AN UPDATE ON THE MicroRNAs AND THEIR TARGETS IN UNICELLULAR RED ALGA PORPHYRIDIUM CRUENTUM

MUHAMMAD YOUNAS KHAN BAROZAI^{*1}, MUHAMMAD QASIM², MUHAMMAD DIN¹ ANDABDUL KABIR KHAN ACHAKZAI¹

¹Department of Botany, University of Balochistan, Sariab Road Quetta, Pakistan ²Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Pakistan *Corresponding author's e-mail, barozaikhan@gmail.com

Abstract

MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about ≈ 21 nucleotides in length. The miRNAs are reported in large number of higher eukaryotic plant species. But very little data of miRNAs in algae is available. *Porphyridium cruentum* is unicellular red alga famous as a source for polyunsaturated fatty acids, proteins and polysaccharide contents. The present study is aimed to update the microRNAs and their targets in this important algal species. A comparative genomics approach was applied to update the miRNAs in *P. cruentum*. This effort resulted in a total of 49 miRNAs belonging to 46 families in *P. cruentum*. Their precursor-miRNAs were observed with a range of 40 to 351 nucleotides (nt). The mature miRNA sequences showed a range of 17-24 nts. The minimum free energies by stem loop structures of these miRNAs are found with an average of -32 Kcalmol⁻¹. A total of 13 targets, including important proteins like; Ribulose-1,5-bisphosphate carboxylase oxygenase, Light-harvesting complex I, Oxygen-evolving enhancer protein, Phycobiliproteins, Granule-bound starch synthase and Carbonic anhydrase were also predicted for these miRNAs.

Key words: Comparative genomics, microRNAs, Porphyridium cruentum.

Introduction

MicroRNA (miRNA) is a special regulatory member of the small RNAs that are involved in post-transcriptional gene silencing. Gene regulation by miRNAs is an impressive advancement and most exciting area of present regulatory RNA research. They are endogenous, non-coding in nature and about ≈ 21 nucleotides (nt) in size. They participate as negative regulator at post-transcriptional stage of gene regulation (Ambros et al., 2003). A self-folded stable hairpin/ stem-loop secondary structure termed as precursormiRNA (pre-miRNA) is produced from long single strand RNA known as primary miRNA. Later pre-miRNA generates functional, small mature miRNA. The mature miRNA integrate into argonaute proteins and advances into the RNA induced silencing complex (RISC) (Hammond et al., 2000). The RISC complex having mature miRNA triggers post-transcriptional gene suppression of the messenger RNA (mRNA) either by inhibiting protein encoding or by activating mRNA degradation. This inhibition and degradation capability of the miRNA depends on the scale of complementarity between miRNA and its targeted mRNA (Bartel, 2004). The impartial pairing of the miRNAs with the mRNA targets causes its repression from protein synthesis. While, the complete pairing of miRNAs with their mRNA targets causes the mRNAs degradation (Kidner & Martienssen, 2005). miRNAs participate widely in life activities such as; growth and development (Bartel, 2004), foreign genes suppression, signal transduction, environmental stresses and as a defense against the attacking microbes in various living organisms (Gao et al., 2011; Barozai et al., 2012a, Bai et al., 2012; Ali et al., 2016).

Porphyridium cruentum (*Syn. Porphyridium purpureum*) (Bory de Saint-Vincent) (Drew & Ross, 1965) is an important member of the microalgae that is a major developing nutritional source. It is widely recognized for its remarkable richness in polyunsaturated fatty acids. The *P. cruentum* is also remarkable for its anticancer and immunomodulating properties. Only few studies are available about the miRNAs in algae. According to the

latest microRNA Registry Database (Version Rfam 21.0 released June, 2014) (Griffiths-Jones, 2004), only one algae member i-e., *Chlamydomonas reinhardtii* is reported for miRNAs. This situation demands to focus and profile new miRNAs and their targets in *P. cruentum* that will act as preliminary data to manage and understand the *P. cruentum* at molecular level.

The research on *P. cruentum* conducted in the present study, produced a total of 49 new miRNAs belonging to 46 families. These new miRNAs were also annotated for various features like; their targets, minimum free energy (MFE), stem loop structures and GC contents.

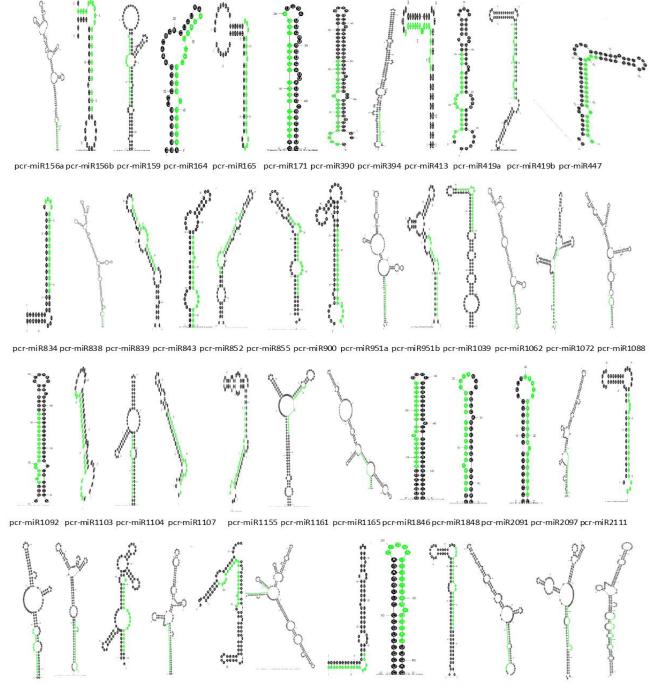
Materials and Methods

Prediction of potential miRNAs for P. cruentum: Similar methodology with some modification as reported earlier (Barozai et al., 2011a) was applied to predict the miRNAs from P. cruentum ESTs. Total 5744 known plant miRNA sequences, both precursors and matures were downloaded from the microRNA Registry Database (Version Rfam 20.0 released June 2013) (Griffiths-Jones, 2004), and subjected to BLAST search against publicly available 386,903 P. cruentum (taxid: 35688)) ESTs from the dbEST release 010113 at http://blast.ncbi.nlm.nih.gov/Blast.cgi using BLASTN (Altschul et al., 1990). The raw sequences were saved in FASTA formats. The repeated ESTs from the same gene were removed. The initial candidate miRNAs with 0-4 mismatches in the mature sequences were identified using Clustal W (1.83), a multiple sequence alignment tool with default parameters, publicly available at http://www. ebi.ac.uk/clustalw/ (Larkin et al., 2007).

Elimination of protein coding miRNAs: The initial applicant miRNA sequences of *P. cruentum*, predicted by the mature source miRNAs were checked for protein coding. The FASTA format of the applicant sequences were subjected against protein database at NCBI using BLASTX with default parameter (Stephen *et al.*, 1997) and the protein coding sequences were removed.

Creation of self-fold secondary structures: The nonprotein coding, having 0-4 mismatches with the source plant miRNAs and single tone initial candidate miRNA sequences of P. cruentum were subjected to self-fold secondary structures. A publicly available Zuker folding algorithm at http://www.bioinfo.rpi.edu/applications/ mfold/rna/form1.cgi, known as MFOLD (version 3.2) (Zuker, 2003), was used to create the secondary structures. The MFOLD parameters were used as published by various researchers for the identification of miRNAs in various plant and animal species (Bai et al., 2011; Barozai, 2012a, b). The secondary stem loop structures generated by MFOLD were subjected for the physical inspection to meet either the lowest free energy \leq -18Kcal/mol or \leq the lowest free energy of the source miRNAs. Ambros et al., (2003) threshold values were applied to finalize the P. cruentum miRNAs. The stem region of the stem-loop structures of the P. cruentum miRNAs were inspected for the mature sequences either with at least 16 or equal to the source miRNAs base pairs forming a Watson-Crick or G/U base pairing between the mature miRNA and the opposite passenger strand (miRNA*).

Convergence and phylogenetic analysis: The convergence and phylogenetic analysis was carried out for one of the conserved miRNA, mir-164 (Rhoades, 2011). Simply, the P. cruentum miRNA, pcr-mir-164, for its conserved behavior in different plant species was checked for convergence and phylogenetic investigation. The P. cruentum miRNA, pcr-mir-164 alignment was created with Arabidopsis lyrata (aly), Arabidopsis thaliana (ath), Vitisvinifera (vvi), Oryza sativa (osa), Zea mays (zma) by the publicly accessible weblogo: a sequence logo generator (Crooks et al., 2004) and Clustal W (Larkin et al., 2007) to produce cladogram tree using neighbor joining clustering method respectively. The results were saved.


Profiling potential targets: More stringent criterion was adopted by applying dual scheme to profile the potential targets for the P. cruentum miRNAs. In the first scheme, the newly identified P. cruentum miRNAs were subjected to psRNATarget (http://bioinfo3.noble.org/psRNATarget) with default parameters (Dai & Zhao, 2011) for profiling their potential targets. The P. cruentum miRNAs not producing potential targets through psRNATarget, were subjected to the second scheme as described by Barozai, (2012c). Briefly in this scheme, the P. cruentum mature miRNA sequences were subjected as queries through the NCBI BLASTn program. The parameters were adjusted as, Database; Reference mRNA sequences (refseq_rnat), organism; P. cruentum (taxid: 35688) and Program Selection; highly similar sequences (megablast). The mRNA sequences showing ≥75% query coverage were selected and subjected to RNAhybrid, a miRNA target prediction tool (Kruger & Rehmsmeier, 2006) for the confirmation of the targets. Only targets having stringent seed site located at either positions 2-7 or/and 8-13 from the 5' end of the miRNA along with the supplementary

site and the minimum free energy (MFE) of the hybridization was -20 kcal/mol were selected. The Gene Ontology analysis was conducted on AmiGO website.

Results and Discussion

The potential P. cruentum miRNAs: The present study is a comparative genomics based approach applying various bioinformatics tools. This is in agreement with the previous reports by many research groups (Barozai & Husnain, 2011; Barozai & Wahid, 2012; Barozai et al., 2012b; Barozai et al., 2014a, b; Barozai & Din, 2014; Behlil et al., 2016; Barozai & Din, 2017; Jahan et al., 2017; Shah et al., 2017), where the homology based search by applying comparative genomics is found a valid and logical approach to find interesting findings in various organisms at genomics level. Here, a total of 49 novel miRNAs were identified from the computational and bioinformatics analyses of 386,903 P. cruentum ESTs. The 49 putative P. cruentum miRNAs belong to 46 miRNA families, (pcrmiR; 156 (a,b), 159, 164, 165, 171, 390, 394, 413, 419 (a,b), 447, 834, 838, 839, 843, 852, 855, 900, 951 (a,b), 1039, 1062, 1072, 1088, 1092, 1103, 1104, 1107, 1155, 1161, 1165, 1846, 1848, 2091, 2097, 2111, 2112, 2867, 2926, 3440, 3442, 3630, 4224, 5503, 5523, 5819, 5836 and 6104). On the basis of the present available algal miRNA literatures, the miRNA families; (pcr-miR; 159, 164, 165, 171, 390, 394, 413, 447, 834, 838, 839, 843, 852, 855, 900, 951 (a,b), 1039, 1062, 1072, 1088, 1092, 1103, 1104, 1107, 1155, 1161, 1165, 1846, 1848, 2091, 2097, 2111, 2112, 2867, 2926, 3440, 3442, 3630, 4224, 5503, 5523, 5819, 5836 and 6104 are reported for the first time in P. cruentum. The two miRNA families; miR-156 (a,b) and 419 (a,b) were also reported by Gao et al., (2016). The absence of the 44 miRNA families from Gao et al., (2016) work is may to different varieties, condition and be due methodology. The pcr-miR-156, 419 and 951 families were observed with maximum two members and rest of all the families were observed with only one member. These newly identified potential 49 P. cruentum miRNAs were observed in the arm regions of the stemloop secondary structures. These potential 49 P. cruentum miRNAs were considered as a valid candidate after justifying the empirical formula for biogenesis and expression of the miRNAs, suggested by Ambros et al., (2003). The 49 potential P. cruentum miRNAs rationalize to the criteria B, C and D, on the basis of Ambros et al., (2003) report, just the criterion D is sufficient for homologous sequences to confirm as potential miRNAs in other species.

Characterization of the miRNAs in *P. cruentum:* Characterization of the novel potential candidate miRNAs is now considered as a crucial step for the validation of computationally predicted miRNAs (Wang *et al.*, 2012; Bibi *et al.*, 2017; Gul *et al.*, 2017). The minimum folding free energy (MFE) of miRNA is the first vital and valid term of characterization. The newly identified potential *P. cruentum* pre-miRNAs have shown minimum folding free energies (MFEs) in a range from -9.0 to -124 Kcal mol⁻¹ with an average of -32 Kcal mol⁻¹. The 49 *P. cruentum* miRNAs distribution on basis of their MFEs are as; 20 (41%) have -9 to -21, 14 (29%) have -22 to -30, 8 (16%) have -32 to -48 and 7 (14.3%) have -52 to -124 Kcal mol⁻¹. The mature miRNA sequences of newly identified miRNAs in *P. cruentum* are observed in the stem region of the precursor self-folded structures, as shown in Figure 1. The profiled miRNAs in *P. cruentum* were observed with an average of 52% GC content. Many researchers (Barozai, 2012d; Bai *et al.*, 2012; Wang *et al.*, 2012) reported almost similar findings for various plant and animal species. The newly identified *P. cruentum* miRNAs characterization in terms of source miRNAs, pre-miRNAs length, the minimum free folding energies (MFEs), mature miRNAs, number of nucleotides mismatches, mature sequence length, source EST, mature sequence arm and GC percentage are tabulated in Table 1.

pcr-miR2112 pcr-miR2867 pcr-miR2926 pcr-miR3440 pcr-miR3442 pcr-miR3630 pcr-miR4224 pcr-miR5503 pcr-miR5523 pcr-miR5819 pcr-miR5836 pcr-miR6104

Fig. 1. The new Porphyrdium cruentum miRNA secondary structures.

The *Porphyrdium cruentum* pre-miRNAs secondary structures were predicted using Mfold algorithm. These structures are clearly showing that mature miRNAs in stem region of the stem-loop structures, highlighted in green.

P. cruentum miRNAs	Source miRNAs	PL	MFE	WS	MN	ML	SE#	MSA	GC%
pcr-miR156a	hci-miR156b	113	-62.29	GGACAGAAGAGAGCGAGCGA	64	20	HS829859	3,	60
pcr-miR156b	har-miR156c	50	-16.90	TGACAGAAGGGCGGGCAGCA	03	20	HS943066	3,	65
pcr-miR159	osa-miR159a	104	-24.90	TTGCATGCGCCAGGAGCTGC-	02	20	HS914235	5'	65
pcr-miR164	aly-miR164a	45	-8.70	TAA AGAAGCAGGGCGCGTGCA	04	21	HS876904	3,	57
pcr-miR165	aly-miR165a	63	-15.90	GAATGTTGTATCGATCGAGG	02	20	HS973678	3,	45
pcr-miR171	osa-miR171a	48	-15.70	AGATGGCCCGGTTCACTCAGA	04	21	HS945787	5'	57
pcr-miR390	ppt-miR390c	71	-28.30	CGCTGGCCGTTCTGAGCATTG	02	21	HS802432	5,	62
pcr-miR394	osa-miR394	147	-48.50	TTGGCATTCTGTCCACTGGT	04	20	HS653979	3,	50
pcr-miR413	osa-miR413	53	-18.60	TTAGTTTCACTTGTTCTG <mark>GTC</mark>	04	21	HS965235	3,	38
pcr-miR419a	ppt-miR419	65	-23.10	TGATGGATGATGACGATGT <mark>CG</mark>	03	21	HS942239	5,	48
pcr-miR419b	osa-miR419	76	-29.90	AGATGAATGCTGACGCTGTAT	04	21	HS949863	5'	43
pcr-miR447	ath-miR447a	68	-20.40	ATGAGGACGAAAGGTTTTGTTG	04	22	HS591443	5,	41
pcr-miR834	aly-miR834	54	-32.40	AGGTAGCAGTAGCGGTGGCGG	04	21	HS621397	3,	67
pcr-miR838	aly-miR838	351	-123.96	TTTTCTTCTTCTTGTCGA	04	21	HS916110	3,	33
pcr-miR839	ath-miR839	64	-13.30	GCCCAGCCTTTCATCGTTCGC	04	21	HS738952	3,	62
pcr-miR843	ath-miR843	62	-17.20	AATAGGTCGAGCTTGACTGGA	04	21	HS830372	3,	48
pcr-miR852	aly-miR852	76	-24.90	GAACAAAGGCGCGCGTGTCTTCG	04	21	HS957418	3,	57
pcr-miR855	ath-miR855	73	-9.20	AGGAAAAGGAAAGGAAAAGGAA	03	22	HS785849	5,	36
pcr-miR900	ppt-miR900	74	-28.00	TGTGCTCCTGTACCTGGGGACG	04	21	HS629489	3,	62
pcr-miR951a	pab-miR951	201	-41.38	TGTTCTTGACGTGTGTGCACC	03	22	HS959589	3,	50
pcr-miR951b	pde-miR951	62	-27.43	CT TTCTTGAACTCTGGACCAC	04	21	HS947173	3,	48
pcr-miR1039	ppt-miR1039	113	-15.10	GGTTTGGGTCTTTGTCT-CTG	04	20	HS774456	3,	50
pcr-miR1062	ppt-miR1062	220	-69.27		04	20	HS690100	5,	55
pcr-miR1072	ppt-miR1072	142	-20.48	TGAATTGTGTTATTTCAAACTTGA	03	24	HS877495	3,	25
pcr-miR1088	smo-miR1088	230	-86.24	GTGTGCGCTTTTTCTTCTGCC	04	21	HS863106	5,	52
pcr-miR1092	smo-miR1092	61	-20.40	GGCCATGAATGCATTGGTGTT	04	21	HS619654	5,	48

820

-
-
þ
÷
5
-
C
-
1.
le 1. (
ole 1. (
ble 1. (

P. cruentum miRNAs	Source miRNAs	PL	MFE	MS	MN	ML	SE #	MSA	GC%
pcr-miR1103	smo-miR1103	53	-17.00	TAGAGGCACCACCTTTCCAAT	03	22	HS757103	5,	50
pcr-miR1104	smo-miR1104	96	-20.67	GGGCGCTGTTCTTTTCCTTC	04	21	HS766861	5,	52
pcr-miR1107	smo-miR1107	58	-16.80	TGTGCTGGTTCCAATTCGGGA	03	21	HS782657	3,	52
pcr-miR1155	cre-miR1155	82	-21.60	TA-TCCTGCTCGAGGAAGGAGA	03	21	HS724557	5,	52
pcr-miR1161	cre-miR1161a	140	-34.19	TCGGCGTTCTCAACAGC	03	17	HS880307	3,	59
pcr-miR1165	cre-miR1165	220	-51.64	ACGGTCCGCTTGTACGGATTCT	04	22	HS898883	5,	55
pcr-miR1846	osa-miR1846a	56	-24.20	AGTGTGGAGGCCGGGGGCCG <mark>GG</mark>	03	21	HS818806	5,	81
pcr-miR1848	osa-miR1848	43	-17.10	TCTCGCGCGCGCGCGCGTGAA	04	21	HS820756	5,	76
pcr-miR2091	osa-miR2091	40	-22.90	GCAACCGAGCCGAGCTGGCGG	04	21	HS925447	3,	76
pcr-miR2097	osa-miR2097	141	-44.72	AGAGATGGGACGGGCAGCGATG	02	22	HS887040	3,	64
pcr-miR2111	ath-miR2111a	63	-18.50	CGCCTTGGGAAGCGGATTACC	04	21	HS870320	3,	62
pcr-miR2112	aly-miR2112	123	-27.32	TGCAAATGCGGATATCAAGTT	04	21	HS686245	5,	38
pcr-miR2867	osa-miR2867	135	-47.30	TTTGCCATCCCACACGTCCAGT	03	22	HS934022	3,	55
pcr-miR2926	osa-miR2926	101	-29.04	ACGTCTTCTACGTTGGTGCT	03	20	HS899514	3,	50
pcr-miR3440	aly-miR3440	158	-44.64	TGGAAATGGTCAAAGAGAACCGCA	03	24	HS974866	5,	46
pcr-miR3442	aly-miR3442	107	-9.30	AGCATAGTTAGAGCTCTGAAT	04	21	HS957005	3,	38
pcr-miR3630	han-miR3630	257	-83.99	TGTGGGAATCTCTCTGA-GCTT	01	22	HS900430	5,	45
pcr-miR4224	aly-miR4224	78	-29.20	ACGCTGAGCTTCCTCATCTCG	04	21	HS943942	3,	57
pcr-miR5503	osa-miR5503	42	-15.60	ACCGGATCTT-CTAGAGGCATT	03	21	HS626839	3,	48
pcr-miR5523	osa-miR5523	87	-17.60	TGAGGTGGCACATATTTACTCG	03	22	HS965542	3,	45
pcr-miR5819	osa-miR5819	149	-61.22	AGTACG-GGGGAACGGCGGCG	02	20	HS756030	5,	75
pcr-miR5836	osa-miR5836	167	-47.07	CGATCAACCGGACCATGGGAT	03	21	HS948347	3,	57
pcr-miR6104	cca-miR6104	201	-24.35	TAA GACAAATAGAACAA <mark>A</mark> AAAA	04	22	HS936059	3,	18
The newly identified <i>Porp</i> Mismatches (represented in	hyridium cruentum miRN. bold & enlarged font size)	As were chara , ML=Mature	cterized in to sequence Le	The newly identified <i>Porphyridium cruentum</i> miRNAs were characterized in terms of PL=Precursor miRNA Length, MFE=Minimum Free Energy, MS=Mature Sequence, NM= Number of Mismatches (represented in bold & enlarged font size), ML=Mature sequence Length, SE=Source EST, MSA=Mature Sequence Arm and GC percentage	mum Free	Energy, MS rcentage	s=Mature Sequence	e, NM= N	umber of

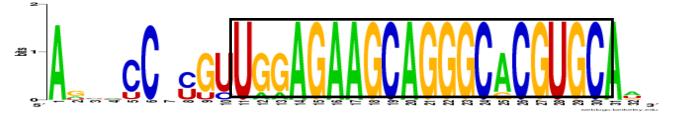


Fig. 2. Porphyridium cruentum miRNA Conservation study Alignment of miRNAs (miR-164) of Porphyridium cruentum with Arabidopsis lyrata (aly), Arabidopsis thaliana (ath), Vitis vinifera (vvi), Oryza sativa (osa), Zea mays (zma), using Weblogo, showing conserved nature of mature sequence highlighted in a rectangle box.

Fig. 3. Porphyridium cruentum miRNA Phylogenetic tree study Alignment of miRNAs (miR-164) of Porphyridium cruentum with Arabidopsis lyrata (aly), Arabidopsis thaliana (ath), Vitisvinifera (vvi), Oryza sativa (osa), Zea mays (zma), is done with the help of Clustalw and cladogram tree was generated using neighbor joining clustering method. The Phylogenetic tree showed that on the basis of pre-miRNA sequences, the Porphyridium cruentum is unique and not closed to Arabidopsis lyrata (aly), Arabidopsis thaliana (ath), Vitisvinifera (vvi), Zea mays (zma), Oryza sativa (osa).

The pre-miRNAs length of the profiled miRNAs in P. cruentum ranges from 40-351 nt with an average of 108 nt and mature miRNA sequences ranges from 17 nt to 24 nt with an average of 21 nt. Majority (55%, i.e., 27 out of 49) of the miRNAs are 21 nt in length, followed by 22 nt (20%), 20 nt (18%), 24 nt (4%) and 17 nt (2%). These findings for pre-miRNAs and mature sequences in P. cruentum are within agreement to prior published data in other plant species (Barozai et al., 2013a, b; Din & Barozai, 2014a, b, Din et al., 2014). The 55 % novel identified P. cruentum's miRNA sequences have a difference of 4, 33% have a difference of 3, 11% have 2 and 2% have a difference of 1 with the corresponding homologous of source miRNAs. These values are matched with the previously reported values in different plants, where the mature sequences have a difference of 0-4 nucleotides (Wang et al., 2012; Barozai, 2013). The 59% (29 off 49) P. cruentum miRNA sequences were found at 3' arm, while the remaining 41% are at 5' arm as shown in Fig. 1. The secondary stem-loop structures of the P. cruentum pre-miRNAs were observed with at least 16 nucleotides engaged in Watson-Crick or G/U base pairings between the mature miRNA and the opposite arms (miRNAs*) in the stem region except few, where the source miRNAs have also less base pairings and these precursors do not contain large internal loops or bulges. Many groups (Barozai et al., 2008; Barozai et al., 2015; Baloch et al., 2015a, b; Din et al., 2016) observed similar results in various research papers. Furthermore, the newly identified P. cruentum miRNAs sequences were observed with no significant similarity with known proteins. This confirms them as non-coding RNAs.

Convergence and Phylogenetic analysis: The newly identified *P. cruentum* miRNA; pcr-mir-164, due to its conserved nature was investigated for convergence and phylogenetic. The *P. cruentum* miRNA; pcr-miR-164 was observed in convergence with *Arabidopsis lyrata* (aly), *Arabidopsis thaliana* (ath), *Vitisvinifera* (vvi), Oryza sativa (osa), Zea mays (zma) as shown in Fig. 2. The Phylogenetic investigation of the same pre-miRNA has shown that the *P. cruentum* miRNA is unique and not closely related to *Arabidopsis lyrata* (aly), *Arabidopsis thaliana* (ath), *Vitisvinifera* (vvi), Oryza sativa (osa), Zea mays (zma) as illustrated in Fig. 3. This is shows a diverged nature of pre-miRNA in algae.

Potential targets of the identified miRNAs in *P. cruentum:* Profiling the potential *P. cruentum* miRNAs targeted genes is a vital step for validation of the computationally identified miRNAs. Total 13 targeted genes were profiled for the potential *P. cruentum* miRNAs. Different *P. cruentum* miRNAs targeting same proteins were predicted here. The profiled targeted genes are involved in anabolism, catabolism and photosynthesis. The detail description is mentioned in Table 2. Almost all of these targets are already reported as miRNA targets in other plants (Bai *et al.*, 2012; Barozai, 2012a, b).

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme in photosynthesis and photorespiration, where it catalyzes the fixation of CO₂ and O₂, respectively. Due to its rate-limiting property in photosynthesis, it is the prime focus of improving the plant productivity (Whitney & Andrews, 2001). The eighteen (18) *P. cruentum* miRNAs (pcr-miR156, 394, 419, 447, 834, 838, 900, 1062, 1072, 1092, 1107, 1161, 2112, 2867, 3440, 3442, 4224 and 5523) are predicted to target this important enzyme. These *P. cruentum* miRNAs are the potential resource to modify Rubisco expression and ultimately plant productivity.

Light-harvesting complex I (LHC) is a multi-unit protein; encoded by nuclear genes. Translated proteins of these genes, are migrated from the cytosol to the ER with the help of an amino acids terminal signal sequence. Finally these proteins are embedded in the membrane of thylakoids in plants, algae, and cyanobacteria (Chitnis, 2001). It oxidizes plastocyanin or cytochrome c by transferring solar energy into biomass. Therefore, the LHC gene family is an important source of metabolic engineering for the biofuel synthetic processes. The newly identified *P. cruentum* miRNAs; pcr-miR156, 164, 171, 900, 1039, 1062, 1088, 1165, 1848, 2111, 5503 and 5819 may target the Light-harvesting complex I. Thus these miRNAs are important resources to fine tune the LHC regulation in biofuel engineering.

877	2
04.	,

Table 2. Putative <i>Porphyridium cruentum</i> miRNA targets List of the potential targets.	entum miRNA targe	ts List of the potential targets.	
miRNA	Target Acc. #	Target Description	Function
pcr-miR 156, 394, 419, 447, 834, 838, 900, 1062, 1072, 1092, 1107, 1161, 2112, 2867, 3440, 3442, 4224, 5523	DQ308439	Ribulose-1,5-bisphosphate carboxylase oxygenase	Catabolism
pcr-miR 156,164, 171, 900, 1039, 1062, 1088, 1165, 1848, 2111, 5503, 5819	U58680	Light-harvesting complex I mRNA	Photosynthesis
pcr-miR 156, 159, 165, 171, 394, 419, 838, 843, 1062, 1073, 1103, 1104, 1155, 1161, 1165, 1848, 2867, 2926, 3442, 3630, 4224, 5503, 5523, 5819,	AB545772	Oxygen-evolving enhancer protein	Photosynthesis
pcr-miR 156, 164	HM535635	Phycobiliproteins	Photosynthesis
pcr-miR 159, 165, 171, 390, 447, 834, 839, 951, 1062, 1092, 1104, 1107, 1165, 2111, 2112, 2867, 5523, 6104	U58679	Light-harvesting complex I mRNA	Photosynthesis
pcr-miR 159, 164, 390, 413, 839, 843, 852, 855, 900, 951, 1039, 1062, 1088, 1092, 1104, 1155, 1161, 1846, 1848, 2097, 2111, 2867, 3630, 4224, 5503, 5523	AB274917	Granule-bound starch synthase	Anabolism
pcr-miR 165, 413, 447, 1092, 1165, 2091, 2097, 2112, 2926, 3442	D86051	Carbonic anhydrase	Catabolism
pcr-miR 171, 390, 394, 413, 834, 2111, 2867, 3440, 3442, 4224, 5836	AJ843185	Carbonic anhydrase	Catabolism
pcr-miR 413, 852, 900,951, 1039, 1062, 1072, 1088, 1103, 1104, 1107, 1155, 1161, 1846, 2097, 2926, 5523	GQ921315	Assimilatory nitrate reductase-like (NR) gene	Catabolism
pcr-miR 419, 839, 1072, 1103, 1161, 1846, 2112, 3440, 3630, 4224, 5503	D86050	Carbonic anhydrase	Catabolism
pcr-miR 447, 838, 951, 1088, 1155, 1161, 2097, 2111, 2867, 2926,	DQ308459	photosystem I P700 chlorophyll A apoprotein	Catabolism
pcr-miR 834, 843, 900, 1039, 1062, 1072, 1092, 1103, 1165, 1848, 2091, 2111, 2112, 2926, 3630, 5836, 6104	AB040136	Carbonic anhydrase	Catabolism
pcr-miR 839, 843, 1039, 1846, 2091, 2926, 5836,6104	AB040135	Carbonic anhydrase	Catabolism

Another important protein of the chloroplast is oxygen evolving enhancer (OEE). The OEE is consist of three subunits, OEE 1 (33 kDa), OEE 2 (23 kDa) and OEE 3 (16 kDa). All these three OEEs are produced by nuclearencoded genes PsbO, PsbP and PsbQ, respectively (Sugihara, 2000) and marginally bound to photosystem II (PSII) on the thylakoid membrane. The signaling peptide which directs OEEs to their proper section of chloroplast exists in the N-terminal end (Abbasi & Komatsu, 2004). Fathei et al., (2012), observed an up regulation in OEE2 in salt-resistant and salt-sensitive barley genotypes during salinity. Previously, it was also reported in salt adaptation in cultured tobacco cells (Murota et al., 1994), mangrove and rice (Sugihara et al., 2000; Abbasi& Komatsu 2004). This protein is also observed to enhance its expression under biotic stress in tobacco (Perez-Bueno, 2004). The increased expression of OEE2 suggests its role to repair protein damage caused by dissociation and to keep oxygen evolving. In the present study, the newly identified P. cruentum miRNAs; pcr-miR156, 159, 165, 171, 394, 419, 838, 843, 1062, 1073, 1103, 1104, 1155, 1161, 1165, 1848, 2867, 2926, 3442, 3630, 4224, 5503, 5523, 5819 are found to target the oxygen evolving enhancer protein.

Conclusion

This research is resulted 49 novel miRNAs and their 13 targets for the first time in *P. cruentum* a unicellular red alga. These *P. cruentum* miRNAs are the significant resource to modify photosynthetic genes expression and ultimately plant productivity. And also these findings will also play significant role to elaborate the functional genomic resources in *P. cruentum*,

References

- Abbasi, F.M. and S. Komatsu 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. *Proteomics*, 4: 2072-2081.
- Ali, S. H., M.Y.K. Barozai, M. Din and A.N. Aziz. 2016. A review on the sorghum for biofuel and microRNAs. *Pure and Appl. Biol.*, 5(4): 1064-1100.
- Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol., 215: 403-410.
- Ambros, V., B. Bartel and D.P. Bartel. 2003. A uniform system for microRNA annotation. *RNA*. 9: 277-279.
- Bai, M., G.S. Yang, W.T. Chen, Z.C. Mao, H.X. Kang, G.H. Chen, Y.H. Yang and B.Y. Xie. 2012. Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in *Solanum lycopersicum. Gene.*, 501 (1): 52-62.
- Baloch, I.A., M.Y.K. Barozai and M. Din. 2015a. Identification and characterization of 25 microRNAs and their targeted proteins in apricot (*Prunus armeniaca* L.). J. Ani. & Plant Sci., 25(5): 1466-1476.
- Baloch, I.A., M.Y.K. Barozai, M. Din and A.K.K. Achakzai. 2015b. Computational identification of 18 microRNAs and their targets in three species of rose. *Pak. J. Bot.*, 47(4): 1281-1285.
- Barozai, M.Y.K. 2012a. Identification and characterization of the microRNAs and their targets in *Salmosalar. Gene.*, 499(1): 163-168.

- Barozai, M.Y.K. 2012b. The novel 172 sheep (*Ovisaries*) microRNAs and their targets. *Mol. Biol. Rep.*, 39(5): 6259-6266.
- Barozai, M.Y.K. 2012c. The MicroRNAs and their targets in the channel catfish (*Ictalurus punctatus*). *Mol. Biol. Rep.*, 39(9): 8867-8872.
- Barozai, M.Y.K. 2012d. Insilico identification of microRNAs and their targets in fiber and oil producing plant Flax (*Linum usitatissimum L.*) Pak. J. Bot., 44(4): 1357-1362.
- Barozai, M.Y.K. 2013. Identification of microRNAs and their targets in Artemisia annua L. Pak. J. Bot., 45(2): 461-465.
- Barozai, M.Y.K. and A.H. Wahid. 2012. Insilico identification and characterization of cumulative abiotic stress responding genes in Potato (*Solanum tuberosum L.*). *Pak. J. Bot.*, 44(SI): 57-69.
- Barozai, M.Y.K. and M. Din. 2017. Initial screening of plant most conserved MicroRNAs targeting infectious viruses: HBV and HCV. In Applied Sciences and Technology (IBCAST), 2017 14th International Bhurban Conference on (pp. 192-196). IEEE.
- Barozai, M.Y.K. and M.Din. 2014. The relationship between codon usage bias and cold resistant genes. *Pak. J. Bot.*, 46(3): 823-826.
- Barozai, M.Y.K. and T. Husnain. 2011. Identification of biotic and abiotic stress up-regulated ESTs in *Gossypium* arboreum. Mol. Bio. Rep., 39(2): 1011-1018.
- Barozai, M.Y.K., A.G. Kakar and M. Din. 2012b. The relationship between codon usage bias and salt resistant genes in *Arabidopsis thaliana* and *Oryza sativa*. *Pure App. Biol.*, 1(2): 48-51.
- Barozai, M.Y.K., F. Bashir, S.Muzaffar, S. Afzal, F. Behlil and M. Khan. 2014a. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (*Saccharomyces cerevisiae*). *Gene.*, 550(1): 74-80.
- Barozai, M.Y.K., I.A. Baloch and M. Din. 2011a. Identification of microRNAs in ecological model plant Mimulus. J. Biophy. Chem., 2(3): 322-331.
- Barozai, M.Y.K., I.A. Baloch and M. Din. 2012a. Identification of MicroRNAs and their targets in Helianthus. *Mol. Biol. Rep.*, 39(3): 2523-2532.
- Barozai, M.Y.K., M. Din and I.A. Baloch. 2013a. Structural and functional based identification of the bean (Phaseolus) microRNAs and their targets from Expressed Sequence Tags. J. Struct. Funct. Genomics, 14: 11-18.
- Barozai, M.Y.K., M. Irfan, R. Yousaf, I. Ali, U. Qaisar, A. Maqbool, M. Zahoor, B. Rashid, T. Hussnain and S. Riazuddin. 2008. Identification of micro-RNAs in cotton. *Plant Phy. & Biochem.*, 46(8-9): 739-51.
- Barozai, M.Y.K., M. Qasim and M. Din. 2015. Profiling microRNAs and their targets in Radish (*Raphanus sativus* L.). *Pak. J. Bot.*, 47(1): 171-176.
- Barozai, M.Y.K., S. Kakar and A.M. Sarangzai.2013b. Profiling the carrot (*Daucus carota* L.) microRNAs and their targets. *Pak. J. Bot.*, 45(S1): 353-358.
- Barozai, M.Y.K., S.Q. Shah, M. Din and R. Muhammad. 2014b. Codon usage bias and RNA secondary structures analysis for virus resistant genes in *Arabidopsis thaliana* and *Oryza sativa*. *Pure Appl. Biol.*, 3(2): 81-91.
- Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell.*, 116: 281-297.
- Behlil, F., M. Y. K. Barozai, F.Bashir, S.Muzaffar, S. Afzal and M. Khan. 2016. Profiling and characterization of chemical and pathogenic cumulative stress responding genes in mouse liver. *Pure and Appl. Biol.*, 5(4): 1323-1333.

- Bibi, F., M.Y.K. Barozai and M. Din. 2017. Bioinformatics profiling and characterization of potential microRNAs and their targets in the genus Coffea. *Turkish Journal of Agri. and Forest*, 41(3): 191-200.
- Chen, X. 2003. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. *Sci.*, 303: 2022-2025.
- Chitnis, P.R. 2001. Photosystem I: Function and physiology. Annu. Rev. Plant Biol., 52(1), 593-626.
- Crooks, G.E., G. Hon, J.M. Chandonia and S.E. Brenner. 2004. WebLogo: A sequence logo generator. *Genome Res.*, 14: 1188-1190.
- Dai, X. and P.X. Zhao. 2011. psRNATarget: a plant small RNA target analysis server. Nuc. Acids Res., 2011.
- Din, M. and M.Y.K. Barozai. 2014a. Profiling and characterization of eggplant (*Solanum melongena* L.) microRNAs and their targets. *Mol. Biol. Rep.*, 41(2): 889-894.
- Din, M. and M.Y.K. Barozai. 2014b. Profiling microRNAs and their targets in an important fleshy fruit: Tomato (*Solanum lycopersicum*). *Gene.*, 535(2): 198-203.
- Din, M., M.Y.K. Barozai and I.A. Baloch 2016. Profiling and annotation of microRNAs and their putative target genes in chilli (*Capsicum annuum* L.) using ESTs. *Gene Reports*, 5: 62-69.
- Din, M., M.Y.K. Barozai and I.A. Baloch. 2014. Identification and functional analysis of new conserved microRNAs and their targets in potato (*Solanum tuberosum L.*). *Turk. J. Bot.*, 38(6): 1199-1213.
- Drew, K.M. and R. Ross. 1965. Some generic names in the Bangiophycidae. *Taxon.*, 14: 93-99.
- Fatehi, F., A. Hosseinzadeh, H. Alizadeh, T. Brimavandi and P.C. Struik. 2012. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. *Mol. Biol. Rep.*, 39(5): 6387-6397.
- Gao, F., F. Nan, J. Feng, J. Lv, Q. Liu and S. Xie. 2016. Identification of conserved and novel microRNAs in *Porphyridium purpureum* via deep sequencing and bioinformatics. *BMC Genomics*, 17(1): 612.
- Gao, P., X. Bai, Y. Liang, D. Lv, X. Pan, Y. Li, H. Cai, W. Ji, Q. Chen and Y. Zhu. 2011. Osa-MIR393: a salinity and alkaline stress-related microRNA gene. *Mol. Biol. Rep.*, 38(1): 237-242.
- Griffiths-Jones, S. 2004. The microRNA Registry. Nuc. Acids Res., 32D: 109-111.
- Gul, Z., M.Y.K. Barozai and M. Din 2017. In-silico based identification and functional analyses of miRNAs and their targets in Cowpea (*Vigna unguiculata L.*). *Aims Genet.*, 4(2): 138-165.
- Hammond, S.C., E. Bernstein, D. Beach and G.J. Hannon. 2000. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. *Nat.*, 404: 293-296.
- Jahan, S., M. Y. K. Barozai, M. Din, H.Achakzai and A.Sajjad. 2017. Expressional studies of microRNAs in Hepatitis B Patients of Quetta, Pakistan. *Pure and Appl. Biol.*, 6(3): 1044-1052.
- Kidner, C.A. and R.A. Martienssen. 2005. The developmental role of microRNA in plants. Curr. Opin. *Plant Biol.*, 8: 38-44.
- Kruger, J. and M. Rehmsmeier. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. *Nucl. Acids. Res.*, 34(suppl_2): 451-454.
- Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson and D.G. Higgins. 2007. ClustalW and ClustalX version 2. *Bioinfor*, 23(21): 2947-2948.
- Murota, K.I., Y. Ohshita, A. Watanabe, S. Aso, F. Sato and Y. Yamada. 1994. Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. *Plant Cell. Physiol.*, 35:107-113.

- Perez-Bueno M.L., J. Rahoutei, C. Sajnani, I. Garcia-Luque and M. Baron. 2004. Proteomic analysis of the oxygen-evolving complex of photosystem II and biotic stress: studies on *Nicotania benthamiana* infected with tobacco mosaic virus. *Proteomics*, 4: 418-425.
- Rhoades, M.W. 2011. Conservation and divergence in plant microRNAs. *Plant Mol Biol.*, DOI 10.1007/s11103-011-9829-2.
- Shah, S.Q., M. Din, M.Y.K. Barozaiand A.K.K. Achakzai. 2017. Codon usage bias analysis for abiotic stress genes in *Arabidopsis thaliana* and *Oryza sativa*. *Pak. J. Bot.*, 49: 15-23.
- Stephen, F.A., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST, A new generation of protein database search programs. *Nuc. Acids Res.*, 25: 3389-3402.
- Sugihara, K., N. Hanagata, Z. Dubinsky, S. Baba and I. Karube. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove *Bruguiera gymnorrhiza*. *Plant Cell Phy.*, 41: 1279-1285.
- Wang, B., X. Tan, Y. Chen and Y. Zeng. 2012. Molecular cloning and expression analysis of two calmodulin genes encoding an identical protein from *Camellia oleifera*. *Pak. J. Bot.*, 44(3): 961-968.
- Whitney, S.M. and T.J. Andrews. 2001. The gene for the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. *The Plant Cell.*, 13(1): 193-205.
- Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nuc Acids Res.*, 31: 3406-3415.

(Received for publication 17 February 2017)