A NEO-DIVERSITY GROUP OF *ORYZA SATIVA* L. SSP. *JAPONICA* IN NORTHEASTERN CHINA EVALUATED BY LARGE-EFFECT SNPs

HONG GAO^{1, 2, 3}, QUAN XU², MING ZHONG², ZHENGJIN XU^{2*} AND GUOMIN SUI^{1*}

¹Liaoning Academy of Agricultural Sciences, Shenyang 110000, China

²Rice Research Institute / Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture /Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China

³Liaoning Rice Research Institute, Shenyang 110101, China

*Corresponding authors: Zhengjin Xu at xuzhengjin@126.com, and Guomin Sui at guomin666@126.com

Abstract

Rice breeding on the subspecies *Oryza sativa* L. ssp. *japonica* in northeastern China has been successful over a relatively short time. However, little is known about how the genetic structure of *japonica* has diverged as a result of artificial selection. In the present study, 189 single nucleotide polymorphisms (SNP) markers from gene coding regions were selected to characterize the diversity, phylogeny and population structure of four breeding groups in northeastern China, viz. modern *japonica*, historical *japonica*, exotic *japonica*, and *indica* varieties. Results suggested that the neo-diversity of *japonica* has formed gradually through introgression from other gene resources during the breeding selection. The genetic diversity (π) of modern *japonica* was lowest compared with historical *japonica*, exotic *japonica* and *indica* varieties, which implies a genetic bottleneck caused by the breeding selection. Population structure and phylogeny analysis proved that the modern *japonica* was independent of the historical *japonica* and exotic *japonica* groups.

Key words: Breeding selection, Genetic diversity, Rice, SNP marker.

Abbreviations: SNP-single nucleotide polymorphisms; SINE-short interspersed nuclear element; SSR-simple sequence repeat; Fst-F-statistics; RFLP-restriction fragment length polymorphisms; MCMC- Markov chain Monte Carlo; FDR-false discovery rate.

Introduction

The domestication of Asian cultivated rice (Oryza sativa L.), which occurred more than 10,000 years ago from divergent populations of the wild rice species Oryza *rufipogon*, is one of the most important events in human history (Oka, 1988; Cheng et al., 2003; Huang et al., 2012). То investigate population structure and subpopulation relationships in O. sativa, genome-wide molecular markers, such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR) and SNPs have been widely used (Garris et al., 2005; Lu et al., 2009; Zhao et al., 2009). Molecular phylogenetic analyses based on short interspersed nuclear element (SINE) insertion patterns indicated that Oryza sativa L. ssp. japonica (hereafter japonica) is closely related to O. rufipogon, whereas O. sativa ssp. indica (hereafter indica) is more closely related to O. nivara (Chen et al., 2003). Phylogeographic research suggested that cultivated rice was domesticated at least twice, in two different geographic regions (Londo et al., 2006). An analysis of low diversity regions (LDRs) shared by the indica and *japonica* genomes, revealed that the genealogical history of these overlapping LDRs was distinct from the genomic background, suggesting independent origins of two subspecies (He et al., 2011). This hypothesis is also supported by intensive genome resequencing and a molecular evolutionary analysis of functional genes in cultivated and wild rice (Wei et al., 2012; Xu et al., 2012).

Demographic modeling of resequencing data for 630 gene fragments from wild and domesticated rice accessions resulted in the identification of putative selective sweeps and sequence variations in sequencetagged sites (STSs) at the genome-wide level, thus providing molecular evidence for a single domestication origin for cultivated rice (Wei *et al.*, 2011). Some domestication genes, such as *sh4*, *rc*, and *bh4*, appear to be fixed in both subspecies with the same alleles, also supporting a single domestication origin (Li *et al.*, 2006; Sang *et al.*, 2007; Sweeney *et al.*, 2007; Zhang *et al.*, 2009; Zhu *et al.*, 2011). An alternative explanation for these allele types appearing in both subspecies is that they originated only once as a result of introgression after selection (Caicedo *et al.*, 2007; He *et al.*, 2011; Mao *et al.*, 2018).

Sequence analyses have determined that *japonica* was first domesticated from *O. rufipogon*, with *indica* subsequently developing from crosses between *japonica* and local wild rice (Li *et al.*, 2006). A wide range of genetic and genomic studies have been performed to examine the process of rice domestication, leading to divergent hypotheses. Most studies have focused on landraces, domestic regional varieties that are unlikely to be influenced by gene flow from artificial hybridization and thus maintain their genetic identities (Huang *et al.*, 2012; Ali *et al.*, 2017).

To characterize the diversity and genetic structure of modern Japanese rice varieties, comparisons of genomic sequences among several varieties with large genetic differentiation can be used to develop fine-resolution single nucleotide polymorphism (SNP) microarrays, thus enabling the detection of genomic polymorphisms and haplotype updated with breeding selection (Ebana *et al.*, 2010; Nagasaki *et al.*, 2010; Yamamoto *et al.*, 2010; Arai-Kichise *et al.*, 2011; Yonemaru *et al.*, 2012). In northeastern China, introducing *indica* germplasm in *japonica* rice breeding has been largely responsible for the increased rice yield in this region over the last five decades (Sun *et al.*, 2012). *Japonica* rice breeding in northeastern China has been over a relatively short time (Sun *et al.*, 2013). The coverage rate of the super *japonica* rice variety now accounts for more than 60% of the total area in rice cultivation, with a yield increase of 750-1113 kg per hectare in northeastern China. In order to reveal the genetic structure in gene function angle for the *japonica* rice in northeastern China, we tried to characterize the diversity, phylogeny and population structure based on SNP in coding regions in the present study.

Materials and Methods

Plant materials: Historical and exotic *japonica* varieties are collectively referred to as the ancestral populations of modern varieties. To assess the impact of breeding practices in northeastern China on the *japonica* genome, we carried out population-level genetic analyses based on SNP variations in 109 accessions, categorized into four groups: 33 modern varieties, 26 historical varieties, 25 exotic varieties from Japan and the Korean Peninsula, and 25 Chinese *indica* varieties. Seeds of the Liaoning varieties were obtained from the Liaoning Rice Research Institute and the Liaoning Provincial Saline-Alkali Land Utilization and Research Institute. Seeds of the Jilin varieties were obtained from the Jilin Academy of Agricultural Sciences. Seeds of the Heilongjiang varieties

were obtained from the Rice Research Institute, Heilongjiang Academy of Agricultural Sciences and the Rice Research Institute, Heilongjiang Academy of Land Reclamation Sciences. Seeds of exotic *japonica* and *indica* varieties were selected from germplasm pool of Shenyang Agricultural University. Plants were grown at the Shenyang Agricultural University, Liaoning Province, China. The detailed information on plant material is provided in Fig. 1 and Supplementary Table 1.

DNA isolation: The genomic DNA was extracted from the fresh leaves using a Rapid DNA Extraction Kit (Tiangen Biotech Co., Beijing, China).

Selection and genotyping of SNP loci: Previously, the genome resequencing of 517 Chinese original core landraces (including *indica*, *aus*, tropical *japonica*, temperate *japonica* and intermediate types) identified 3,625 SNPs in gene coding regions that were predicted to cause amino acid changes by termination and initiation codons and splicing sites, and insertions of new termination codons (Huang *et al.*, 2010). Among these SNPs, 190 evenly distributed on rice chromosomes were selected to estimate population divergence from the perspective of functional variation. Information on these SNPs is shown in Supplementary Table 2.

Fig. 1. Geographic locations of samples used in this study Blue: modern *Japonica*, Green: historical *japonica*, Yellow: exotic *japonica*, and Red: *indica*. Base map from <u>http://map.baidu.com</u>.

 Table S1. 109 different breeding phase population samples.

Accession name	Registration time	Origin	Subspecies	Latitude	Longitude
Nipponbare	1957	Japan	O.japonica	N35°0′	E137°13′
Toyonishiki	1974	Japan	O.japonica	N39°22′	E140°31′
Akitakomachi	2000	Japan	O.japonica	N39°43′	E140°5′
Hitomebore	1991	Japan	O.japonica	N38°25′	E140°54′
Chunyang	NA	Japan	O.japonica	N35°1′	E137°12′
Aoyu392	NA	Japan	O.japonica	N39°34′	E140°46′
Juanqi	NA	Japan	O.japonica	N34°55′	E137°10′
Guxiang	NA	Japan	O.japonica	N34°38′	E135°33'
Fuxiang	NA	Japan	O.japonica	N36°6′	E136°13′
Zhongguang	NA	Japan	O.japonica	N34°55′	E135°28′
Qiandaijin	1990	Japan	O.japonica	N35°41′	E139°45′
Chuxing	NA	Japan	O.japonica	N35°46′	E140°0′
Akihikari	1970	Japan	O.japonica	N40°46′	E140°49′
Sasanishiki	1983	Japan	O.japonica	N39°11′	E140°9′
LimingB	NA	Japan	O.japonica	N39°41′	E140°7′
Huadongdao	NA	Korean peninsula	O.japonica	N37°21′	E127°2′
Renyuedao	NA	Korean peninsula	O.japonica	N37°27′	E126°42′
Dazhendao	NA	Korean peninsula	O.japonica	N36°20′	E127°23′
Dengxi52	NA	Korean peninsula	O.japonica	N39°26′	E125°43′
Xiongji3	NA	Korean peninsula	O.japonica	N42°23′	E130°31'
Xiannan23	NA	Korean peninsula	O.japonica	N41°54′	E129°26′
Pyongyang1	NA	Korean peninsula	O.japonica	N39°1′	E125°45′
Xiannan1	NA	Korean peninsula	O.japonica	N41°54′	E129°26′
Taidongludao328	NA	Taiwan	O.japonica	N23°2′	E120°58′
Taizhong65	NA	Taiwan	O.japonica	N24°15′	E120°56′
Longhuamaohulu	NA	Hebei	O.japonica	N41°24′	E117°43′
Gaoyangdiandahongmang	NA	Hebei	O.japonica	N38°42′	E115°46′
Zhonglou1	NA	Shanxi	O.japonica	N38°8′	E112°33′
Xingguo	NA	Jilin	O.japonica	N43°36′	E124°49′
Baimaodao	NA	Heilongjiang	O.japonica	N46°42′	E130°3′
Weiguo	1960	Liaoning	O.japonica	N40°10′	E122°7′
Dandonglludao	NA	Liaoning	O.japonica	N40°1′	E124°20'
Ying9443	NA	Liaoning	O.japonica	N40°37′	E122°30'
Panjin782	NA	Liaoning	O.japonica	N41°8′	E122°4′
Longpan 5	2006	Liaoning	O.japonica	N41°2′	E122°4′
Liaoyan158	2009	Liaoning	O.japonica	N41°6′	E122°4′
Liaohe12	NA	Liaoning	O.japonica	N41°2′	E122°4′
Liaojing287	1988	Liaoning	O.japonica	N41°40′	E123°20'
Liaojing5	1981	Liaoning	O.japonica	N41°40′	E123°20′
2428	NA	guangxi	O.japonica	N22°51′	E108°17′
Zhonghua15	NA	Beijing	O.japonica	N40°0′	E116°20'
Zhongzuo9059	2004	Beijing	O.japonica	N40°12′	E116°13′
Handao227	NA	Beijing	O.japonica	N40°4′	E116°10′
Han526	NA	Beijing	O.japonica	N40°4′	E116°10′
Han529	NA	Beijing	O.japonica	N40°4′	E116°10′
Han535	NA	Beijing	O.japonica	N40°4′	E116°10′
Yufeng7	NA	Liaoning	O.japonica	N41°42′	E123°19′
Yutian301	NA	Liaoning	O.japonica	N41°8′	E122°4′
Ningdao216	1998	Ningxia	O.japonica	N38°16′	E106°14′
Jinzhu1	NA	Tianjin	O.japonica	N39°7′	E117°11′
Zhongzuo9128	1999	Beijing	O.japonica	N40°4′	E116°10′
Liaoyan16	1994	Liaoning	O.japonica	N41°8′	E122°4′
Liaojing294	1998	Liaoning	O.japonica	N41°38′	E123°19′
Liaojing326	1992	Liaoning	O.japonica	N41°40′	E123°20′

]	Table S1. (Cont'd.)			
Accession name	Registration time	Origin	Subspecies	Latitude	Longitude
Liaojing454	1996	Liaoning	O.japonica	N41°40′	E123°20′
Chaochan1	1999	Jilin	O.japonica	N43°55′	E125°13′
Jijing88	2005	Jilin	O.japonica	N43°55′	E125°13′
Changbai17	2006	Jilin	O.japonica	N43°55′	E125°13′
Yanjing218	2009	Liaoning	O.japonica	N41°8′	E122°4′
Yanjing68	2003	Liaoning	0.japonica	N41°8′	E122°4′
Yanfeng47	2006	Liaoning	0.japonica	N41°8′	E122°4′
Tianfeng201	2006	Liaoning	0.japonica	N41°8′	E122°4′
Shennong9903	2009	Liaoning	0.japonica	N41°49′	E123°33′
Shennong606	2003	Liaoning	0.japonica	N41°48′	E123°31′
Shennong265	2001	Liaoning	0.japonica	N41°48′	E123°31′
Shenjing4311	2006	Liaoning	0.japonica	N41°51′	E123°26′
Shendao29	2009	Liaoning	0.japonica	N41°49′	E123°33'
Liaoxing17	2007	Liaoning	0.japonica	N41°38′	E123°15′
Liaoxing16	2006	Liaoning	0.japonica	N41°39′	E123°20′
Liaonong49	2006	Liaoning	0.japonica	N41°38′	E123°19′
Liaojing534	2002	Liaoning	0.japonica	N41°38′	E123°20′
Liaojing371	2002	Liaoning	0.japonica	N41°40′	E123°20′
Huadan995	2009	Liaoning	0.japonica	N42°11′	E123°1′
Chenhe1	2009	Liaoning	0.japonica	N40°26′	E122°19′
Liaoxing1	2003	Liaoning	0.japonica	N41°49′	E123°30′
Liaojing9	2005	Liaoning	0.japonica	N41°40′	E123°20′
Shendao3	2005	Liaoning	O.japonica	N41°49′	E123°29′
Shendao6	2005	Liaoning	0.japonica	N41°49′	E123°33′
Shendao9	2005	Liaoning	0.japonica	N41°49′	E123°33′
Ningjing36	2006	Ningxia	0.japonica	N38°16′	E106°14′
Ningjing37	2006	Ningxia	0.japonica	N38°28′	E106°10′
Ningjing38	2006	Ningxia	0.japonica	N38°28′	E106°10′
Ningjing39	2006	Ningxia	0.japonica	N38°28′	E106°10′
Hua96	2007	Ningxia	0.japonica	N38°16′	E106°14′
9311	2002	Jiangsu	0.indica	N35°0′	E119°9'
Zhongyouzao8	1996	Zhejiang	O.indica	N30°4′	E119°55'
Qishanzhan	1991	Guangdong	O.indica	N23°8′	E113°20'
Aisimiao	NA	Guangdong	O.indica	N23°15′	E113°47′
Zaoxiang1	2001	Guangxi	O.indica	N22°49′	E108°21′
Chenghui448	2007	Sichuan	O.indica	N30°37′	E104°6′
Honglika	NA	Guangdong	O.indica	N23°21′	E116°37′
Hetianxiangdao	NA	Fujian	O.indica	N25°39′	E116°37′
Zhenshan97B	NA	Zhejiang	O.indica	N27°59′	E116°37′
Dijiaowujian	NA	Taiwan	O.indica	N23°12′	E120°16′
Jiangxisimiao	NA	Jiangxi	O.indica	N28°13′	E116°48′
Aijiaonante	NA	Guangdong	O.indica	N23°16′	E116°35′
Nanjing6	NA	Jiangsu	O.indica	N32°6′	E118°47'
TN1	NA	Taiwan	O.indica	N23°9′	E120°14′
Minghui63	1980	Fujian	O.indica	N26°19′	E117°39′
П-32В	NA	hunan	O.indica	N28°12′	E113°4′
Xiangyaxiangzhan	2006	Guangdong	0.indica	N22°23′	E112°40′
KgingB	NA	sichuan	O.indica	N31°6′	E104°22′
Jiafuzhan	NA	Fujian	O.indica	N26°3′	E119°15′
Gang96B	2002	Sichuan	O.indica	N29°58′	E102°59′
R99	NA	hubei	O.indica	N30°19′	E109°27′
Nantehao	1934	Jiangxi	O.indica	N28°33′	E115°56'
Lucaihao	1946	Fuiian	O.indica	N26°17′	E117°37′
Guangluai4	1983	Guangdong	O.indica	N23°8′	E113°20′
Shenglixian	NA	Hunan	O.indica	N28°29′	E112°58′

Marker ID	Chr	Pos	Nipponbare allele	Tother allele	Gene ID in RAP-DB
S 1	1	152340	G	А	Os01g0102800
S2	1	2000988	Т	А	Os01g0137300
S 3	1	4061128	G	С	Os01g0178100
S 4	1	8032973	G	А	Os01g0245700
S5	1	1E+07	Т	С	Os01g0281100
S 6	1	1.2E+07	С	Т	Os01g0316600
S 7	1	1.4E+07	С	Т	Os01g0350500
S 8	1	1.6E+07	G	А	Os01g0380700
S 9	1	1.9E+07	G	А	Os01g0496900
S 10	1	2.2E+07	А	G	Os01g0549250
S 11	1	2.4E+07	С	Т	Os01g0578500
S12	1	2.6E+07	А	С	Os01g0613900
S 13	1	2.8E+07	Т	G	Os01g0650200
S14	1	3E+07	G	А	Os01g0686100
S15	1	3.2E+07	А	G	Os01g0729600
S16	1	3.4E+07	С	Т	Os01g0768400
S17	1	3.6E+07	А	Т	Os01g0810533
S18	1	3.8E+07	Т	А	Os01g0845900
S19	1	4E+07	С	Т	Os01g0881400
S20	1	4.2E+07	Т	С	Os01g0924600
S21	1	4.4E+07	G	Т	Os01g0957600
S22	2	98322	G	А	Os02g0101800
S23	2	2087512	G	А	Os02g0139200
S24	2	4121585	С	Т	Os02g0175400
S25	2	6463017	Т	С	Os02g0215000
S26	2	8207347	Т	А	Os02g0244700
S27	2	1E+07	Т	А	Os02g0274900
S28	2	1.5E+07	Т	С	Os02g0437200
S29	2	1.6E+07	С	Т	Os02g0457500
S 30	2	1.8E+07	Т	G	Os02g0493300
S 31	2	2E+07	Т	G	Os02g0526201
S32	2	2.2E+07	С	Т	Os02g0563301
S 33	2	2.4E+07	А	Т	Os02g0599100
S 34	2	2.6E+07	А	Т	Os02g0629400
S35	2	2.8E+07	С	А	Os02g0670700
S36	2	3E+07	G	А	Os02g0708100
S 37	2	3.2E+07	А	С	Os02g0742800
S38	2	3.4E+07	Т	С	Os02g0782800
S39	3	91995	А	Т	Os03g0101200
S40	3	2045189	А	Т	Os03g0137400
S41	3	4027409	Т	G	Os03g0176100
S42	3	6015791	Т	С	Os03g0214200
S43	3	8016343	А	С	Os03g0251100
S44	3	1E+07	С	А	Os03g0292900
S45	3	1.2E+07	G	А	Os03g0328200
S46	3	1.4E+07	Т	А	Os03g0356582
S47	3	1.6E+07	А	Т	Os03g0387900
S48	3	1.8E+07	А	Т	Os03g0421000

Table S2. The list of genome-wide large-effect SNPs.

			Table S2. (Cont'd.).		
Marker ID	Chr	Pos	Nipponbare allele	Tother allele	Gene ID in RAP-DB
S 49	3	2.1E+07	А	G	Os03g0556900
S 50	3	2.2E+07	С	Т	Os03g0582000
S51	3	2.4E+07	G	А	Os03g0615300
S52	3	2.6E+07	Т	А	Os03g0653900
S53	3	3E+07	G	Т	Os03g0721001
S54	3	3.2E+07	А	G	Os03g0755600
S55	3	3.4E+07	G	А	Os03g0797550
S 56	3	3.6E+07	G	А	Os03g0840400
S57	4	235187	А	G	Os04g0103601
S58	4	2877914	С	Т	Os04g0142400
S59	4	4162260	А	Т	Os04g0160500
S 60	4	8035823	А	G	Os04g0220500
S61	4	9998438	Т	С	Os04g0252400
S62	4	1.2E+07	С	Т	Os04g0286500
S63	4	1.4E+07	G	Т	Os04g0311400
S64	4	1.6E+07	С	Т	Os04g0339000
S65	4	1.8E+07	С	А	Os04g0376600
S 66	4	2E+07	С	Т	Os04g0405100
S67	4	2.2E+07	А	С	Os04g0442950
S68	4	2.4E+07	Т	А	Os04g0476000
S69	4	2.6E+07	Т	А	Os04g0517766
S 70	4	2.8E+07	С	Т	Os04g0553500
S71	4	3E+07	С	Т	Os04g0587900
S72	4	3.2E+07	G	А	Os04g0621900
S73	4	3.4E+07	А	Т	Os04g0663100
S74	4	3.6E+07	А	G	Os04g0692200
S75	5	123891	С	А	Os05g0102300
S 76	5	2007838	G	С	Os05g0134700
S77	5	4055727	С	Т	Os05g0167600
S 78	5	6119765	G	Т	Os05g0198700
S79	5	8092731	А	Т	Os05g0233000
S 80	5	1.1E+07	G	А	Os05g0268400
S81	5	1.2E+07	С	Т	Os05g0286200
S82	5	1.4E+07	G	А	Os05g0309300
S 83	5	1.6E+07	С	G	Os05g0342600
S 84	5	1.8E+07	С	Т	Os05g0376000
S85	5	2E+07	G	А	Os05g0412300
S 86	5	2.2E+07	G	А	Os05g0452900
S 87	5	2.4E+07	Т	С	Os05g0487300
S88	5	2.6E+07	А	G	Os05g0521500
S 89	5	2.8E+07	G	Т	Os05g0561800
S 90	5	3E+07	С	Т	Os05g0595950
S91	6	369569	С	Т	Os06g0105400
S92	6	2113037	С	Т	Os06g0140300
S93	6	4011083	Т	А	Os06g0181200
S94	6	6037710	С	Т	Os06g0218150
S95	6	8011144	А	Т	Os06g0254700
S96	6	1E+07	G	А	Os06g0286310

Marker ID	Chr	Pos	Ninnonhare allele	Tother allele	Gene ID in RAP-DR
<u></u>	6	1 4F+07	Т	C	Os0600349700
S98	6	1.12+07 1.7E+07	G	Δ	Os06g0472000
S99	6	1.7E+07	Т	A	Os06g0493600
S100	6	2E+07	A	C	Os06g0521000
S100	6	2 2F+07	Δ	т	Os06g0555400
\$107	6	2.2E+07	G	1	$O_{s06g}0593400$
\$102 \$103	6	2.4E+07	C	Т	Os06g0571450
S103	6	2.8E+07	C	Δ	Os06g0624900
\$10 4	6	2:5E+07	C	A	Os06g0601000
\$105 \$106	6	3 2E+07	т	A	Os06g00731200
S100	0 7	200710	G	Т	O_{s00}
S107	7	299710	4	G	$O_{s07g0103200}$
S108	7	4025330	A	G	$O_{s07g01375000}$
S109	7	4023330	A G	0	$O_{s07g0173900}$
S110 S111	7	8002056	U C	A	Os07g0211200
S111 S112	7	1E+07		1	$O_{s07g0243000}$
S112	7	1 2E+07	I C	A	Os07g0270900
5113	7	1.2E+07	C	A	Os07g0296800
S114	7	1.4E+07	G	l C	Os07g0418700
S115	/	1.6E+07	A	G	Os0/g0451101
S116	7	1.8E+07	T	C	Os0/g0481300
S117	7	2E+07	C	Т	Os07g0510300
S118	7	2.2E+07	A	T	Os07g0540600
S119	7	2.4E+07	С	Τ	Os07g0578333
S120	7	2.6E+07	С	Т	Os07g0615900
S121	7	2.8E+07	G	Т	Os07g0652800
S122	7	3E+07	Т	А	Os07g0689900
S123	8	30699	G	С	Os08g0100400
S124	8	1920216	G	А	Os08g0133700
S125	8	4054686	Т	С	Os08g0169300
S126	8	6002126	С	Т	Os08g0203300
S127	8	8146859	G	А	Os08g0233900
S128	8	1E+07	Т	G	Os08g0265300
S129	8	1.2E+07	G	А	Os08g0296600
S130	8	1.4E+07	Т	С	Os08g0320800
S131	8	1.6E+07	G	А	Os08g0351250
S132	8	2E+07	С	Т	Os08g0417100
S133	8	2.2E+07	С	Т	Os08g0448900
S134	8	2.4E+07	G	А	Os08g0487300
S135	8	2.8E+07	С	А	Os08g0559000
S136	9	197973	А	С	Os09g0101200
S137	9	2611118	G	Т	Os09g0135100
S138	9	4056967	Т	С	Os09g0246500
S139	9	6029162	С	Т	Os09g0272800
S140	9	8078602	А	Т	Os09g0301700
S141	9	1E+07	С	Т	Os09g0325100
S142	9	1.2E+07	G	А	Os09g0356000
S143	9	1.4E+07	Т	С	Os09g0393200
S144	9	1.6E+07	G	Т	Os09g0425700

			Table 52. (Cont u.).		
Marker ID	Chr	Pos	Nipponbare allele	Tother allele	Gene ID in RAP-DB
S145	9	1.8E+07	С	А	Os09g0460300
S146	9	2E+07	Т	А	Os09g0500600
S147	9	2.2E+07	А	С	Os09g0540600
S148	9	2.4E+07	Т	С	Os09g0572900
S149	10	24497	G	Т	Os10g0100200
S150	10	2035993	С	Т	Os10g0132700
S151	10	4315958	С	Т	Os10g0167200
S152	10	6165575	Т	С	Os10g0193100
S153	10	8984749	А	Т	Os10g0321700
S154	10	1E+07	С	Т	Os10g0343000
S155	10	1.2E+07	Т	С	Os10g0371600
S156	10	1.4E+07	С	Т	Os10g0405500
S157	10	1.6E+07	А	Т	Os10g0439700
S158	10	1.8E+07	С	Т	Os10g0474933
S159	10	2E+07	Т	А	Os10g0512100
S160	10	2.2E+07	G	А	Os10g0549850
S161	10	2.4E+07	G	А	Os10g0580900
S162	11	1396	G	А	Os11g0100150
S163	11	2063383	Т	С	Os11g0145600
S164	11	4092896	Т	А	Os11g0181900
S165	11	6056685	А	G	Os11g0216300
S166	11	8103943	G	А	Os11g0250000
S167	11	1E+07	G	Т	Os11g0283500
S168	11	1.2E+07	G	А	Os11g0308601
S169	11	1.5E+07	С	Т	Os11g0417266
S170	11	1.6E+07	Т	С	Os11g0438700
S171	11	1.8E+07	А	G	Os11g0471200
S172	11	2E+07	А	Т	Os11g0513900
S173	11	2.2E+07	Т	Ā	Os11g0550500
S174	11	2.4E+07	G	A	Os11g0588400
S175	11	2.6E+07	G	Т	Os11g0620800
S176	11	2.8E+07	G	Т	Os11g0654800
S170 S177	11	3E+07	C	T	Os11g0691500
S177	12	35199	C	Т	Os12g0101000
S170	12	2130198	T	G	Os12g0143400
S179	12	6564588	G	A	Os12g0113100
S180	12	8164034	G	A	Os12g0246700
S187	12	1E+07	т	Δ	Os12g0273960
S182	12	1.2F+07	ſ	Т	Os12g0273900
S184	12	1.2E+07	G	т	Os12g0/07200
S185	12	1.4E+07	C	т Т	Os1260455000
S186	12	2F+07	т	G	$O_{s12g0} + 30100$
\$187	12	2 2 F±07	G	Δ	$\Omega_{s12_{6}0510500}$
S107 S188	12	2.2B+07	C	T T	$O_{s1}2_{g0}3_{7}3_{600}$
S180	12	2.407	т	Λ	$\Omega_{s12g0577000}$
S107	12	2.0E+07	т	G	$O_{s12g0011200}$
5170	14	2.0L 10/	1	U	00125007070700

Table S2. (Cont'd.).

The genotyping for the SNPs was based on the commercially available Sequenom MassARRAY platform. The process consisted of an initial locus-specific PCR reaction, followed by single base extension using massdideoxynucleotide terminators modified of an oligonucleotide probe primer that annealed immediately upstream of the polymorphic site of interest (Gabriel et al., 2009). The distinct mass of the extended primer was identified using MALDI-TOF mass spectrometry; genotyping results were obtained using TYPER 4.0 software. Information on the locus-specific PCR and probe primers are presented in Supplementary Table 3.

Diversity and genetic structure analysis: After obtaining SNP genotypes from those populations, the DNAsp 5.0 software was used to estimate sequence diversity (π). The population structure was then assessed with Structure 2.3.1 (Pritchard et al., 2000). Ten replicates were performed for each value of K, with the number of clusters considered using a burn-in length of 10,000 steps followed by a run length of 100,000 Markov chain Monte Carlo (MCMC) replicates. The number of subgroups from k = 1 to 20 were tested under simulation model that assumed admixture а and correlated allele frequencies. The Evanno's ΔK method was used to determine the most probable number of clusters (Evanno et al., 2005). Phylogeny reconstruction was built by the neighbor-joining method and distance-p model on MEGA 6.0 (Tamura et al., 2013). Bootstrap values correspond to 1,000 replications.

Identification of outlier SNPs: SNPs are assumed to cause large-effect changes on gene functions; however it is unknown whether the 190 SNPs chosen for the analysis were subject to selection. Consequently, the outlier SNPs were analyzed using the Bayesian method proposed by Foll and Gaggiotti (Foll & Gaggiotti, 2008), and implemented in the program Bayesian 2.01. The estimation of model parameters was set as 10 pilot runs of 5,000 iterations each, followed by 100,000 iterations. We used the R (v. 5.0) statistical software to plot outliers (http://cran.r-project.org/).

Results

SNP genotyping and neutrality test: Based on allele peaks observed in the mass spectra using the MassARRAY platform (Fig. 2), we performed genotyping for 109 samples from four rice groups (modern *japonica*, historical *japonica*, exotic *japonica* introduced from Japan and Korea, and *indica* varieties) at 190 genome-wide functional SNP loci.

Distinguishing neutral SNP markers helped to increase the accuracy of the population genetics analysis. Thus, we filtered the outlier loci before the analysis with the Bayesian 2.01 software. According to Jeffreys' scale of evidence, a $log_{10}BF$ of 1.5-2.0 is interpreted as 'strong evidence' of selection based on Bayesian factor (Jeffreys, 1961). After constructing the expected distribution of *Fst*, only one SNP (SNP22) was consistently identified as an

outlier from 10 independent iterations by controlling false discovery rate (FDR) < 0.05. The remaining 189 loci were considered as neutral, and used for the subsequent analysis (Fig. 3).

Diversities of four groups of varieties: We estimated the genetic diversities for the four rice groups based on genotypes of 189 SNPs using the DnaSP 5.0 software (Librado & Rozas, 2009) Sequence diversity (π) was estimated at 0.022 for modern *japonica* varieties, and 0.033, 0.063 and 0.207 for historical *japonica*, exotic *japonica* and *indica* varieties, respectively.

Genetic structure and phylogenetic analyses of four groups based on SNP variations: The population structure of the sampled groups was assessed twice, with and without *indica* groups, respectively, using the Structure 2.3.1 software (Figs. 4A and 5) (Evanno *et al.*, 2005).

For the full set of populations, a peak ΔK value was observed when k = 2 according to the Evanno's ΔK method (Fig. 6A). This result indicated that the best fitting model contained two clusters, with the three japonica populations in one cluster and the *indica* in the other. For k = 3, the modern japonica was separated into its own cluster, independent of the other two *japonica* groups. For k = 4, the population differentiation was evident in historical japonica, whereas modern japonica was in a single cluster. For k = 5, further population differentiation occurred only in the historical japonica. These demonstrate that (1) historical varieties and exotic varieties share a common japonica gene pool in their genomic constitutions, and (2) compared with the ancestral groups (historical and exotic japonica), the genetic structure of modern japonica varieties in northeastern China is a well-defined genetic group of O. sativa.

For the population structure and Evanno's ΔK analysis without *indica*, a peak ΔK value was also observed at k = 2 (Fig. 6B) and the modern *japonica* was independent of the other two *japonica* groups.

To further reveal the impact of the introduction of indica and selection on the genetic structure of modern japonica varieties in northeastern China, we constructed a bootstrap neighbor-joining tree inferred from 1,000 replicates based on 189 functional SNP variations. Most of *indica* samples were clustered together in one portion of the tree except three intermediate samples, whereas all the exotic and historical varieties were intermixed in the other parts of the tree (Fig. 4B). Modern japonica varieties were more genetically close to the main cluster of *indica* compared with exotic and historical japonica. The neighbor-joining tree, combined with the genetic structure analysis, revealed that modern japonica varieties in northeastern China have gradually separated ancestral japonica, indicating that partial from introgression with indica genes may contribute to its genetic divergence. Thus, a neo-diversity of modern japonica varieties could have gradually arisen through breeding selection by the introduction of limited indica lineages in northeastern China.

SNP ID	2nd-PCRP	1st-PCRP	UEP_SEQ
SI	ACGTTGGATGTGGCACACACTTTACACGCAAC	ACGTTGGATGCAGCCCTTTGACAATGCAAC	CCAGAAAGTGGGAGTGCAGT
S2	ACGTTGGATGCATAACCACCTTCTCCAAGC	ACGTTGGATGGGATCCCTAGCTCCAAAAAG	CCACCTTCTCCAAGCTTATTACTCAG
S3	ACGTTGGATGACATTCTGACGACCGACTTC	ACGTTGGATGGCTTGTTTCCGTGACTTGTG	CGGTTTCCTAGCCTTATTAT
S4	ACGTTGGATGTCGAGCACGATTCTGGTGAC	ACGTTGGATGAAGGAGCTCGGCGTGGTGTT	ccccGTTCCGCGAGGTGATCT
S5	ACGTTGGATGCAAACCAAGAACTGAAGAAC	ACGTTGGATGCTGTTCTTCGCAAGAAGGG	GAACACAAACCTGCATG
S6	ACGTTGGATGAGGAACGCCTAGAAACACCTC	ACGTTGGATGCATGGTGGAGGAGGGTCAATC	CCTAGAAACACCTCCACGTC
S7	ACGTTGGATGAGTTTGGGTACTCCTTGCAC	ACGTTGGATGCAGCGTCATCATGCACTAAG	GTACTTTCAGCTTCTGAATCTTACT
S8	ACGTTGGATGTCCTGCAAAACTCGGTACTG	ACGTTGGATGACCCATTCTCTGTGACCTTG	GTTGTCAGAAGTTTGGAG
S9	ACGTTGGATGTGAGAGTGGTGCATTCAAGG	ACGTTGGATGTTTCTCAGGGTGTCTGGGTG	AGGGGCACTCTACATGGGTTTTGCGT
S10	ACGTTGGATGTTCTCATAGGCGCTATCG	ACGTTGGATGGGTTCAAGGAGCGGTGGAT	CCTCCCGAGGACCATGA
S11	ACGTTGGATGTTGGGTGCTGCCTCTCCTC	ACGTTGGATGATCAGGCACAGTTGCCGAAC	CTCCTCCGACGACCAGGGCTAC
S12	ACGTTGGATGCGGGTGACATGTTAAAAGCA	ACGTTGGATGGGTCAGCTGAAATGTTTTGC	TGCAAATTTCACCTTAAAAGAATC
S13	ACGTTGGATGGAAGTCTGTTGTGGTATTGC	ACGTTGGATGGATTATGAGCCAGAGACAGG	GTCTGTTGTGGTATTGCGAGAACT
S14	ACGTTGGATGTTCCCCTTTCCGCCGGAGT	ACGTTGGATGGTCCTGGGAAAGGGCATAC	CCCTTTCCGCCGGAGTCCTGCCT
S15	ACGTTGGATGTCGACCCACAGTTGCTTTAC	ACGTTGGATGTTTCGGCCAAAAACCAAGGG	GTTGCTTTACTTCCCTATG
S16	ACGTTGGATGTCACCAAGATTATTGTGG	ACGTTGGATGGATGGTACTACTAAATTATTG	AAGATTATTGTGGTACCAAC
S17	ACGTTGGATGGATGGCAAACAGAATCCCAG	ACGTTGGATGTGCTGAACTGCTGCATTTCG	CCAGGATCATCCTAGTG
S18	ACGTTGGATGTCATGTTGAGACAGAGCGAC	ACGTTGGATGAACCGTGCCTTCTTTGCAAG	TGAAGAGAGCTCTTGGG
S19	ACGTTGGATGGCACTCACCAATAGGTGAAG	ACGTTGGATGTGAAGATGATGATGTCAGCGTG	CGGATTGAGAGTTTTTCTAATT
S20	ACGTTGGATGAGTCTTGAGTTCCAACTTCC	ACGTTGGATGTGACTCCTCCTGATTCCAAC	GATGTAGCAACTATTATGTTGTGCC
S21	ACGTTGGATGGAGGGGGGGGTATGCATCATAAT	ACGTTGGATGTCTCTGAGCCAGCAGCGAA	AAGAAGTGTAAATTTGAATTTATCA
S22	ACGTTGGATGCTCCACGACCAAAAGAGAAG	ACGTTGGATGTTCGACTGTTGACAGACCAC	AGAAGCTACTACTGGGCTC
S23	ACGTTGGATGCAATACCTTTGTTGCACCGC	ACGTTGGATGAGAAGCCCATCTACGTACC	CCTTTGTTGCACCGCAGCATC
S24	ACGTTGGATGGAACTCGTGTCTGTATGCTG	ACGTTGGATGGAAATTATTCGTCTTGAGGG	GAGCTGTTCCACACCTT
S25	ACGTTGGATGATAATGCATGCAGGAAGCCC	ACGTTGGATGGGAATTATCTTCAGCCAAGG	TTCAATTTATTTTCCCATTGCTTGC
S26	ACGTTGGATGGGATCCCCTTCCAGAATATC	ACGTTGGATGGATCTGAGAAGTTAGTGCCC	AATATCCTTGTGACCGGCAACC
S27	ACGTTGGATGTGAAAGAGGCGATGATGGAG	ACGTTGGATGCACAACAGAATGGAAAACAC	TGGTCGCAACTTTAATGG
S28	ACGTTGGATGGCGCTAAGACATATATGGTG	ACGTTGGATGCATCATCCTGCTTTGCCTTC	ATTATCTTGTTGTTGCTC
S29	ACGTTGGATGGGCAAAGAAGATTTCGACCC	ACGTTGGATGAATCCTCAAATTGCTGCTCG	TTGCGTGGGGTTTCCAGCAA
S30	ACGTTGGATGCCAACAGAAGCTATTAAGGG	ACGTTGGATGTTTAGAGGAGGCAACCCAAC	ATTTACATCAGCACCAGCC
S31	ACGTTGGATGGCAATGCCCCTGCATTACTC	ACGTTGGATGCATCTCGGTCGATCGTAAAC	TGCATTACTCCCATCCA
S32	ACGTTGGATGCCTCTCCTCAAGAAAAACCC	ACGTTGGATGGCTGCATGACGCTGTCGAT	ACATCATCCTACGCTTTG
S33	ACGTTGGATGCCCCCCTGCATTAGCTTATC	ACGTTGGATGCCGGATTAAATCAATTGGAC	GAATGCTCTTTTGCTGT
S34	ACGTTGGATGCAAGTGCAGGTACGCTAAAC	ACGTTGGATGCATGAAAAGCCTGATGGTCC	TATCTGAAGCCTTGTTTGCCAACTT
S35	ACGTTGGATGGAAGGGTTGCTTACCCTATG	ACGTTGGATGCAGGTTTCTCCCCCATGTTTC	GCTTACCCTATGGACATGGAGAT
S36	ACGTTGGATGCTCCCAACACCAGTAATACG	ACGTTGGATGGTTCTTTTCTGTTACGTATTG	CCAACACCAGTAATACGGAAAGC
S37	ACGTTGGATGTGGTTCTGAAGATGGTCAAC	ACGTTGGATGGTGCATTTTGGATATCACCAC	ACATTATGCTATGCGAAAGG
000		AUTITUDATUTUUTUUUTAUATTAU	QUALCHITCCCATAATATUCTAGU

	UEP_SEQ	AGGTGAAAGCTCAAGTAT	CAACIGGACCAIAICAIICIIIC	CTTCATTTATTTGATCTGCAGTT	GTCCCTCGAGAAGCCCTCCAT	ATTGACGAGAGCATTAACCTTG	TTAAAGCATTCCAGCAGTAATTT	TGGGGGGGCACACAGGCAGCTTAGGAAG	ACAATGGTTCCAAGAGTTCCAAAGG	TAACTTCAGTTGTTTCTGCAAGATT	AGTAGGAGTGACAATCGTGCTTA	GTCACCACTCTTCACCC	TACCTTGTCTGTGTGTGTTTT	GTTCCCCCCCTTTTGGCT	CTTGATAGGGTTCACAGAT	TGACCATCTCCTCCAATCTA	CTCTTTTTTTTTTTTTTTTGGTTCTC	CTACACCGACGGCCCCGTCATC	GTCTAACACCTTAAGCGATTACCCCT	CGAGGCCACCGAATTTACCCCA	TTGCTAACTTCATCATTTATTTCA	ACTCCAGTGTGGAGGACACAT	CATTCTTGCCCAGCCAAACCAAGG	CTTAATTCATTTGTGCTTTATGCTTGC	CTCAACTTTCTCCCCAATCA	AAAGAGGAGACTAATCCTATCTACT	GGGATCGGCGAGCCGCCTTCCTTCT	GAGAAACTTGTTGTTTGGACTCT	ATCAATGAAACTAAATGCTACATA	TGGCATCAAGGGCCCAT	ATTTGCTCATCTTCTGGT	TGTTGGTGAGCGACATA	CCGGAGCCGTGTTCTGC	AAGATTCATCTCAGAATATGTTGCTC	TGCAGCATCAGAGATAG	gAAATCTGTAGGATCTTATGTG	ACGGGTAAGGAATGCCCTCTGTGAAC	CATCAGCCATCACCATT	
Table S3. (Cont'd.).	1st-PCRP	ACGTTGGATGCAGTTTGTGACACGTCGTTG	AUGI IGGAI GI GAI CI GI I GOCI CCAAI CC	ACGTTGGATGCTTAAACCTGCAGACAAGAC	ACGTTGGATGAGAGCTTGCTGTGATTGCTG	ACGTTGGATGACCGCTGCTGTCTGCCTTTG	ACGTTGGATGTCAAAGCTGTTTCGCCTC	ACGTTGGATGGCTGGAGCGAAGCTTATTAC	ACGTTGGATGTAGGCACTAAGGTGTATGGG	ACGTTGGATGTACATTCACCAAGAGGGCAG	ACGTTGGATGTGCCCATTTGGAAATTTCCG	ACGTTGGATGGAAACAGTGGAGAAGGGCAG	ACGTTGGATGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ACGTTGGATGTTCCTCGCCGCTACTCAAAG	ACGTTGGATGGTGGAACCCGGGGATCAAAAC	ACGTTGGATGTTACCCTCCGTGTGCTGTG	ACGTTGGATGGCTGTGAATTGCAATGCAGG	ACGTTGGATGATCGACATGACCCCGTCCAT	ACGTTGGATGGGGTTGTTTGGATCAAACGG	ACGTTGGATGTCTCCTCTCCCGGTGTGTTG	ACGTTGGATGCGATCCATTTTCGCCATTAG	ACGTTGGATGGAGCTGTCCAATGAGAAGAG	ACGTTGGATGTCCATTTCATCCACGCATAG	ACGTTGGATGGCTAATATACCTGGCTATCG	ACGTTGGATGGGTGAGGCTTGGGTAAAATG	ACGTTGGATGTGATTCCATGGTCTCCTCAG	ACGTTGGATGAGCAAGTCATGCGCATGCTC	ACGTTGGATGGGCAGCATCACGATACTAAG	ACGTTGGATGGGTTTGGAACAGCTGTACAA	ACGTTGGATGGGATGCCCTTTGTTTTATGG	ACGTTGGATGGATGCGGATAAATGGAGACC	ACGTTGGATGCCGATTAGTTCCATGCTCTC	ACGTTGGATGTAGCAAACAACAGCTGACGC	ACGTTGGATGGACAATAGAGTAGTACAACAC	ACGTTGGATGCCCTTCTCTCGAATGTCTTG	ACGTTGGATGAAGGTAGTTCGGCTCAAGG	ACGTTGGATGTCTCTTCGTCTATGGCAC	ACGTTGGATGACGAATGGAATCTTGGAAGG	ACGTTGGATGTTCCGCTGACTGATCGTTG
	2nd-PCRP	ACGTTGGATGGCGCTTAATCAACTGACCTC	ACG11GGA1GGGGCCAAC1GGACCA1A1C	ACGTTGGATGTCAAAGACCTCCTTGTTGCC	ACGTTGGATGACAGCAAGTCCCTCGAGAAG	ACGTTGGATGCATACTTTAAGGATGTCGGG	ACGTTGGATGATGGCCAGCAGCAGCTGTATAAG	ACGTTGGATGCAACAGGGGGGGGCAATTCATGG	ACGTTGGATGCATCTTTCGGTTGCAAAAAC	ACGTTGGATGACAGTCACAGTTGTTGAAGC	ACGTTGGATGCCTCCAAATGCGAAACAGTC	ACGTTGGATGATCTCTGCCTCTTCCAGACG	ACGTTGGATGGGACTGTGGGGAGATTAGGTTC	ACGTTGGATGAAGCCGCCTTCTGGCTGGTA	ACGTTGGATGTGGCTTTTAGGACCGATAAC	ACGTTGGATGTTTCTCCCCACTTGACCATC	ACGTTGGATGACCGAGCCATCTTGTATTGC	ACGTTGGATGTTCTCCGACCCCTACACCGA	ACGTTGGATGAATACCCCACTGAACCTGAG	ACGTTGGATGATTCAGTCGAGAGGATAGCG	ACGTTGGATGTAATGCCTCAATCTTTCTG	ACGTTGGATGGTGTTTTGGTGCTCCAACTC	ACGTTGGATGTGCATTCTTGCCCAGCCAAA	ACGTTGGATGTGCAATTACACTTGTTCCTC	ACGTTGGATGACTCCCCTCCTACTCCAATTC	ACGTTGGATGTGCAAAGACAAAGAGGAGAC	ACGTTGGATGCATTTGTGATTGGGATCGGC	ACGTTGGATGCAATCCAGGTAATGGCTGAG	ACGTTGGATGGTCTCTGCAAAAGTCGTGTG	ACGTTGGATGTACTTTCCCCACTATGAGCC	ACGTTGGATGCTTGGTATACGTGTGATGGG	ACGTTGGATGTTCCTATCTGCCATGAAGGG	ACGTTGGATGTTGCATGCCGGGCCATTGGTG	ACGTTGGATGCGAGGGCTACTGTGATGAAG	ACGTTGGATGAATTTCTGTAGGACCTCCGC	ACGTTGGATGGGGGACAGGAAAAGCCTGATT	ACGTTGGATGTAATGACGGGTAAGGAATGC	ACGTTGGATGTGCTTTAAGAGCCCCGTAAC	
	SNP_ID	S39	0 1 0	S41	S42	S43	S44	S45	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	S64	S65	S66	S67	S68	S69	S70	S71	S72	S73	S74	S75	S76

		Table S3. (Cont'd.).	
SNP_ID	2nd-PCRP	1st-PCRP	UEP_SEQ
S77	ACGTTGGATGTCAGCTTAGTATGGCCCAAG	ACGTTGGATGCGATGCTGTGTTCGATTGAG	CGGAAGGAAAGGAAAGGACAG
S78	ACGTTGGATGTGGATTGTTTGGTGCATGAC	ACGTTGGATGGGGGACCTGTGTATTCATGTG	GATTGTTTGGTGCATGACATTCTA
61S	ACGTTGGATGCCGCATCATTTGCATCTGTC	ACGTTGGATGCCACTGTGACAGAGAAAAGC	GGAAGTCAACTCCTCCT
S80	ACGTTGGATGGTCCACAGCTTCTGAGAATC	ACGTTGGATGGCTCTAAAACCCAGCTTCTC	CTGAGAATCTGTAGTTACATATT
S81	ACGTTGGATGTCCCATCATCCAAGCTTTCC	ACGTTGGATGCCTTCTCGATCTCTCAAC	TCCAAGCTTTCCATCCATCC
S82	ACGTTGGATGTGAACTTCACCAGGCTATCC	ACGTTGGATGTGGTCAGGATAAAGTACGGG	CCACTTCGACCACTTGAATATTCT
S83	ACGTTGGATGCCTAGAATCTGTCGTACCTC	ACGTTGGATGTATGCTTTTCCGTGTGAACC	TCGTACCTCTCCATTCGGAA
S84	ACGTTGGATGTACGGTATTGCCATGCCTAC	ACGTTGGATGCCAGTGGAAATAGTAGCAGG	GCCTACAATAAGAACCTCAGTA
S85	ACGTTGGATGATCCGGCCTAGAGCTCGATG	ACGTTGGATGGAGCTCGGATTCTTCCGCC	GCGGGGTGGCGCCGCCGGACAT
S86	ACGTTGGATGGTATATTCATGGGCTGGCTG	ACGTTGGATGGGAAGGGCCATAAATCCAAG	GCATCGACCTGGTCCACTTCTG
S87	ACGTTGGATGATGACCCTCCCAAAGGTCC	ACGTTGGATGACTACTACAAGCTGTTCCAG	CCCAAAGGTCCTGGGAGAGCA
S88	ACGTTGGATGCCTAATTCCTGATTATCAGAG	ACGTTGGATGACGAGGCTAGAGATGTGTTG	ATTCCTGATTATCAGAGATACCGAC
S89	ACGTTGGATGCTAGACTTCTCTGCAGCTTG	ACGTTGGATGTTTGCTGCTGCAGTAGGAAC	TGGAACTCACGCGAGTA
290	ACGTTGGATGCTCTTCATGCTGCCCATCTC	ACGTTGGATGTCAGGATGCTCAACTACCTC	TGCTGCCGTTGAGCTTGTTC
S91	ACGTTGGATGAACGCCTTCATCCATTCTGC	ACGTTGGATGGGATTCACCATAGCTTGCTG	CATTCTGCACCAATGGCAC
S92	ACGTTGGATGTTTCCTGAGACATCCAAGGC	ACGTTGGATGGAGCACAGATCAAGAGCAAG	TAATTGTTGATGAGGAAGTTCCAGAG
S93	ACGTTGGATGGGCTAATGGTTCTCTTCGAC	ACGTTGGATGGTATGGCACTGAACAGCTAC	GTTCTCTTCGACAAGCAT
S94	ACGTTGGATGGGAACACACTCTGGTCTTAG	ACGTTGGATGATACCCAAAGGAGTTCAACC	ACCTTTACCCCTTAAAACTATAAC
S95	ACGTTGGATGTCACAAGGATACTGTCAGGG	ACGTTGGATGACTGCTTCTTGCTCCATC	GGATACTGTCAGGGCAGTCTA
96S	ACGTTGGATGAGCCTCATGCACATTCTTGG	ACGTTGGATGAGAATAATCATGGCAAAGC	TCAAGGATATCCTGAAGGCG
297	ACGTTGGATGTACACTGTCCCTCGCGGGT	ACGTTGGATGTCCCCCACAGGCGCCTCGTC	GCATCTGGATCAACAACT
S98	ACGTTGGATGAACGACGCGGACTCCTCTC	ACGTTGGATGTGCTCTGAAACTGGAGGAGG	TCTCGAGCCGAAGAAAATGG
66S	ACGTTGGATGCCAGTAGTAAGGTAGGAAGG	ACGTTGGATGCAAGACTATGGCTACTGCAC	GGTAGGAAGGATACTGCATAAGCC
S100	ACGTTGGATGGAGTGGACATTTGCTCCATC	ACGTTGGATGCTTGGAGGAACTTGAGAAGC	CTCCATCACTTCCACTT
S101	ACGTTGGATGGTAGACAAAGGCTGGAGATG	ACGTTGGATGGAACACATCAAGACTGCAAG	GCTGGGAAGAAGAAGTG
S102	ACGTTGGATGATTCTTCAAGTCCTCGGAGC	ACGTTGGATGAACTGGTGCGACCGGCTATA	AGGTGTTCTGGCTAGAAAT
S103	ACGTTGGATGTTCTTGGGGGCTGAAGGAGTC	ACGTTGGATGAAGCCTGACATTCGCCATCC	GGGCTGAAGGAGTCGTAGTC
S104	ACGTTGGATGAGATTGATTTGGCCATCCCC	ACGTTGGATGTTCGTGGAACCTTGAAGACC	CCATATTGAATCATGACAAGAGTTTT
S105	ACGTTGGATGCTCTTGAGTTTCTATGCTGAC	ACGTTGGATGGCCTCATGTGGGCAAACAAG	AGCTATGCAATGGTACTA
S106	ACGTTGGATGCTTGTGGGGACAAAGCCAATG	ACGTTGGATGATGCGAGACAACAGGTATGG	TTGTGGGACAAAGCCAATGATTTTCT
S107	ACGTTGGATGATTCCCTCCACTCTCAGAAC	ACGTTGGATGTGCAAATGCAGTACCTGTCG	CCTCCACTCTCAGAACCTCTATTC
S108	ACGTTGGATGTAAGAAGTAACCCTGGGAGC	ACGTTGGATGGGGCACATTTCTCAATAGC	TTGGACTAACTTTTATGTTTATG
S109	ACGTTGGATGTTCAGCAAGAGCTCTTGTCG	ACGTTGGATGAGAGTCTTGGTAGTTCACTG	AACAATTATTAGAAAAAGATCAGG
S110	ACGTTGGATGTCAACTACACGCATGCAC	ACGTTGGATGCGAGCTCATCATCGGCGG	TCGCCGGCGTAGTGTCA
S111	ACGTTGGATGACCTCCCGATCAAGGCAAG	ACGTTGGATGAAGAATCAGACGCGATGAGC	CAAAGGCAAGTTGTTTCCG
S112	ACGTTGGATGTCATGCAAGGTGAGATGAGC	ACGTTGGATGTGTAGCTCCTACTGAGGAAG	GCACTCAGTAACAATGCTT
S113	ACGTTGGATGACCATCGGTCACAAGGTTTC	ACGTTGGATGTAGAGGATGTCGACATCCTG	TCACAAGGTTTCCCCCGAGCACGTGT
S114	ACGTTGGATGTCCAAAGCCTAAGCCACAAC	ACGTTGGATGATTTGGCTTGGGGTTAGGAC	CCAAAACCTGAACCCAAACCT

SNP_ID	2nd-PCRP	1 able 53. (Cont u.). 1st-PCRP	UEP_SEQ
S115	ACGTTGGATGATGAGTCCCTAGCTAGCTC	ACGTTGGATGTCGAACCGATTCGATCCACC	AGCTAGCTCACATCGGGGAGCAGCCAT
S116	ACGTTGGATGAGCTCTCAAATTGGTGTGTC	ACGTTGGATGGGTACGGAACAAGGTAACTC	TGAACCGAATATCCACACTGAGG
S117	ACGTTGGATGTTGATGTCGGCCTCCACGTA	ACGTTGGATGAAGATTCCCATGGAGAAGCC	GTGGACGTGTTGGTGAACTTC
S118	ACGTTGGATGCCGGCAGCATCAGGTAATAT	ACGTTGGATGTGAGTGCAAGCCACAGTAAG	AATATTAATAATAGAGAAGGTGAGT
S119	ACGTTGGATGCTGCGGATTCTCCGATTCTG	ACGTTGGATGGGCGCTCTATCTATTTCGTG	TCCGATTCTGTTCTTCC
S120	ACGTTGGATGAAGTATCTCTCTCCCCAG	ACGTTGGATGCAATATTGCGCCACCATCAC	AAGCGTATGAAGGCTATG
S121	ACGTTGGATGAAGAAGTGGGCAAGCTAGTG	ACGTTGGATGCGATCTTCCCACATTTGGTC	GTGGGCAAGCTAGTGAGCATGCATA
S122	ACGTTGGATGTTCTGGTGACACAGACTTCC	ACGTTGGATGGAGATTAACAGGCAATGCAG	CTTACCTTAAGACTTGGCTATTCTTCT
S123	ACGTTGGATGGTTCTTTGGCTGGTCAGTTG	ACGTTGGATGGTAGAAGCAAAAGATGAGGC	GGCTGGTCAGTTGATATCTGTGCTT
S124	ACGTTGGATGCTTGCCACTTGCTAGAACAG	ACGTTGGATGCGGGAATGACTGTATTGAGC	GCTAGAACAGCAGGCTCTACC
S125	ACGTTGGATGAACCCTAGCCAATACTGACG	ACGTTGGATGTTGTCACATGGCGTCCTTAC	GAAAGAAGAAGAGGAGGTC
S126	ACGTTGGATGGAATTATTGTACTATGCGCTC	ACGTTGGATGAAGACTTGGCAAAGCATCGG	ATGCGCTCAATATGTACCT
S127	ACGTTGGATGCACACCAAAAGAAGCGACAC	ACGTTGGATGTGTTCTTCTTGCTGGAGTGG	AAGAAGCGACACCCTCTCT
S128	ACGTTGGATGTTGGGAGGATCCTTATGGAG	ACGTTGGATGATTGGTGCTCCAAGGTGATG	GAGGATCCTTATGGAGCAGTCAGTT
S129	ACGTTGGATGGCATATTTGGTGATGAAAAC	ACGTTGGATGGATTGCCATTCAGTCTGGTG	GTGATGAAACTATCAAGGC
S130	ACGTTGGATGCAATGGAGGGTTCTTCCAAC	ACGTTGGATGCCATCTCTCTCTCATCAAGACC	TTCCAACATCTTAATTTTCTTG
S131	ACGTTGGATGTGGAGATAGCTTAGTCTCGG	ACGTTGGATGATCACCGCAAATACTCTCCC	TTATTTCATGTGTGGGGGGGCG
S132	ACGTTGGATGGTTCGCCAGCCATGTTCTTG	ACGTTGGATGACGATCGTCTCACTGCAATC	GCCAGCCATGTTCTTGCTCCTCA
S133	ACGTTGGATGTAATAGGAAGTGTTTAGGGG	ACGTTGGATGCCAGGAAAAACCATCACCTC	GGGTAAATTAAAAGCAAGGATTA
S134	ACGTTGGATGTGCAGAAAAAGCTAGAGGAG	ACGTTGGATGTCTCAAACCTGTGCTGTTGG	AAAAGGCCATGAAACAT
S135	ACGTTGGATGTGGTTGTTGCAACTTACAAG	ACGTTGGATGATCAGCGGCAGGAGTAGATG	AACTTACAAGATACTAAATGCTTGCA
S136	ACGTTGGATGCCTCTACTTGAGAGTTCAGC	ACGTTGGATGATGCAACAGAAGGATCTCGC	TTGAGAGTTCAGCATTTAACTATT
S137	ACGTTGGATGGAAGGGTATCTGACTAAGGG	ACGTTGGATGATACTCCTTCAACTGCTGCG	TAGATACACCAGCAAAAGTACCA
S138	ACGTTGGATGAGTCGCCGTCGGAAAAGAAG	ACGTTGGATGGAGGCCAACGCCGCGCTG	GAAAAAATGACGCGCA
S139	ACGTTGGATGCGATGGAACTGATTTTCCTC	ACGTTGGATGGGAAGAGAAACTTTCCTCCA	TTTCCTCATTGGTGTTGTAAGATG
S140	ACGTTGGATGAAGCGAAATCGAGTGGTGTC	ACGTTGGATGTGGTTTGATGTTCCGGGAGC	TCTTTATTGTACCCTCTGGATT
S141	ACGTTGGATGCACCGAGCAATAATCCTAAC	ACGTTGGATGCCGATTTGGTTGTGTCGAAC	TCTAATCTCATGGAAACACTTTC
S142	ACGTTGGATGCAGTATCAACCACCTTCCAC	ACGTTGGATGGGTAATATCAGCTTGGTTGC	TGTCGTACAAATCTTTGAGTC
S143	ACGTTGGATGTGGGACATCTTGTTGTTGC	ACGTTGGATGGACCACGTATGTTTGAAGAG	TCCAAATAGTTATGACAAAGTT
S144	ACGTTGGATGGGATGACACGTCATCATCTC	ACGTTGGATGACAAGAAGCTCCGATCCAAG	CACGTCATCATCTCTCTTTTTC
S145	ACGTTGGATGGAACAGTGGATCACAGTAGC	ACGTTGGATGAATTCTCCTCGTACCGAAGC	TAGCAGAAGCTGCTTACTTCGACCAT
S146	ACGTTGGATGAATGTACTGGTACAGCCTCC	ACGTTGGATGCCCCCAATAACTCCAATGAG	TACAGCCTCCAAGCATCAGTTCCC
S147	ACGTTGGATGCCGGTCTAACTGAGTTATGC	ACGTTGGATGCTGAAAAACCTCTCCCCTAC	TGACATTTTTCTGTTGCATGTT
S148	ACGTTGGATGGTTCTATCTGGACTACCTCG	ACGTTGGATGCGGATACTGAAGACGATAGG	CTATTTTCATTTCCCCCAA
S149	ACGTTGGATGATGTCAGTCGCTGCTTCTTC	ACGTTGGATGGTGATACCTGCGGGGGGAGAAG	CGCTGCTTCTTCCTCCTCCTCC
S150	ACGTTGGATGGCTAACAGAGTTGACAAATG	ACGTTGGATGGTGGCCAAACTAGAAAAACG	TTATTAGTGTCCTGAATGGATAATC
S151	ACGTTGGATGGGCATAAACTTCTCTGCCTC	ACGTTGGATGTACCTAAAGGTGCAAAAGTG	CTGGCCATATGTCTTTATCTC
S152	AUGITIGGATGATCTGCGACGGCAAG	AUGITIGGATGAGCAAGAUUTUCAUGTAAAU	GACAACGGGCAAGCAGGIGCG

NP ID	2nd-PCRP	Table S3. (Cont'd.). 1st-PCRP	UEP SEO
S153	ACGTTGGATGGAAAAGTTACCGGACTGGAC	ACGTTGGATGGATGTGTCTGATGACTATGC	ATGGTCGAGCGAACTTT
S154	ACGTTGGATGACAGGCATACTACCTCTACC	ACGTTGGATGAGAGCTTAAATCTCCCCAAG	TGGATTTTGATGCAGGGG
S155	ACGTTGGATGAGATAAGCAGCGATGGATGG	ACGTTGGATGTCTCTCTCTTTGTGCAGCGG	TGGCGTTGGGCAGTGGCGTTGTCTTC
S156	ACGTTGGATGACGAGAGGAGGAGGAGGAG	ACGTTGGATGAGTTCTGCATGGTAAGCCTC	CGAGAAGTTCAAGGAGGAGGAGGTCAAC
S157	ACGTTGGATGGTCATAGCCCATTACCTTGC	ACGTTGGATGGAGTCATTGAGGATGCACTG	ACCTTGCATGTCTCACG
S158	ACGTTGGATGGGTCGAAACTTCTCGATCAC	ACGTTGGATGGAGACTGAAGGCATTGGATG	GATCACAAAGACCTTCACCAAATC
S159	ACGTTGGATGTCTATCCCAGCACCAAAG	ACGTTGGATGGGCTTTTCCAGTCGTAAAAC	GGCACCCCGAAGTCAAAGT
S160	ACGTTGGATGTACCACTACGCATGTATGCC	ACGTTGGATGTCGAACCAAAATATATCGCC	TATGCCAAGCAAAAAAAAAAAGCCG
S161	ACGTTGGATGTGTATCTCCCGGTTTTCAGG	ACGTTGGATGATTGAAGAGGGCAGCAAAGG	CATTCTGGTGCTAGCATCACCCT
S162	ACGTTGGATGTTGCTGCTTTGGCATTGTCG	ACGTTGGATGTGGAGAGGATGGTGACGATG	GGCATTGTCGTCGCCACCGCC
S163	ACGTTGGATGTGCGCTGCCTCTCCTGCCT	ACGTTGGATGATAGAATGCAGCTAGCGAGG	CGGCCACTGCCCTTCACCGCCGGAGTC
S164	ACGTTGGATGGGTCCTTACCATGCTGATTG	ACGTTGGATGTAGATTATAGAACACCAGC	GGAGTTTTGTTAAAAAACCAAAGG
S165	ACGTTGGATGCTCCTATCTCACTGCATTGG	ACGTTGGATGAGTACACGTAGCCATGGATG	TAGCTAGCCAAGCTCCTCA
S166	ACGTTGGATGGCATTTTCTGGTAAGTTCTTC	ACGTTGGATGTCACCTTTTTTGTTGAGTCC	GTTCTTCACATATATAGTCTTCACCT
S167	ACGTTGGATGTACCTCAAGCGCTTCTACAC	ACGTTGGATGGGTGATCAAACTAAAACCGC	TCCTCCTCTTCGCGCCTATC
S168	ACGTTGGATGATTTGTGGCTCACCTGCTTC	ACGTTGGATGTCAAAGGTCTCTACCGGTTC	CCTGCTTCAATTTTGATCATGTACTG
S169	ACGTTGGATGGCACTAGAGATGACCAACAC	ACGTTGGATGCAGCAGGGAGAACTTATTTC	GAGATGACCAACACAATGGAGAACCT
S170	ACGTTGGATGAATTGAGACCTCTAGGCTCC	ACGTTGGATGGCTCCACCTCTCGTTTTTAG	TAGGCTCCAGCCGTACA
S171	ACGTTGGATGCTGTATCTTCTGTGCGCTTG	ACGTTGGATGTCGGCATCGTCTACAATAAC	ACCAACATGGTACTC
S172	ACGTTGGATGTATCTGTGGGCTGCATACTG	ACGTTGGATGCAGTCTCTCTCTCTCGCAATAC	TTTGGCTCTTTCTGAAGCGT
S173	ACGTTGGATGGCTTGAAATTATGTGTGGAGC	ACGTTGGATGCCAGTTAAACCCCAACAACC	TGTGGAGCAGAATAGATAGTT
S174	ACGTTGGATGAATGGTCCCAGCCTTCCCAG	ACGTTGGATGGTAAACTCCAGAACCTGGTG	TTCCCAGACGCTCATCGTATTC
S175	ACGTTGGATGATATGCTTCGCCCATCGCTC	ACGTTGGATGAATGCGGAGGTACGGCAAAG	CCCCTCTACCTCGCCT
S176	ACGTTGGATGTTCTTGGGCAGACTGGAAAC	ACGTTGGATGAGAGATTGGAGAGAGAGCCAC	TACTTGAGGGGGGGGCCCTT
S177	ACGTTGGATGCCCTTGTCGATTTTGCCATC	ACGTTGGATGGCAGATGCTATGACACAGAG	TTTTGCCATCTCCTCTATGTAGAAATC
S178	ACGTTGGATGATTGCCTCCTCTCTCCTGCT	ACGTTGGATGAGTCGAGGGGGGGGGGGGGGGGGAG	CCGCCGACATCCCTTCCTA
S179	ACGTTGGATGTCCTGTGAAGAGTTGTTGGG	ACGTTGGATGTATGGGTTTTAGCGGAAGAG	TATCATTGGTAAGTCCATCCTCC
S180	ACGTTGGATGAGAAAACCCTAGAGGGCAAC	ACGTTGGATGAAGCGACGCGTGAGGATTG	AGGGCAACAGGGGGGGGGGGGCC
S181	ACGTTGGATGCCATCTTTTCTTTGCTTGTG	ACGTTGGATGGTTGATGCGTTCTTTTGAGC	TAATTTCAATTCTTAGTGCCTTCGT
S182	ACGTTGGATGGCTCAGCCATTCTGTTTTTC	ACGTTGGATGCCGAAGTGTCATTCATGAGC	CTTCTTTTTCTGTGTGAATGAA
S183	ACGTTGGATGCAGTTTCATGATCGACAGGG	ACGTTGGATGACATATACTTCGTTCAAGG	CGACAGGGGGATTTCTACTG
S184	ACGTTGGATGAGTTGCAGCTTGATGTCACC	ACGTTGGATGATCATCCGTTTAAAGCTCCG	ACTCCATCTTTTGAGATCTT
S185	ACGTTGGATGAGCCCATTGCCATAGTATCC	ACGTTGGATGGACCTTGCCATATTGTACGC	CCCAAAGGAAGCTTCTT
S186	ACGTTGGATGCCTCTCATCTGCACAATTCC	ACGTTGGATGATCTGCAAGCAAGCACATCC	CACAATTCCTGCAGACGCTC
S187	ACGTTGGATGTGCTTGAGCTGAACGATGAC	ACGTTGGATGCTGATACTAGTGCAATGAGC	CTTCACATTTTTATAGTACTCCT
S188	ACGTTGGATGCACCGGTTTAGCTTCATCTC	ACGTTGGATGAAACCTAGATCAATGACACC	CAAGGAAAGGGCTTGAAGCGTTT
S189	ACGTTGGATGAACACAGCAAGAGGAGAGTG	ACGTTGGATGCTAAACTCCTTTGCTCTTGG	CCACAATCTATGCAATGGA
S190	ACGTTGGATGCTATTGAGGCCATTCTTGCG	ACGTTGGATGGAGAATCCAGGTATACACTTG	GAAACTAGCTCGTCATGAGG

Fig. 2. Mass spectrum representing probe primer extension peaks and allele peaks 'G', 'A,' and 'AG', observed in the genotyping of 109 *Oryza sativa* L. ssp. samples at 190 single nucleotide polymorphism (SNP) loci.

Fig. 3. Identification of outlier loci presumably subject to selection

based on a Bayesian genomic scan

Each point corresponds to a single nucleotide polymorphism (SNP) marker. SNP22 was consistently identified as an outlier through 10 independent iterations.

Fig. 4. The population structure and Neighbor-joining consensus tree of the sampled groups with *indica* groups **A**, Population structure analysis plots for k = 2-5 obtained using the Structure 2.3.1 software based on 189 SNPs in *Oryza sativa* L. ssp. The four populations analyzed are displayed as follows (from left): exotic *japonica*, historical *japonica*, modern *japonica*, and *indica*. **B**, Neighbor-joining consensus tree were built from 189 functional SNPs. Numbers at the main branch nodes represent bootstrap values. Exotic *japonica*, historical *japonica*, modern phase *japonica*, and *indica* are indicated in green, yellow, blue, and red, respectively.

Fig. 5. The population structure of the sampled groups without *indica* groups Population structure analysis plots for k = 2-4 obtained using the Structure 2.3.1 software based on 189 SNPs in *Oryza sativa* L. ssp. The three populations analyzed are displayed as follows (from left): exotic *japonica*, historical *japonica*, and modern *japonica*.

Fig. 6. The structure consisting of two groups (k=2) best fit the clustering results by Evanno's ΔK method.

Discussion

The introduction of indica lineage into the northeastern Chinese japonica rice has significantly improved agronomic performance of rice varieties, however the genetic diversity in these populations doesn't seem to have been enriched as a result. This is in contrast to a previous report that use of indica rice as a breeding resource can enrich the genetic diversity of modern varieties analyzed by SSR markers (Huang et al., 2010). We speculate that the introgression from indica was not sufficiently detectable using these SNP markers. Breeders usually focus on one or a few desirable traits, such that a few core parental alleles are isolated from accumulated genetic variation, thus breeding parents frequently have a narrow genetic background. Although hybridization has generated new haplotype polymorphisms across the modern Japanese japonica genome, haplotype diversity has decreased overall as a consequence of artificial selection (Yamamoto et al., 2010; Yonemaru et al., 2012). In general, modern varieties with good eating quality in Japan have been bred successfully through hybridization and selection, and its population is still pure temperate japonica (Nagasaki et al., 2010). Although ecological conditions in *japonica*-producing areas of northeastern China and Japan are similar, different breeding strategies may have quickly led the rice genome to different paths diverged. In contrast, the development and formation of modern japonica in northeastern China has been in less than 50 years. The genetic bottleneck created by selection and ecological stress has caused its novel genomic and phylogenetic status. In the present study, the neo-diversity arisen from the introgression of other germplasm resources may introduce valuable genetic variation for improved varieties in northeastern China. Our study has opened a new door to exploration of this field.

Acknowledgement

This work was supported by the National Key R&D Program of China (2017YFD0300700), the National Natural Science Foundation of China (31371587 and 31430062), the Program for Changjiang Scholars and Innovative Research Team in University (IRT13079), and the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2014046).

References

- Ali, N., Farhatullah, N.U. Khan, M.A. Rabbani, I. Hussain, S. Ali, S.A. Khan and M.Q. Kakar. 2017. Genetic diversity of *Brassica Raps L.* indigenous landraces based on cluster and principal component analyses. *Pak. J. Bot.*, 49: 1891-1901.
- Arai-Kichise, Y., Y. Shiwa, H. Nagasaki, K. Ebana, H. Yoshikawa, M. Yano and K. Wakasa. 2011. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of *japonica* rice by whole-genome sequencing. *Plant & Cell Physiol.*, 52: 274-282.
- Caicedo, A.L., S.H. Williamson, R.D. Hernandez, A. Boyko, A.F. Alon, T.L. York, N.R. Polato, K.M. Olsen, R. Nielsen and S.R. McCouch. 2007. Genome-wide patterns of nucleotide polymorphism in domesticated rice. *PLoS Genetics*, 3: e163.
- Cheng, C., R. Motohashi, S. Tsuchimoto, Y. Fukuta, H. Ohtsubo and E. Ohtsubo. 2003. Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. *Mol. Biol. & Evol.*, 20: 67-75.
- Ebana, K., J.I. Yonemaru, S. Fukuoka, H. Iwata, H. Kanamori, N. Namiki, H. Nagasaki and M. Yano. 2010. Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (*Oryza sativa L.*). *Breed. Sci.*, 60: 390-397.
- Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. *Mol. Ecol.*, 14: 2611-2620.

- Foll, M. and O. Gaggiotti. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. *Genetics*, 180: 977-993.
- Gabriel, S., L. Ziaugra and D. Tabbaa. 2009. SNP genotyping using the Sequenom MassARRAYiPLEX platform. *Curr. Prot. Human Gen.*, 2.12: 11-12.12. 16.
- Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich and S. McCouch. 2005. Genetic structure and diversity in *Oryza sativa* L. *Genetics*, 169: 1631-1638.
- He, Z., W. Zhai, H. Wen, T. Tang, Y. Wang, X. Lu, A.J. Greenberg, R.R. Hudson, C.I. Wu and S. Shi. 2011. Two evolutionary histories in the genome of rice: the roles of domestication genes. *PLoS Genetics*, 7: e1002100.
- Huang, P., J. Molina, J.M. Flowers, S. Rubinstein, S.A. Jackson, M.D. Purugganan and B.A. Schaal. 2012. Phylogeography of Asian wild rice, *Oryza rufipogon*: a genome-wide view. *Mol. Ecol.*, 21: 4593-4604.
- Huang, X., N. Kurata, X. Wei, Z.X. Wang, A. Wang, Q. Zhao, Y. Zhao, K. Liu, H. Lu and W. Li. 2012. A map of rice genome variation reveals the origin of cultivated rice. *Nature*, 490: 497-501.
- Huang, X., X. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C. Li, C. Zhu, T. Lu and Z. Zhang. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. *Nature Genetics*, 42: 961-967.
- Jeffreys, H. 1961. Theory of probability. In: Oxford University Press, Oxford UK.
- Li, C., A. Zhou and T. Sang. 2006. Rice domestication by reducing shattering. *Science*, 311: 1936-1939.
- Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 25: 1451-1452.
- Londo, J.P., Y.C. Chiang, K.H. Hung, T.Y. Chiang and B.A. Schaal. 2006. Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple independent domestications of cultivated rice, *Oryza sativa*. *Proceedings of the National Academy of Sciences of USA*, 103: 9578-9583.
- Lu, B.R., X. Cai and J. Xin. 2009. Efficientindica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. *Prog. In Nat. Sci.*, 19: 1241-1252.
- Mao, T., X. Li, Z.J. Xu, J.Y. Wang, L. Tang, H. Xu, S.K. Jiang, Z. Zhang and Z.Y. Li. 2018. Development of functional markers for quantitative trait locus underlying rice quality components. *Pak. J. Bot.*, 50: 645-653.
- Molina, J., M. Sikora, N. Garud, J.M. Flowers, S. Rubinstein, A. Reynolds, P. Huang, S. Jackson, B.A. Schaal and C.D. Bustamante. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. *Proceedings of the National Academy of Sciences of USA*, 108: 8351-8356.
- Nagasaki, H., K. Ebana, T. Shibaya, J.I. Yonemaru and M. Yano. 2010. Core single-nucleotide polymorphisms-a tool for genetic analysis of the Japanese rice population. *Breed. Sci.*, 60: 648-655.

- Oka, H. 1988. Origin of cultivated rice. Japan Scientific Societies Press. Tokyo, Japan.
- Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. *Genetics*, 155: 945-959.
- Sang, T. and S. Ge. 2007. Genetics and phylogenetics of rice domestication. *Curr. Opin. Gen. & Develop.*, 17: 533-538.
- Sun, J., D. Liu, J.Y. Wang, D.R. Ma, L. Tang, H. Gao, Z.J. Xu and W.F. Chen. 2012. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. *Theor. & App. Gen.*, 125: 1149-1157.
- Sun, J., Q. Qian, D.R. Ma, Z.J. Xu, D. Liu, H.B. Du and W.F. Chen. 2013. Introgression and selection shaping the genome and adaptive loci of weedy rice in northern China. *New Phytol.*, 197: 290-299.
- Sweeney, M.T., M.J. Thomson, Y.G. Cho, Y.J. Park, S.H. Williamson, C.D. Bustamante and S.R. McCouch. 2007. Global dissemination of a single mutation conferring white pericarp in rice. *PLoS Genetics*, 3: e133.
- Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol. Biol. & Evol.*, 30: 2725-2729.
- Wei, X., W.H. Qiao, Y.T. Chen, R.S. Wang, L.R. Cao, W.X. Zhang, N.N. Yuan, Z.C. Li, H.L. Zeng and Q.W. Yang. 2012. Domestication and geographic origin of *Oryza sativa* in China: insights from multilocus analysis of nucleotide variation of O. sativa and *O. rufipogon. Mol. Ecol.*, 21: 5073-5087.
- Xu, X., X. Liu, S. Ge, J.D. Jensen, F. Hu, X. Li, Y. Dong, R.N. Gutenkunst, L. Fang and L. Huang. 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. *Nature Biotechnol.*, 30: 105-111.
- Yamamoto, T., H. Nagasaki, J. I. Yonemaru, K. Ebana, M. Nakajima, T. Shibaya and M. Yano. 2010. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. *BMC Genom.*, 11: 267.
- Yonemaru, J.I., T. Yamamoto, K. Ebana, E. Yamamoto, H. Nagasaki, T. Shibaya and M. Yano. 2012. Genome-wide haplotype changes produced by artificial selection during modern rice breeding in Japan. *PLoS One*, 7: e32982.
- Zhang, L.B., Q. Zhu, Z.Q. Wu, J. Ross-Ibarra, B. S. Gaut, S. Ge and T. Sang. 2009. Selection on grain shattering genes and rates of rice domestication. *New Phytol.*, 184: 708-720.
- Zhao, X., L. Yang, Y. Zheng, Z. Xu and W. Wu. 2009. Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (*Oryza rufipogon* L.) in relation to the domestication of cultivated rice (*O. sativa* L.). J. Gen. & Genom., 36: 435-442.
- Zhu, B.F., L. Si, Z. Wang, Y. Zhou, J. Zhu, Y. Shangguan, D. Lu, D. Fan, C. Li, H. Lin, Q. Qian, T. Sang, B. Zhou, Y. Minobe and B. Han. 2011. Genetic control of a transition from black to straw-white seed hull in rice domestication. *Plant Physiol.*, 155: 1301-1311.

(Received for publication 15 March 2018)