
		Benzene		50	10	
		-		50	10	
		Petroleum ether		100	10	
		Chloroform		100	10	
	Leaves	Ethyl acetate	NA	100	cl 21	
		Methanol		50	10	
				50	ci (
		Ethanol		100	20	
		Aqueous		50	10	

Plant species	Part used	Extract	Table 2.(Cont'd.). Phytochemistry	Concentration (mg/ml)	Inhibition (mm)	Reference
	Root	Ethyl acetate	Alkaloids, Sterols, Sitosterol, Spermidine alkaloid, Isocodonocarpine	10	10.33	(Sharma &Kumar, 2009; Rathee et al., 2010; Verma et al., 2011)
Capparis decidua	Stem	Ethyl ether Ethyl acetate	Acyclic terpenoids, Alkaloids, Fatty acids, Sterols	10	14.66 18.66	(Rathee et al., 2010)
	Fruit	Ethyl acetate	Stachydrine alkaloid	10	15.66	(Rathee et al., 2010)
Citrullus colocynthis	Fruit	Hydro methanol	Alkaloids, Iridoids, Steroids	200	0	(Hussain <i>et al.</i> , 2011; Khatibi &Teymorr, 2011)
Cuminum cyminum	Seed	Ethanol	Carbohydrates, Protein, Vitamins, Minerals, Aldehydes, Alkyl derivatives, Tannins, Mucilage, Oleoresins, Gum, Malates	0.5	22	(Shiri <i>et al.</i> , 2013; Nadeem &Riaz, 2012)
		Aqueous		400	= :	
Curcuma longa	Lury plant	Methanol	Carbonyurates, Flavonoids, Lamins, Saponins	400	11	(Al-Dainan <i>et a</i> l., 2015)
Peganum harmala	Seed	Ethanol	Alkaloids, Flavonoids, Anthraquinones, Triterpenes and sterols, Reducing compounds, Tannins, Saponins, Volatile oil	0.5	25	(Shiri et al., 2013; Benbott et al., 2013)
Sesamum indicum	Leaves	Ethanol	Sesamin, Sesamolin, Stigmasterol, β-Sitosterol, Stigmasterol-3- O-β-D-glucoside, Ferulic acid, Rhamnetin, Verbascoside, kaempferol-3-O-β-D-glucuronide, Mequelianin (quercetin-3-O- β-D-glucuronide), Sesamin, Sesamolin	400	0	(Ogunsola &Fasola 2014; Khaleel <i>et al.</i> , 2007)
	Whole plant Methanol	t Methanol		100 200	10	(Mubarack <i>et al.</i> , 2012; Kannadhasan <i>et al.</i> , 2013)
			Alkaloids, Flavonoids, Steroids, Glvcosides, Proteins, Tannins,	100	0	~
Trichodesma indicum	Whole alant	Water	Phenolic compounds, Triterpenoids	200	0	(Guill <i>et al</i> 2012)
	w note ptant			100	16	(Out et at., 2012)
		Methanol		200	24	
		Aqueous		100	13	
Withania somnifera	Leaves	Ethanol	Giycosides, Alkaloids, Phytosterol, Fixed oil, Protein, Phenolic compounds. Flavonoids	100	15	(Ani et al., 2014)
		Acetone		100	16	
				50	15.11	
	Rhizome	Ethanol	Sanonine Flavonoide Ternenoid	100	15.77	(Jadon &Dixit, 2014;
	NIIZUIIC	EURIDI		200	17.66	Shekhan &Hussaini, 2012)
				400	17.55	
Zingiber officinale	Drv nlant	Aqueous	Alkaloide Carbohydrates Steroide Sanonine	400	10	(Al-Daihan <i>et al</i> 2013)
	unnid free	Methanol	runatores, caroordanates, orcivites, orformas	400	12	
		Chloroform		100	22	
	Rhizome	Ethanol	NA	100	18	(Yousufi, 2012)
		Aqueous		100	10	

Bacteria	Antibiotics	Resistivity (%)	Reference
	Penicillin	90.5	
	Ampicillin	90.5	(Kawsar <i>et al.</i> , 2008)
	Erythromycin	52	
	Polimixin B	64	
	Tylosin	56	
	Oxacillin	52	
	Ampicillin	68	
	Novobiocin	40	(Brinda et al., 2010)
	Amoxiclav	48	
	Kenamycin	28	
	Cephalothin	8	
	Tetracycline	60	
	Oxacillin	100	
	Erythromycin	95	
	Gentamicin	93	
	Penicillin	100	(Perwaiz <i>et al.</i> , 2007)
	Amikacin	54	
	Cephalexin	100	
	Chloromphenicol	58.04	
	Cefotaxime	85.71	(Adamu et al., 2010)
	Benzyl Penicillin	100	
	Tetracycline	60	(Sina et al., 2013)
Staphylococcus aureus	Penicillin	67.9	
	Ampicillin	67.9	(Daka <i>et al.</i> , 2012)
	Oxacillin	60.3	
	Ampicillin	82.2	
	Amoxicillin	82.2	
	Erythromycin	95.5	
	Gentamicin	87.7	(Kahsay et al., 2014)
	Penicillin G	82.2	
	Cotrimoxazole	97.2	
	Penicillin	83	
	Amoxicillin	100	
	Ampicillin	100	(Jayatilleke & Bandara 2012)
	Penicillin G	100	Saravanan <i>et al.</i> , 2013)
	Rifampicin	100	Saravanan <i>et al.</i> , 2013)
	Methicillin	100	
	Ampicillin	100	
	Gentamicin	97.6	
	Tetracycline	100	
	Oxacillin	100	
	Erythromycin	98.3	(Bukhari et al., 2011)
	Ciprofloxacin	75.8	
	Penicillin G	100	
	r emennin G	100	

Table 3. Drug resistivity potential of *Staphylococcus aureus*.

Multidrug resistance potential of Staphylococcus aureus: Mastitis is very infectious disease and therefore use of antibiotics is common against it (Tenhagen et al., 2006). Variety of pathogens from mastitis infected milk have been isolated but S. aureus is the most commonly occurring bacteria reported in most of the studies (Rakhshandeh et al., 2011; Ritender et al., 2013). Different antibiotics such as chloromphenicol, gentamicin, tetracycline, pencillin, erythromycin, ampicillin, amoxicillin etc have been used widely for curing mastitis (Table 3). Erythromycin, tetracycline and gentamicin are not only being used against mastitis, infact also used in human medicines (Roesch et al., 2006). The use of antibiotics have been increasing for last 10-15 years, however, S. aureus developed resistance against variety of antibiotics (Shea, 2003). Recently resistance potential of S. aureus has extensively been studied and discussed in present review. Studies presented in this review showed 60-100% resistivity of S. aureus against most frequently used antibiotics such as erythromycin, tetracycline, amoxicillin, chloromphenicol, gentamicin and pencillin in cows for mastitis (Jayatilleke & Bandara, 2012; Saravanan et al., 2013; Kahsay et al., 2014). Present review showed that some antibiotics like kenamycin, tylosin, novobiocin, polimixin, amoxiclav, amikacin and cephalothin have good inhibitory actions against S. aureus but unfortunately these antibiotics have not been yet studied in detail (Perwaiz et al., 2007; Brinda et al., 2010). An emerging resistant potential of pathogens against antibiotics as well as high cost and side effects on the living system shifted researchers and farmers attention toward ethnoveterinary medicines. Therefore, traditional ethnoveterinary medicines and practices gained lot of importance in past few years due to the discovery of many potent ethnoveterinary drugs (Hassan et al., 2014).

Conclusions and future recommendations

Pakistan contains variety of plants used against mastitis and local farmers are highly dependent on ethnoveterinary medicines for the improvement of their livestock health and for generating their incomes. Present review reported 38 medicinal plants of Pakistan being used by local farmers of the remote regions for the treatment of their livestock; however, only 13 plants have been validated scientifically so far. Different plant extracts have shown good activities against S. aureus among which ethanolic, aqueous and methanolic extracts were more potent, other extracts should also been given focus in future studies which could lead the extraction of some new and different compounds. S. aureus has shown highest resistance against most common antibiotics, however, also showed sensitivity to some of the drugs such as polimixin, kenamycin, tylosin, amoxiclav etc which should be given focus in future studies. There are very limited studies on isolation of pure compounds and direct testing of those compounds against bacterium which needs study in future. In vivo trails are necessary for the further validation of ethnoveterinary medicines and to ensure the safety aspects. In spite of strong ethnoveterinary medicinal system of Pakistan and extensive use of traditional medicines against mastitis,

very limited number of studies has been reported so far on ethnoveterinary plants. Due to strong drug resistivity potential of *S. aureus* it is imperative to expedite detailed scientific studies on unexplored plants that could be useful for the identification of potential medicinal plants, extraction of novel compounds and the development of new plants based veterinary drugs with high efficacy and low cost. This could be major breakthrough in increasing agricultural economy of Pakistan as well as other countries of the world.

Acknowledgement

The authors are thankful to the departmental colleagues for their support.

References

- Abbasi, A.M., S.M. Khan, M. Ahmad, M.A. Khan, C.L. Quave and A. Pieroni. 2013. Botanical Ethnoveterinary Therapies in three Districts of the Lesser Himalayas of Pakistan. J. Ethnobiol. Ethnomed., 9: 84.
- Adamu, J.Y., AI. Raufu, F.C. Chimaroke and J.A. Ameh. 2010. Antimicrobial susceptibility testing of *Staphylococcus aureus* isolated from apparently healthy humans and animals in Maiduguri, Nigeria. *Int. J. Biomed Health Sci.*, 6: 191-195.
- Agrawal, M.K., D. Rathore, S. Goyal and A. Varma. 2013. Antibacterial efficacy of *Brassica campestris* root, stem and leaves extracts. *Int. J. Adv. Res.*, 1:131-135.
- Ali, H., M. Qaiser. 2009. The Ethnobotany of Chitral Valley, Pakistan with particular reference to medicinal plants. *Pak. J. Bot.* 4: 2009-2041.
- Ani, N. A., S.A. Hadi and R. Nazar. 2014. Antimicrobial activities of Withania somnifera crude extract. Sci. Agri., 4: 74-76.
- Benbott, A., L. Bahri, A. Boubendir and A. Yahia. 2013. Study of the chemical components of *Peganum harmala* and evaluation of acute toxicity of alkaloids extracted in the *Wistar albino* mice. J. Mater Envir. Sci., 4: 558-565.
- Bharti, S.K., N.K. Sharma, A.K. Gupta, K. Murari and A. Kumar. 2012. Pharmacological actions and potential uses of diverse Galactogogues in Cattle. *Inter. J. Clin. Pharmac. Therap.*, 2: 24-28.
- Bilal, M.S., G. Muhammad, F.A. Atif and I. Hussain. 2009. Ethnoveterinary practices of buffalo owners regarding mastitis in Faisalabad. *Int. J. Agri. Appl. Sci.*, 1: 93-97.
- Brinda, M., V. Herman and B. Faur. 2010. Antimicrobial sensitivity of some *Staphylococcus aureus* strains from Bovine Mastitis. *Lucrări. Stiinlifice. Medic. Veter.*, 13: 102-105.
- Daihan, A.S., A.M. Faham, N. Al-shawi, R. Almayman, A. Brnawi, S. Zargar and R.S. Bhat. 2013. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms. J. King Saud. Uni. Sci., 25: 115-120.
- Daka, D., S.G. Silassie and D. Yihdego. 2012. Antibioticresistance *Staphylococcus aureus* isolated from cow's milk in the Hawassa area, South Ethiopia. *Ann. Clin. Microbiol. Antimicrob.*, 11: 26.
- Deeba, F., G. Muhammad, Z. Iqbal and I. Hussain. 2009. Survey of ethno-veterinary practices used for different ailments in dairy animals in Peri-Urban areas of Faisalabad (Pakistan). *Int. J. Agri. Bio.*, 11: 535-541.
- Deeb, T., K. Knio, Z. K. Shinwari, S. Kreydiyyeh and E. Baydoun. 2013. Survey of Medicinal Plants Currently Used by Herbalists in Lebanon. *Pak. J. Bot.*, 45(2): 543-555.

- Dharajiya, D., N. Moitra, B. Patel and R.K. Patel. 2012. Preliminary phytochemical analysis of the Indian medicinal plants for antibacterial activity against bovine mastitis pathogens. *Wayamba. J. Animal Sci.*, 332-342.
- Dilshad, S.M.R., N.U. Rehman, N. Ahmad and A. Iqbal. 2010. Documentation of ethnoveterinary practices for mastitis in dairy animals in Pakistan. *Pak. Vet. J.*, 30: 167-171.
- Doss, A., H.M. Mubarack, M. Vijayasanth and R. Venkataswamy. 2012. *In vitro* antibacterial activity of certain wild medicinal plants against bovine mastitis isolated contagious pathogens. *Acad. Sci.*, 5: 90-93.
- Gopal, K., C. Baby and A. Mohammed. 2012. *Amomum* subulatum Roxb: An overview in all aspects. Int. Res. J. Pharm., 3: 96-99.
- Grade, J.T., J.R.S. Tabuti and V.P. Damme. 2009. Ethnoveterinary knowledge in pastoral Karamoja, Uganda. *J. Ethnopharmacol.*, 122: 273-293.
- Gul, F., Z. K. Shinwari and I. Afzal. 2012. Screening of indigenous knowledge of herbal remedies for skin diseases among local communities of North West Punjab. *Pak. J. Bot.*, 44(5): 1609-1616.
- Gull, I., M. Saeed, H. Shaukat, S.M. Aslam, Z.Q. Samra and A.M. Athar. 2012. Inhibitory effect of *Allium sativum* and *Zingiber officinale* extracts on clinically important drug resistant pathogenic bacteria. *Ann. Clin. Microbiol. Antimicrob.*, 11: 8.
- Gulshan, A.B., A.A. Dasti, S. Hussain, M.A. Atta and M.A.U. Din. 2012. Indigenous uses of medicinal plants in rural areas of Dera Ghazi Khan, Punjab, Pakistan. J. Agri. Bio. Sci., 7: 751-762.
- Hamayun, M., S.A. Khan, H.Y. Kim and I.J. Leechae. 2006. Traditional know-ledge and exsitu conservation of some threatened medicinal Plants of Swat Kohistan. *Pak. J. Bot.*, 2: 205-209.
- Haq, F.U. 2012. The ethnobotanical uses of medicinal plants of Allai Valley Western Himalaya. Int. J. Plant Res., 2: 21-34.
- Hassan, H.U., W. Murad, A. Tariq and A. Ahmad. 2014. Ethnoveterinary study of medicinal plants in Malakand Valley, District Dir (Lower), Khyber Pakhtunkhwa, Pakistan. *Irish. Vet. J.*, 67: 6.
- Hussain, T., M. Arshad, S. Khan, H. Sattar and M.S. Qureshi. 2011. *In vitro* screening of methanol plant extracts for their antimicrobial activity. *Pak. J. Bot.*, 43(1): 531-538.
- Iqbal, Z., A. Jabbar, M.S. Akhtar, G. Muhammad and M. Lateef. 2005. Possible role of ethnoveterinary medicine in poverty reduction in Pakistan: Use of botanical anthelmintics as an example. J. Agri. Soc. Sci., 1: 188-195.
- Jadon, R. and S. Dixit. 2014. Phytochemical extraction and antimicrobial activity of some medicinal plants on different microbial strains. J. Med. Plant. Stud., 2: 58-63.
- Jayatilleke, K. and P. Bandara. 2012. Antibiotic sensitivity pattern of *Staphylococcus Aureus* in a tertiary care hospital of Sri Lanka. Sri Lanka. J. Infect. Dis., 2: 13-17.
- Kahsay, A., A. Mihret and T. Andualem. 2014. Isolation and antimicrobial susceptibility pattern of *Staphylococcus aureus* in patients with surgical site infection at Debre Markos Referral Hospital, Amhara Region, Ethiopia. *Arch. Public. Health*, 72: 16.
- Kannadhasan, K., R. Radha, N. Jayashree and S. Lathasriram. 2013. Preliminary phytochemical screening and antimicrobial activity of leaves of *Trichodesma indicum*. Linn. Int. J. Front. Sci. Tech., 1: 1-11.
- Kawsar, N.M., M.E.A. Mondal, N.K. Khan, N. Jubaida, J.P. Chowdhury and L. Khan. 2008. Antimicrobials susceptibility patterns of B-Lactamase producing *Staphylococcus Aureus*. *JAFMC Bangladesh*, 4: 14-17.

- Kenyanjui, M.B., M.S. Ali and A. Ghaffar. 2009. Observations on cattle dairy breeds in Pakistan; need to curb unseen economic losses through control of mastitis and endemic diseases. J. Agri. Envir. Inter. Dev., 103: 155-172.
- Khaleel, A.E.S., M.H. Gonaid, R.I. El-Bagry, A.A. Sleem and M. Shabana. 2007. Chemical and biological study of the residual aerial parts of *Sesamum indicum* L. J. Food. Drug. Ana., 15: 249-257.
- Khan, M.A. and M. Hussain. 2012. Ethno veterinary medicinal uses of Plants of Poonch Valley Azad Kashmir. *Pak. J. Weed. Sci. Res.*, 18: 495-507.
- Khan, R.U., S. Mehmood, S.U. Khan and F. Jaffar. 2013. Ethnobotanical study of food value Flora of District Bannu Khyber Pakhtunkhwa, Pakistan. J. Med. Plant Stud., 1: 93-106.
- Khatibi, R. and J. Teymorr. 2011. Anticandidal screening and antibacterial of *Citrullus colocynthis* in South East of Iran. *Acad. J.* 3: 392-398.
- Lulekal, E., Z. Asfaw, E. Kelbessa and P.V. Damme. 2014. Ethno veterinary plants of Ankober District, North Shewa Zone, Amhara region, Ethiopia. J. Ethnobiol. Ethnomed., 10: 21.
- Marwat, S.K., M.A. Khan, F.U. Rehman and I.U. Bhatti. 2009. Aromatic plant species mentioned in the Holy Quran and Ahadith and their ethnomedicinal importance. *Pak. J. Nut.*, 8: 1472-1479.
- Monteiro, M.V.B., C.M.L. Bevilaqua, M.D.C. Palha, R.R. Braga, K. Schwanke, S.T. Rodriguez and O.A. Lameira. 2011. Ethnoveterinary knowledge of the inhabitants of Marajo Island, Eastern Amazonia, Brazil. Acta. Amazonica., 41: 233-242.
- Mubarack, H.M., A. Doss, R. Dhanabalan and R. Venkataswamy. 2011. *In vitro* antimicrobial effects of some selected plants against bovine mastitis pathogens. *Hygei. J. D. Med.*, 3: 71-75.
- Nadeem, M. and A. Riaz. 2012. Cumin (*Cuminum cyminum*) as a potential source of antioxidants. *Pak. J. Food Sci.*, 22: 101-107.
- Ncube, N.S., A.J. Afolayan and A.I. Okoh. 2008. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. *Afr. J. Biotechnol.*, 7: 1797-1806.
- Ogunsola, O.K. and T.R. Fasola. 2014. The antibacterial activities of *Sesamum indicum* Linn. Leaf extracts. *Adv. Life Sci. Tech.*, 18.
- Perwaiz, S., Q. Barakzi, B.J. Farooqi, N. Khursheed and N. Sabir. 2007. Antimicrobial susceptibility pattern of clinical isolates of methicillin resistant *Staphylococcus aureus*. J. Pak. Med. Assoc., 57: 2-4.
- Rakhshandeh, H., N.V. Mashhadian and M. Khajekaramadini. 2011. *In vitro* and *In vivo* study of the antibacterial effects of Nigella sativa methanol extract in dairy cow mastitis. *Avicenna. J. Phytomed.*, 1: 29-35.
- Rathee, S., P. Rathee, D. Rathee and V. Kumar. 2010. Phytochemical and pharmacological Potential of Kair (*Capparis decidua*). Int. J. Phytomed., 2: 10-17.
- Ritender, M. Bhatt, V. Juyal and A. Singh. 2013. Antimicrobial activity of essential oil from the fruits of *Ammonum subulatum. Int. J. Pharm. Life. Sci.*, 4: 3190-3192.
- Roesch, M., V. Perreten, M.G. Doherr, W. Schaeren, M.W. Scha and J. Blum. 2006. Comparison of antibiotic resistance of udder pathogens in dairy cows kept on organic and on conventional farms. J. Dairy Sci., 89: 989-997.
- Rossi, C.C., A.P. Aguilar, M.A.N. Diaz and D. Andréa. 2011. Oliveira Barros Ribon Aquatic plants as potential sources of antimicrobial compounds active against bovine mastitis pathogens. *Afr. J. Biotechnol.*, 10: 8023-8030.

- Saravanan, M., A. Nanda and T. Tesfaye. 2013. Antibiotic susceptibility pattern of methicillin resistant *Staphylococcus aureus* from septicemia suspected children in tertiary hospital in Hosur, South India. *Am. J. Microbiol. Res.*, 1: 21-24.
- Sarwat, Z. K. Shinwari and N. Ahmad 2012 Screening of potential medicinal plants from district Swat specific for controlling women diseases. *Pak. J. Bot.*, 44(4):1193-1198.
- Shah, A., S. Hussain, N.U. Din, K.H. Bhatti, A. Khan, S.K. Marwat, M. Zafar, M. Ahmad and J. Sacred. 2012. A traditional way of conserving endangered ecosystems and biodiversity in semi-tribal area, Kurd Sharif & Sho (District Karak, Khyber Pakhtunkhwa), *Pak. Sci. Tech. Dev.*, 31: 312-326.
- Sharif, A. and G. Muhammad. 2009. Mastitis control in dairy animals. Pak. Vet. J., 29: 145-148.
- Sharma, B. and P. Kumar. 2009. Extraction and pharmacological evaluation of some extracts of *Tridax* procumbens and *Capparis decidua*. Inter. Appl. Res. Nat. Prod., 1: 5-12.
- Shea, K.M. 2003. Antibiotic resistance: What is the impact of agricultural uses of antibiotics on children's health? *Pediatrics*, 112: 253-258.
- Shekhan, M.I. and L.A. Hussaini. 2012. Study of the inhibitory effect of the ethanolic extract of *Coriandrum sativum*, *Vitis vinifera*, and *Zingiber officinale* on the growth of *Staphylococcus aureus* isolated from milk of cows infected with clinical mastitis. *Bas. J. Vet. Res.*, 11: 93-107.
- Shinwari, Z.K., M. Salima, F. Rizwan, S. Huda and M. Asrar. 2013. Biological screening of indigenous knowledge based plants used in diarrheal treatment. *Pak. J. Bot.*, 45, 1375-1382.
- Shinwari, Z. K., M. Rehman, T. Watanabe, and Y. Yoshikawa. 2006. Medicinal and Aromatic Plants of Pakistan (A Pictorial Guide). Pp. 492 Kohat University of Science and Technology, Kohat, Pakistan.

- Shiri, Y., M. Solouki, S. Saeidi and Zahedan. 2013. Activity of some iranian plant extracts against multi-drug resistant human pathogens isolated from urinary tract infections. J. Res. Med. Sci., 16: 50-54.
- Sina, H., T.A. Ahoyo, W. Moussaoui, D. Keller, H.S. Bankole, Y. Barogui, Y. Stienstra, S.O. Kotchoni, G. Prevost and A.L.B. Moussa. 2013. Variability of antibiotic susceptibility and toxin production of *Staphylococcus aureus* strains isolated from skin, soft tissue, and bone related infections. *BMC. Microbiol.*, 13: 188.
- Sindhu, Z.U.D., Z. Iqbal, M.N. Khan, N.N. Jonsson and M. Siddique. 2010. Documentation of ethnoveterinary practices used for treatment of different ailments in a selected Hilly area of Pakistan. *Int. J. Agri. Biol.*, 353-358.
- Tenhagen, B.A., G. Koster, J. Wallmann and W. Heuwieser. 2006. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci., 89: 2542-2551.
- Verma, P.D., R.D. Dangar, K.N. Shah, D.M. Gandhi and B.N. Suhagia. 2011. Pharmacognostical potential of *Capparis deciduas* Edgew. J. App. Pharm. Sci., 1: 6-11.
- Walter C., Z. K. Shinwari, I. Afzal and R. N. Malik. 2011. Antibacterial Activity in Herbal Products Used in Pakistan. *Pak. J. Bot.*, 43 (Special Issue): 155-162.
- Yigezu, Y., D.B. Haile and W.Y. Ayen. 2014. Ethnoveterinary medicines in four districts of Jimma zone, Ethiopia: cross sectional survey for plant species and mode of use. *BMC Vet. Res.*, 10: 76.
- Yousaf, M., G. Muhammad, M.Q. Bilal and S. Firyal. 2012. Evaluation of non-antibiotics alone and in combination with cephradine in the cure rates in clinical bubaline mastitis. J. Animal. Plant. Sci., 22: 207-211.
- Yousufi, M.K. 2012. To study antibacterial activity of Allium sativum, Zingiber officinale and Allium cepa by Kirby-Bauer Method. J. Pharm. Bio. Sci., 4: 6-8.

(Received for publication 6 December 2016)