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Abstract 

 

Plant growth and development are affected by many environmental factors. Among them, abiotic factors such as 

drought and salinity are more destructive; and responsible for worldwide crop losses. These stresses are also responsible for 

several biochemical and physiological changes in the plants. During metabolomic profiling, it was confirmed that sugars, 

amino acids and amines are accumulated in different plant species under abiotic stress condition. In most plant species, 

sugars are considered as the major contributing factor in osmotic adjustment. Soluble sugars are very important in various 

metabolic events, work as a signal to regulate different gene expression that are involved in photosynthesis, osmolyte 

synthesis and sucrose metabolism. It was suggested that the accretion of amino acids helps in stress tolerance of plants; 

through contributing in detoxification of reactive oxygen species, regulation of pH and osmotic adjustments. Among all 

organic acids, especially succinic, malic and galacturonic acids increase the plant response to long-term drought stress. 

Amphoteric quaternary amines such as glycine betaine regulate water balance between a plant cell and the environment by 

stabilizing macromolecular structure and activity. Metabolomic analysis of sugars, amino acids and organic acids is an 

important tool to correlate the metabolic changes with plant responses. This review aims to explore how sugars, amino acids 

and organic acids assist plants under severe environmental conditions and alleviate the adverse effects of abiotic stresses.  
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Introduction 
 

Abiotic stresses such as drought, heat and salinity, 

significantly reduce the production of crop plants if 

present alone or in combination. Selection of stress 

tolerant varieties is vital to cope with these challenges in 

agriculture. Substantial data are available for dissecting 

plant responses to environmental stresses, but the 

connections between diverse stresses have been far less 

inspected (Khan et al., 2018a; Suzuki et al., 2014). The 

appearance of a specific metabolite is greatly affected by 

genotypic and environmental interactions. Although the 

synthesis of metabolites is under the control of genes, its 

onset is triggered at development stages and/or by 

environmental factors, particularly soil type, temperature, 

light, composts, humidity, and insecticides (Dorais et al., 

2008, Ali et al., 2016). 

Plants react differently to various abiotic stimuli; but, 

changes in primary metabolism are the commonest 

response. It includes modifications in the levels of amino 

acids, sugars/sugar alcohols and tricarboxylic acid cycle 

intermediates; exhibiting common characters in abiotic 

stress responses. Plants also show alterations in the level 

of secondary metabolites when exposed to abiotic 

stresses; but, these alterations vary according to species 

and to stress type (Khan et al., 2018b). The involvement 

of genomic analysis with metabolomics for phenotype 

calculation is typically interesting in crop breeding; as the 

environmental factors strongly influence the selection 

based on genetic markers (Summer et al., 2003). The 

previous investigation on Thellungiella accessions proved 

that polyamines and sugars are of help in adaptation to 

extremely cold temperatures (Colinet et al., 2012). 

Plant metabolites associated with abiotic stress 

tolerance such as sorbitol, fructan, trehalose, polyols 

mannitol, dimethyl-sulfoniopropionate and proline that 

help as osmolytes and osmoprotectant under harsh 

environments (Khan et al., 2018a). Plants produce 

epicuticular waxes, which protect plant cells from the 

different pathogenic attacks; and help under drought 

stress to regulate water loss from the aerial part. Many 

small molecules like anthocyanins, glutathione, ascorbic 

acid and tocopherols secure the plant by scavenging 

active oxygen species during oxidative stress. The 

biosynthesis of lignin, phytoalexins and phenylpropanoid 

pathway are also accountable for plant stress defense. 

Various phytohormones also produced under stress 

conditions act as signaling molecules and activate the 

systematic defense system in plants (Shulaev, 2008).  
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Role of sugar in abiotic stress tolerance: Soluble sugars 

are involved in many biological processes and structural 

constituents of the cell and act as a metabolic resource 

(Ahamd et al., 2016). Soluble sugars are an important 

component of the signaling pathway, which interconnects 

the stress pathways that form a complex network and 

control metabolic responses of plants (Jang & Sheen, 

1997). Soluble sugars may assist in stress and may act 

directly as negative signals or modify the cell reactive 

pathways to induce the stress response signals and 

increase plant resistance to stress (Rosa et al., 2009). The 

concentration of soluble sugars is generally augmented by 

high salt concentration, flooding and low temperature.  

Soluble sugars have different actions, which depend on 

plant species and intensity of stress (Blumwald et al., 

2000). The concentration of sugars is also affected by the 

type of abiotic stress and due to fluctuations in CO2 

assimilation (Close, 1997). The current research 

confirmed that the accumulation of soluble sugars and 

other osmolytes significantly improve plant tolerance to 

external harsh conditions (Shi et al., 2000). In some cases, 

it was noticed that increases in solutes content have 

surprising harmful effects on plant growth and expansion. 

It was noticed that the accumulation of solutes through 

genetic engineering is not a direct solution to abiotic 

stress but important to combine sugar metabolic pathways 

to build the source-sink relationship in the whole plant 

body and to extend the stress tolerance to the whole plant.  

Soluble sugars act as a primary messenger to control 

gene expression and enzymatic activities that are 

implicated with development and metabolism (Quintero et 

al., 2002; Uozumi et al., 2000). Soluble sugars also 

regulate the gene expression in sugar exporting and 

importing tissue and could be used as vital sources of 

energy (Rus et al., 2001). It was confirmed that the 

deposition of many sugars, for example, fructan, 

trehalose, galactinol and sugar alcohols such as mannitol 

and D-inositol play key role in the water stress tolerance 

(Taji et al., 2002; Seki et al., 2007; Wang et al., 2003). In 

Arabidopsis thaliana, the transgene galactinol synthase 

(AtGolS2) induces more drought susceptibility due to an 

increase of galactinol and raffinose. In a transgenic plant 

with overexpression of DREBIA/C-repeat binding factor 

3 (CBF3)  increase the resistance to drought and cold 

stress due to more galactinol and raffinose content as 

compared to wild-type plants (Avonce et al., 2004; 

Valliyodan et al., 2006). This suggests the osmoprotective 

role of galactinol and raffinose under drought stress. Non-

reducing disaccharide trehaloses assist in abiotic stress in 

partial revival in plants, invertebrates, fungi and bacteria. 

The scientists introduced the trehalose genes into plants 

and increased plant resistance to drought stress without 

any change in morphological or physiological effects 

(Abebe et al., 2003). Fructans formed from the oligo- and 

polyfructoses also play a critical role in drought stress 

tolerance; it also helps to form a protective membrane 

from adverse effects of water lacking environment 

(Hincha et al., 2006; Sheveleva et al., 1997). Mannitol a 

sugar alcohol also helps in imparting drought stress 

tolerance in many plants species. The transgenic wheat 

variety containing mannitol-1-phosphate dehydrogenase 

gene of E. coli improved plant growth and enhanced the 

salinity and drought stress tolerance (Abebe et al., 2003). 

Sugar alcohol D-ononitol thought to form membranes and 

decrease the adverse effects of free hydroxyl radicals. The 

introduction of myo-inositol O-methyltransferase gene of 

Mesembryanthemum cryystallinum and over-expression 

of D-ononitol improve salt and drought stress tolerance in 

transgenic tobacco plants (Wang et al., 2003; Borsani et 

al., 2005).  Abiotic stresses also change the leaf 

carbohydrates and metabolic content and this might help 

as a signal due to which the plants respond to harsh 

environmental conditions (Fig. 2) (Jang & Sheen 1997; 

Chaves, 1991). Previously it has been reported that under 

stress condition the invertase activities was enhanced by 

glucose and fructose in the drought-affected plant's leaves 

(Pinheiro et al., 2001; Trouverie et al., 2003, Ali et al., 

2018). There is also a strong link between sugar 

accumulation and phytohormone content. Glucose and 

ABA regulate different signaling mechanism during plant 

growth and the elevated level of ABA and glucose stop 

the plant growth under drought condition; but, in lower 

concentration, it behaves as an antagonistic and promotes 

plant growth. These compounds appear as osmo-

protectantory rather than acting in osmotic adjustmens 

(Shabala & Lew, 2002). Mannitol is the most common 

sugar alcohol in nature that is involved in stabilizing 

Reactive Oxygen Species (ROS) and help in maintaining 

the molecular confirmation of enzymes (Shen et al., 

1997). The macromolecules and osmolytes form 

hydrogen bonds under water deficit condition and avert 

the intermolecular hydrogen bond formation, which 

damages the protein confirmation for forever. The non-

reducing disaccharides such as trehaloses play a very 

positive role to stabilize the macromolecules and 

membranes structure during drought stress. 

Photosynthesis rate is enhancing under overexpression of 

trhaloses due to the protection of PSII against the photo-

oxidation (Garg et al., 2002).  

Glucose and fructose are hexoses that cause a 

massive alternation in sugars as compared to the cyclitol 

and scyllo-inositol. Morgan (1984) has recognized 

effects of the water stress on the balance of sugars and 

starch. Glucose helps directly in the osmotic adjustment 

in different species such as Oak Pine, and Popular, but 

the cyclitols primarily help to protect and stabilize the 

DNA structure under drought stress (Gebre et al., 1994; 

Epron & Dreyer, 1996; Ottow et al., 2005). Sucrose and 

hexoses have dual functios by regulating expression of 

stress-related genes. The sugars also coordinate the 

regulation of growth and stress-related genes through 

HXK-dependent and independent pathways (Rosa et al., 

2009). It has been identified in several plants species 

that the soluble sugars content is ncreased under drought 

stress condition; but, the starch content decrease 

(Kameli & Losel, 1993; Chaves et al., 2009). It was 

noted that starch breakdown from chloroplast increases 

the content of soluble sugars, for example, sucrose 

fructose and glucose, it was also revealed that the 

maximum amount of galactose was present in 

Arabidopsis, potato and in rice under water stress 
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(Rizhsky et al., 2004; Morsy et al., 2007). The 

enhancement of galactose is associated with the 

biosynthesis of osmoprotectants. Other sugars are also 

amplified under drought stress condition such as 

mannose, xylose, and maltose. The maltose helps to 

increase the defensive effect on the cell membranes and 

maintained the cell function normally during osmotic 

treatment reported by Ferrando & Spiess (2001). The 

other soluble sugar such as xylose act as a precursor for 

the hemicelluloses of the cell wall, in different plant 

species such as tobacco culture cell and durum wheat the 

water induced the build-up of hemicelluloses (Seifert, 

2004). Role of sugars in protein stabilization has also 

been studied in detail (Crow et al., 1987; Yancey, 2005). 

Many researchers analyzed that trehalose form hydrogen 

bonds with polar residues protein molecules (Figueroa et 

al., 2016) (Fig. 1). Hydrogen bonds between the 

phosphate group of phospholipids and the hydroxyl 

group of trehalose assessments the vacillations in the 

infrared spectrum during dehydration. The scientists 

used the Cation Eu3+ that form ionic bonds to the 

phosphate of phospholipids, through this the sucrose 

maybe display between the phosphate sites and dry 

membranes (Texier et al., 2005). The author also 

suggested that addition of Eu3+ decreased the upkeep of 

liposomes by sucrose during freeze-drying condition; 

it’s showed the sensible binding of sucrose and Eu3+ to 

the phosphate site of phospholipids. 

Soluble sugars produced under stress environment 

can act as signaling molecules, work in connotation with 

plant growth regulator, the sugar form, and demonstrate 

a complex network in plants (Chaves & Oliveira, 2004; 

Rolland et al., 2006). The soluble sugar content increase 

under drought stress as compared to the starch content 

but, under the severe condition, the sugar content also 

decrease. These fluctuations of sugar content bring 

change in the gene expression and proteomic patterns, 

especially in photosynthetic metabolism. It is also 

accepted that under high sugar content the genes 

involved in the photosynthesis activates become decline, 

whereas those intricate in the sink activities are 

persuaded such as gene intricate in the dilapidation of 

carbohydrates, polysaccharides, lipids, and proteins 

(Chaves et al., 2009). In fact, there is no expensive 

drought specific study regarding the metabolomics. 

However, several studies showed the role of sugar and 

their correlation with different enzyme during the water 

stress environment (Boyer & Westgate, 2004; Sami et 

al., 2016). During drought condition, the plant starts to 

emergent gain in the early stage as compared to the 

normal growing plants especially in maize, but the grain 

is not full filled and infertile. This is due to the 

restrictive factor invertase in the emerging kernel of 

maize under drought condition. The QTL designed for 

invertase activity express mapping near Ivr2, an inverse-

encoding gene. In young maize plants, the colocalization 

between the ADP-glucose pyrophosphorylase and 

sucrose-p synthase also exist (Pelleschi et al., 2006). 

These studies demonstrated how different metabolites 

and protein interact with one and other under stress 

conditions. It also provides the information related to the 

new metabolomic analysis and help in the discovery of 

new stress resistance system that would be fruitful for 

understanding stress-engineering mechanisms in plants 

(Khan et al., 2017). 
 

Role of Amino acids in plant responses to stress: 

Amino acids are imitated as precursors of proteins and 
other organic compounds like nucleic acids that show an 
active role in plant reactions to many stresses. They can 
act as regulatory and signaling molecules (Dondoni et al., 
2006). Proline is an important amino acid that plays 
crucial roles in plant during abiotic stress responses. The 
content of proline increases in plants under diverse 
environmental stresses (Anjum et al., 2011; Gill & Tuteja, 
2010; Hayat et al., 2012). Proline acting as an 
osmoprotective was first studied in microorganisms like 
bacteria; where a causal connotation between proline 
accretion and salt tolerance has been confirmed (Csonka 
& Hanson, 1991). 

Similarly, a close connection in the enhancement of 
proline and water deficient tolerance in barley was 
reported previously (Lewin et al., 1972). Drought tolerant 
plant species collect many folds higher free proline as 
comparted to susceptible species (Khan et al., 2018a). 
The positive effect of proline has been noted on enzymes 
and membrane integrity mediating osmotic adjustments 
under stress (Kishor et al., 2005). Some studies also 
revealed that the proline enhancement under stress 
condition is a product, not a response to harsh 
environment; although many researchers have specified a 
positive relationship between accumulation of proline and 
plant stress (Ashraf & Foolad, 2007). Kumar & Sharma 
(1989) found that augmented proline increased K content 
and improved the effect of salt on the growth of Vigna 
radiata cultures. Proline reduces the damaging effects of 
nascent oxygen and hydroxyl radicals on Photosystem II 
located in the thylakoid membranes (Nishiyama et al., 
2004). In transgenic tobacco plants the over-expression of 
proline by P5Cs decrease the free radicals content under 
stress condition (Siripornadulsil et al., 2002).  

Amino acids are also known for their role in the 
inhibition of protein aggregation and M4 lactate 
dehydrogenase stabilization throughout during excessive 
temperatures (Szabados et al., 2010).  During osmotic, 
heavy metal stress it also helps to protect the nitrate 
reductase and during arsenate environments it can 
stabilize the protease and ribonuclease (Sharma & Dubey, 
2005; Mishra & Dubey, 2006). Prior treatment of amino 
acids can ease the Hg2+ toxicity in rice because of its ROS 
scavenging activity (Gautam et al., 2010, Ali & Linan, 
2019). It was confirmed earlier that amino acids also 
affect the flowering under stress condition. Tanaka et al., 
(1997) found that amino acids; asparginin, glutamic acid, 
alanine, aspartic acid, glycine, and serine endorsed 
flowering whereas, cysteine, threoinine and phenylalanine 
repressed flowering in Lemma pausicostata. The 
exogenous application of amino acids on plants controls 
membrane permeability and ion uptake; thus enabling 
plants to withstand severe stress (El-Tayeb, 2005). 
Besides this, different amino acids play various  roles in 
plants e.g., acting as an osmolyte, alter enzyme activity, 
modulate stomatal opening, regulate ion transport and 
detoxify heavy metals (Torres & Dangl, 2005).  
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Fig. 1. Key mechanism of stress avoidance targeted by humic acid and fulvic acid (Van Oosten et al., 2017). 

 

  
 

Fig. 2. Partial least square discriminant analysis (PLS-DA) and 2D Scores loading plot for the Chickpea Punjab Noor-2009 (G1) and 

93127 (G2) under control (well-watered) and drought treatments at 2 time points (14 and 25 days). Samples at control and drought 

treatments did not overlap with each other indicating an altered state of metabolite levels in the chickpea leaves. G1, sensitive variety; 

G2, tolerant variety (Khan et al., 2018a). 

 

Du & Wang (2012) analyzed the polar compounds 

mine by using the GC-MS techniques from the hybrid 

Bermuda leaves under short-term (6 d) well watered 

condition and long-term (18 d) drought condition. The 

organic content showed non-significant change such as 

sugars and sugar alcohols during short-term stress; 

however, a decline in the content of amino acids (e.g. 

serine, GABA, and isoleucine) was noted. They also 

noted a significant augment in the content of other 11 

amino acids i.e. proline, methionine, serine, asparagine, 

phenylalanine, aspartic acid, GABA, glycine, 5-

hydroxynorvaline, threonine, and valine significantly 

improved during long-term stress. There is a close 

connection with the ion of GABA shunt deficiencies and 

with the accumulation of reactive oxygen species (Fait et 

al., 2005). In Arabidopsis and pea plants, the reduction of 

isoleucine content was denoted under water stress 

environments (Charlton et al., 2008). The expression level 

of protein analogue decreases with serine protease activity 

in drought-tolerant P. vulgaris variety during water stress, 

suggesting serine protease allied in defense mechanism in 

early drought-induced senescence (Hieng et al., 2004). 

Among amino acids, alanine, lysine and isoleucine 

contents significantly reduced whereas, tyrosine content 

did not change. The amino acid content also helps in 

stress tolerant, through regulating the intracellular pH, 

osmotic adjustment, and detoxification of ROS (Rizhsky 

et al., 2004).  

Warth et al., (2015) found that amino acids, which 

were visibly plentiful in DON-treated wheat, have been 

interrelated with diverse plant resistance mechanisms. 

The three important amino acids such as tryptophan, 
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phenylalanine, and tyrosine all are produced in shikimate 

pathways. Phenylalanine, tryptophane, and tyrosine are 

considered the three central molecules in plant 

metabolism (Galili & Hoefgen, 2002). The shikimate 

pathway plays a fundamental role in plant reproduction, 

development, pest-defense, and environmental stresses 

(Maeda & Dudareva, 2012). In plants, the biosynthetic 

pathway of these aromatic amino acids serves as 

precursor for the synthesis of plant hormones, viz. auxin 

and salicylates and for aromatic secondary metabolites 

including indole-acetate, lipid precursor, and lignin which 

plays a critical role is stress tolerance (Suguiyama et al., 

2014). Witt et al., (2012) reported an increased level of 

tryptophan and phenylalanine in corn under drought 

condition. Maize plants under high temperature stress 

showed increases in metabolites such as tryptophan, 

serine, threonine, beta-alanine, proline, glutamate, myo-

inositol, and urea (Obata et al., 2015). The increased level 

of proline and tryptophan was evident in both the 

sensitive and the tolerant varieties of chickpea when 

plants were exposed to drought condition (Khan et al., 

2018a). In addition, of acting as alternate source for 

energy under stress conditions, L-tryptophan had been 

demonstrated to play roles in transportation of ions, 

opening of stomata, reducing reactive oxygen species 

(ROS) and act as an osmolyte (Rai, 2002). Before the use 

of LC-HRMS techniques, the phenylalanine was termed 

as FHB resistance related metabolite (Gunnaiah et al., 

2012). It was discovered by using NMR techniques that 

the level of threonine valine, isoleucine, leucine, proline 

and homoserine as well as myo-inositol, c-aminob,utyrate 

and malate were elevated in the field condition; but the 

level of isoleucine and leucine is no increased under 

greenhouse condition in the same pea plant (Charlton et 

al., 2008). By using LC-MS methods the researcher 

analyzed the elevated level of proline, caffeate, malate 

and p-coumarate in maize xylem sap. However, the 

condensation of ferulate was observed under water stress 

condition (Alvarez at al., 2008). The link between the 

stress level and the modification in metabolite profile was 

inspected in a different level of drought stress conditions 

in Lotus japaonicus species. All the changes were 

programmatic in the concentration of polyols, sugars and 

organic acid (Sanchez at al., 2011). 
 

Organic acids: The drought tolerance in plant species is 

attended through a change in the content of different 

organic compounds because of environmental stress 

condition. The comparative organic content significantly 

depends upon the specific metabolites in the given 

condition such as the succinic acid, malic acid, and 

galacturonic acid displayed the utmost surges in response to 

long-term drought stress among all organic acids. Gao et 

al., (2012) reported that under long-term drought stress, the 

level of malic acid elevated two folds as compared to the 

well-watered condition. The malic acid increased the 

drought tolerance was found in different plant species such 

as spear grass, cotton and tropical grasses (Cutler et al., 

1977; Ford & Wilson, 1981; Umezawa et al., 2006). In 

potato genotypes, the overexpression of galacturonic acid 

reductase increases the ascorbic acid and enhanced the 

water stress tolerance (Conclin, 2001). In hybrid Bermuda 

grass under the oxidative stress, the galacturonic acid level 

rises in the leaves suggesting that galacturonic acids have a 

vital role in oxidative damage under drought stress. Steeuer 

et al., (2007) reported that succinate is an important 

constituent of the citric acid cycle, and help in energy 

production through respiration. In alfalfa, the elevated level 

of succinic acid in nodules was found under severe water 

stress condition (Naya et al., 2007).  During the long-term 

water stress, the deterioration in the content of organic acid 

was analyzed which including methylmalonic acid, citric 

acid, glyceric acid and isocitric acid, which declined by 

36%, 49%, 55%, and 49% respectively in comparison to 

the control. Sassi et al., (2010) reported reduction in the 

level of organic acids, in the leaves of bean sensitive 

genotypes on exposure to stress. It has been reported that 

major cereal phenolics are linked to Grandrieu rye, Dicktoo 

barely, Bajka oat and winter wheat varieties. In all these 

cereals, the concentration of caffeic acid was elevated (14-

23%) as compared to the previous study that was below 1% 

(Kim et al., 2006; Shewry et al., 2010; Zieliński & 

Kozłowska, 2000). 

Similarly, in wheat, oat and barley the content of 

ferulic acid elevated from 20-33%, the elevation is more 

prominent in two rye varieties. According to these results, 

the authors concluded that in grains mostly the caffeeic and 

feluic acid present in a conjugated form which can cleave 

by alkaline hydrolysis. In earlier metabolomics studies 

showed that the most common phenolic acid was ferulic 

sinapinic and 3, 5 dihydroxybenzoic acid, although, in the 

present study ferulic, caffeic acid and sinapinic is more 

abundant phenolic acid. In rye the concentration of fumaric 

and 2, hydroxycyclohexacarboxylic acid is higher, but in 

barely the maximum concentration of malic and 

ketogultaric acid was recorded (Kuldao et al., 2008).  
 

Polyamines: Polyamines are polycations, required for plant 

growth and play a vital role in abiotic stress condition in 

higher plants. The important polyamines such as spermine 

(Spm), soermidine (SPD) and putrescine (Put) are 

commonly present in all organisms.  In Arabidopsis 

thaliana, the expression of Put is under the control of 

arginine decarboxylase gene (ADC2) in water and salt 

stress condition (Urano et al., 2003). In transgenic rice, the 

over-expression of ADC gene showed more drought 

tolerance due to the elevated level of polyamines. The 

accumulation of spermidine through overexpression of 

spermidine synthase of Cucurbita ficifolia increased many 

stresses resistance in transgenic Arabidopsis plants such as 

water and salt stresses (Kasukabe et al., 2004; Capell et al., 

2004). It was reported that spermidine regulates the 

expression of genes that are involved in drought stress 

tolerance and spermidine act as signaling molecules. All 

these studies indicated that polyamines play dynamic roles 

during water stress conditions (Seki et al., 2007). Glycine 

betaine (GB) is important quaternary amine; during drought 

condition, these amines kept the water balance between the 

plant cell and the environments and alleviating the structure 

and activities of macromolecule (Ashraf & Foolad, 2007). 

The scientist distinguished the plants according to the 

synthesis of glycine betaine, some plants such as barley and 

spinach produce and accumulate maximum amount of 

glycine betaine in their chloroplast, while other plants do 

http://www.sciencedirect.com/science/article/pii/S1674205214601295#bib62
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not synthesize this compounds such as Arabidopsis 

thaliana and tobacco. Transgenic Arabidopsis, the genes of 

cyanobacteria such as glycine sarcosine methyltransferase 

(ApGSMT) and dimethylglycine methyltransferase 

(ApDMT) enhanced the tolerance of drought, salt and low-

temperatures stresses (Sakamoto & Murata, 2002). 

Different types of polyamines are accumulated in 

different plant species under salinity stress condition, the 

action of their major metabolic enzyme was explored in 

Brassica species under stress condition (Mo et al., 2002). 

It was confirmed that extended stress caused only a trivial 

change in the polyamine production and the action of 

ornithine and arginine decarboxylase and polyamine 

oxidase; but, under short-term stress, increase in the 

production of enzyme activities and polyamines level 

were noted. Some studies showed that the enhanced and 

accumulation of polyamines is linked with the salt stress 

and salt sensitive species. In rice and tomato, salt 

tolerance species the accumulation of polyamines and 

variation in polyamines content have been reported in 

response to diverse stress conditions (Ashraf & Harries, 

2004; Krishnamurthy & Bhagwat, 1989). 

 

Conclusion 

 

Drought stress alters the overall plant morphology and 

cell content. However, plant metabolites play a key role in 

the adjustment and the regulation of various developmental 

processes through signaling and response to different 

abiotic stresses. This study indicated that the leaves of 

control and stressed plants have distinct mechanisms to 

regulate the accumulation of different metabolites that 

provides a better idea to understand the responsive 

mechanisms of plants during different biotic and abiotic 

stress conditions. During metabolomic profiling, it was 

confirmed that sugars, amino acids and amines 

accumulated in different plant species under drought stress 

condition. The levels of proline, tryptophan, leucine, 

isoleucine, and valine amplified in plant leaves under stress 

condition and organic acid had positive correlation to water 

scarcity. The crosstalk between plant metabolites and 

abiotic stresses has positive impacts on the induction of 

plant growth in a sustainable manner that also enhance 

drought tolerance and immunity. 
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