STUDIES ON VARYING NUTRIENT STATUS AT PRE-REPRODUCTIVE, REPRODUCTIVE AND POST-REPRODUCTIVE STAGES OF FIVE PLANT SPECIES FROM KOH-E-SUFAID RANGE, KURRAM VALLEY, PAKISTAN

WAHID HUSSAIN^{1,2*}, LAL BADSHAH1², ASGHAR ALI^{2,3}, HIDAYAT HUSSAIN⁴ AND FARRUKH HUSSAIN⁵

¹Department of Botany, GPGC Parachinar, 26300, Pakistan

²Phytoecology Lab. Department of Botany, University of Peshawar, 26000, Pakistan ³Govt AKL Post Graduate College Matta, Swat, 19130, Pakistan ⁴Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry Weinberg 3, D-06120 Halle (Salle), Germany

⁵Department of Biotechnology, Sarhad University of Science and Technology, Peshawar, 26000, Pakistan

*Corresponding author's email: wahidhussainwahid@gmail.com

Abstract

This study was designed to investigate the mineral composition at three phenological stages of some selected fodder forage. Therefore, five taxa viz., *Indigofera gerardiana, Tagetes minutia, Rubus fruticosus, Medicago sativa*, and *Quercus baloot* were tested for different minerals such as Mg, K, Na, Ca, Zn, Co, Fe, Cr, Mn and Cu. The highest concentration of macronutrients i.e. Ca (96700 μ g/g), Mn (99800 μ g/g) were found at post-reproductive phase in *Indigofera gerardiana* and K (90200 μ g/g) was recorded during pre-reproductive phase in *Tagetes minutia* while the *Rubus fruticosus* exhibited (17800 μ g/g) and (59900 μ g/g) Co and Cu respectively. Similarly, the highest level of Chromium (Cr) recorded (76600 μ g/g) at reproductive phase in *Tagetes minuta*, Nickle concentration was recorded maximum i.e. 46400 μ g/g at pre-reproductive phase in *Rubus fruticosus*. Furthermore, Zn contents were (88800 μ g/g) at pre-reproductive both in *Medicago sativa* and *Tagetes minuta* and subsequently Fe (59300 μ g/g) at pre-reproductive phase in *Indigofera gerardiana*. This study helped in correlating the mineral status of these plant species to their palatability status. The mineral profile of the plants analyzed indicates that mineral levels were as per the required standards and their concentrations were not drastically different from other parts of Pakistan.

Key words: Palatability, Grazing, Preferences, Minerals composition, Environment.

Introduction

Grazing is an important biotic stress in land ecosystems (Nawaz *et al.*, 2008; Yin *et al.*, 2017; Ali *et al.*, 2018) and some plants are eaten by herbivores in their fresh state while some animals prefer to eat dry plants. This is due to the fact that at different phenological stages, concentrations of various mineral components vary (Hussaein *et al.*, 2016; Ibrahim *et al.*, 2016; Sultan *et al.*, 2009). Sensory impulses of grazing animals determine which plant and which plant part they will consume (Badshah & Hussain, 2011; Hussain & Durrani, 2008). Notably, work of Palkova and Leps, (2008) proposed a range of principles for classifying desirable palatable species to animals.

The palatability involves two practices, it is done either by direct observation in the field or it is determined by progressive loss of plants in a locality (Amjad et al., 2014; Anderson, 1994; Anderson & Robert, 1987). A positive correlation is observed between palatability and C/N2 ratio, N2 content and moisture content in the above ground plant parts (Miller & Thompson, 2005). Additionally, minerals like nitrogen, magnesium, sodium, iron, calcium are essential for the normal functioning of the body process of animals. On the other hand, arborescent plants which influence the biochemical activities in the rhizosphere by altering the soil mineral composition, also effect the forb's palatability as it enhances dry matter digestibility and N2 content of their leaves (Sagilicco & Bruzzese, 2004; Ganskopp & Bohnert, 2003; Jackson, 1962) have been reported similar findings about the forage quality

of forbs (Wilkinson & Gross, 1967). Minerals and elements play a vital role in the various metabolic processes of animals and are also important for the formation of active components (Ali et al., 2018; Hussain et al., 2009). Different plants known to accumulate and concentrate different minerals at different phenological stages which in turn affects their palatability status (Gunassekran et al., 2014). Previous studies corroborated that minerals contents increase or decrease at different life phases of plant species (Khan & Hussain, 2012; Smith, 1970; Wilkinson & Gross, 1967; Fleming, 1963). This study was designed to assess the mineral content of selected plant species at three phonological stages viz. pre-reproductive, reproductive and post-reproductive stages. The varying mineral status of plants in turn determines the palatability preferences of herbivores in a locality; hence this study will help in enumerating the palatability statuses of these plants in future studies.

Materials and Methods

Study area: Kurram is a newly established Tribal District of Khyber Pakhtunkhwa, Pakistan. It is a beautiful, green valley located in the northwest of the country. The newly formed Kurram district is located between $33 \circ 20$ "and $34 \circ 10$ " N latitude and $69 \circ 50$ "and $70 \circ 50$ " E longitude (Abbas *et al.*, 2020). The Kurram Valley is 115 km long and covers a total area of 3380 square kilometers. Phytosociologically, the vegetation and forests of Koh-e-Sufaid slopes are unique with representatives from Sino-Japanese vegetation type (Hussain *et al.*, 2019). Kurram's

natural forests cover about 8% of the area. The land being cultivated is 35% while the rest of 47% is barren. The main forest types of the Kurram are dry tropical forest and subalpine scrub (Hussain *et al.*, 2020). The area is very rich in plant resources, but little ecological work has been done in the region. The dry tropical vegetation occupies the southern parts, while dry temperate and alpine vegetation types occur in the northern parts of the area. In the area studied, the climate is of the highland type and varies at different altitudes.

Sampling: Five plant species viz: Indigofera heterantha voucher number (B. Huss.615.UOP), Medicago sativa (B. Huss.622.UOP), Quercus baloot (B. Huss.495.UOP), Rubus fruticosus (B. Huss.733.UOP) and Tagates minuta (B. Huss. 362.UOP) were selected for elemental analysis at pre-reproductive, reproductive and post-reproductive phases. These plant species exhibited a uniform dispersion across the study area and they had high density and cover values (Ali et al., 2018; Hussain et al., 2019). Of these plant species, Tagatus minuta is rarely palatable species, which was chosen to make a comparison with those of the palatable plant species. It is evident from a number of previous studies that (Anderson & Roberts, 1984; Dastagir et al., 2014; Del et al., 2016; Ali et al., 2018) mineral status of plants differ at different phonological stages and that is why some of the plant species are less palatable at pre-reproductive stage while others are at post-reproductive stage. Plant samples were collected randomly from 15 monitoring sites in Koh-e-Sufaid range, District Kurram. These plants specimens were preserved, identified and deposited in Herbarium Department of Botany, University of Peshawar. Before analysis, plants were oven dried at 65° C for a time period of 72 hours. Clean and clear polythene bags were used to store the powdered plant material.

Digestion of plant samples: One gram dried sample of selected samples were taken in the flask and then digested by 12 ml of concentrated Nitric acid and left over night. The 5ml of per chloric acid was added to the solution, heated on hot plates for 20 minutes till the solution appeared transparent. The sample was cooled and then filtered using Watmann filter paper No.42. The filtrate was then transferred to 100 ml volumetric flask. Each filtrate was stored in glass bottles and duly labeled (Dastagir *et al.*, 2014).

Mineral analyses: Five samples solution were investigated for different elements by Atomics Absorptions Spectrometers (Shimadzu AA-670) with suitable hollows cathodes lamps. The values of various minerals were recorded by CSC curves got by applying standards AR grades solution of minerals potassium, magnesium, calcium, sodium, iron, cobalt, manganese, copper, chromium and zinc.

Results and Discussion

All 5 plants species selected for minerals composition were investigated to estimate the proportion of 11

elements at three phonological phases (pre reproductive, reproductive and post-reproductive stages). These mineral comprised of three macro, seven micronutrients and one trace element. The *I. gerardiana, R. fruticosus and T. minuta* are found throughout the valley while M. sativa is restricted to plains and clay loamy and moisture rich soil while the distribution of Q. baloot was confined to the northern slopes.

1. Indigofera gerardiana Baker

I. gerardiana is a common shrub in study area. Its palatable plant species eat by herbivores. Higher values of K, Fe while lower concentrations of Cu, Cr, Zn, Mg, Na, Fe, Co, Mn and Ca make this plant mostly consumed in pre-reproductive phase. More concentrations of Cr, Cu, Zn, Na, Mg, Co, Mn and Mg at post reproductive stage made it less palatable for the herbivores.

Macronutrients: In *I. gerardiana*, Mg levels were low at reproductive phase (54600 μ g/g) and highestat prereproductive phase (99800 μ g/g). On the other hand, Ca levels were maximum at post-reproductive phase (96700 μ g/g). K contents were maximum during early phase of life (32300 μ g/g) and lowest at mature stage (19900 μ g/g). K levels were noted as 23500 μ g/g at reproductive phase.

Micronutrients: A gradual decrease in the micronutrient content of I. gerardiana was noted with increasing age of the plant. Cu concentration was 61800 µg/g at reproductive phase, 42100 μg at pre reproductive phase while 53600 µgg at post reproductive phase. Hence, there was a substantial decrease of 8200 µg/g from reproductive to post- reproductive phases. Similar trend was observed in Mg content; it was recorded 99800 µg/g at post-reproductive phase while just 54600 µg/g during floral period. Zn concentration was 38600 µg/g at mature stage while they were 18800 μ g/g and 20800 μ g/g at prereproductive and reproductive phases. Values for Fe were 11300 µg/g at pre-reproductive stage which drastically decreased to 9000 µg/g at flowering period and further reduced to 2000 µg/g at mature phase. Cobalt content was recorded as 16600 µg/g in post-reproductive phase and just 800 µg/g at pre-reproductive stage. Nickle content reduce to 1200 μ g/g at post-reproductive stage while it was 13400 µg/g at pre-reproductive stage. Nickle levels again increased during the reproductive phase 16000 µg/g. Chromium concentrations was maximum at reproductive phase (8800 µg/g) and it reduced during post reproductive stage (5600 μ g/g).

Trace elements: In this plant species highest Na levels were recorded during pre-reproductive phase (87500 μ g/g), which is slightly decreased to (10350 μ g/g) at reproductive stage. During mature phase Na concentrations was 99500 μ g/g (Table 1, Fig. 1). Our results are strongly supported by similar studies carried out by Ali, 2017; Del *et al.*, 2016; Hussain *et al.*, 2016; Tariq *et al.*, 2015 and Ahmad *et al.*, 2014.

				Table 1. I	Mineral profi	ile of five se	Table 1. Mineral profile of five selected palatable plants growing wild in Koh-e-Safaid Range, Upper Kurram.	de plants gro	owing wild i	in Koh-e-Safa	uid Range, U	pper Kurra	m.			
		Indig	Indigofera gerardiana	diana	W	Medicago sativa	ра	ð	Quercus baloot	ot	Ru	Rubus fruticosus	sn		Tagetes minuta	ta
S. No	S. No Parameters	PR stage (119/9)	R stage (119/9)	POR stage PR stage (119/9) (119/9)	PR stage (119/9)	R stage (119/9)	POR stage (119/9)	PR stage (119/9)	R stage (119/9)	POR stage (119/9)	PR stage (μο/σ)	R stage (119/9)	POR stage (119/9)	PR stage (μ9/9)	R stage (119/9)	POR stage (119/0)
1.	К	32300	23500	19900	69600	67000	59000	(19 B)	5321	4993	89300	53500	33500	90200	22400	21500
5.	Ca	89000	89100	96700	8000	8700	8900	11615	10350	9352	00669	44400	8800	39600	49900	00669
З.	Mg	19900	54600	00866	0066	10800	11800	1612	1832	2129	5900	8100	96700	8800	9300	10800
4.	Co	1800	800	16600	8100	6000	6100	8800	9721	8973	17800	8800	8800	8800	1800	8100
5.	Cu	42100	61600	53600	29900	21700	12700	6.6	5.9	6.6	8700	59900	18900	0066	18800	9200
6.	Cr	4500	8800	5600	8800	8800	8800	56.0	23.5	31.5	35600	3500	8800	16600	76600	3700
7.	Fe	59300	25300	20900	2900	800	8800	260	269	62	2900	9100	18800	18300	9100	20900
8.	Ni	13400	16000	1200	1700	600	11900	2.0	104.2	122.9	46400	16600	4200	11300	11300	1100
9.	Mn	45500	54600	00866	88000	88000	88000	54.0	244.0	0.68	19900	8000	93300	9700	00/6	9700
10.	Zn	18800	20800	38600	88000	69600	59800	7.9	39.9	6.9	17800	69800	8800	88000	18800	17000
11.	Na	87500	103500	99500	20200	20460	29900	12	49	51	87500	19900	29900	28700	30400	18900
Key to	Key to abbreviations: PR = Pre-Reproductive stage; R = Reproductive stage; POR = Post-Reproductive stage	: PR = Pre-Re	sproductive :	stage; R = Rep	productive sta	ige; POR =]	Post-Reproduct	tive stage								

2. Medicago sativa L.

Its most common persistent herbs found mainly in the plains of study area. It is a compactly tufted growing forage plant. The whole plant is very much palatable as they are readily consumed by cows, goats, sheep, donkeys and horses. Our findings revealed that Co, K, Cu, Mn. Fe and Zn levels were greater in pre-reproductive phase while the concentrations levels of Cr, Cu, Na and Ni were recorded lower during early stage of their life.

Macronutrients: In M. sativa, Mg levels showed an increase from pre- reproductive phase to reproductive Phase (9900 μ g/g and 10800 μ g/g respectively). But K levels decreased from 6900 µg/g at pre-reproductive to 6700 µg/g at reproductive phase. At post-reproductive stage K levels stood at their highest i.e. 59900 µg/g. Calcium content was recorded as 8000 µg/g reproductive, 8700 µg/g pre reproductive and 8900 µg/g during postreproductive stages respectively. Though increase in Ca content progressively was not significant but still a gradual increase in Ca content with age of the plant noted.

Micronutrients: A decrease in Fe content was noted in M. sativa from pre reproductive to reproductive phases. Iron levels were 2900 μ g/g at pre reproductive stage that markedly decrease to 800 µg/g at reproductive stage. Quite a significant increase in Fe levels was noted at post reproductive phase (8100 µg/g). A gradual decrease in Co levels was noted with increasing age of the plant, which were 8100 μ g/g and 6000 μ g/g at pre reproductive and reproductive phases respectively. At post-reproductive stage an increase of 100 μ g/g in Co levels was noted (6100 $\mu g/g$). Substantial decrease in Cu content was noted as the plant aged. Copper content was 29900 µg/g at pre reproductive, 21700 µg/g during reproductive and 12700 µg/g at post-reproductive stages. For Ni, highest values were recorded at post-reproductive phase (11900 $\mu g/g$) while at pre reproductive phase Ni content remained at 1700 μ g/g, which dropped to just 600 μ g/g at reproductive phase. Manganese levels showed no decrease or increase at any phenological stage and remained more or less the same. Zinc was found to be 8800 µg/g in pre-reproductive phase that rose (69900 μ g) decrease to 59800 μ g/g at postreproductive phase, which indicates that this plant increased its Zn uptake during flower set.

Traces elements: Sodium levels were almost same at prereproductive i.e 20200 µg/g and post-reproductive stages (2046 µg/g). Notable increase of Na content was observed 2990 µg at postreproductive phase (Table 1, Fig. 2). Our results are similar with work of (Dastagir et al., 2014; Tiffany et al., 2000; Rominger et al., 1975; Smith, 1970; Wilkinson & Gross, 1967 and Fleming, 1963).

3. Quercus baloot Griffth

Quercus baloot is an evergreen shrub or tree that may reach to 5-12 meters height. The leaves are green, elliptical and inverted to elongated and highly palatable. The sheep and goats are eating the buds and young leaves of Quercus baloot.

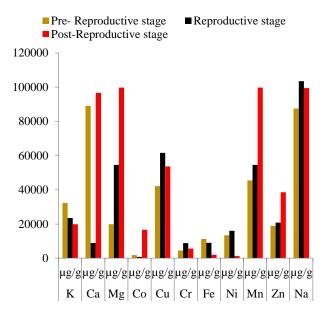


Fig. 1. Mineral composition of Indigofera gerardiana Baker.

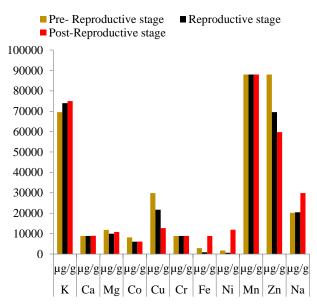


Fig. 2. Mineral composition of *Medicago sativa* L.

Macronutrients: The shoots and softer plant parts of *Q. baloot* are preferred by the browsing animals of the locality. A gradual increase in Mg content was noted. Magnesium concentrations were 1612 μ g/g during Prereproductive phase that rose up to (1832 μ g/g) reproductive phase. As Mg uptake increases with age in *Q. baloot*, at post-reproductive stage the Mg content clicked at 2129 μ g/g. Potassium remained at 6302 μ g/g in pre-reproductive phase but decreased to 5321 μ g/g during reproductive phase and post-reproductive phase in that order. Calcium concentrations were recorded (11615 μ g/g) at pre-reproductive phases.

Micronutrients: Iron contents were as 260 μ g/g during prereproductive and 269 μ g/g at reproductive phase. Significant decrease was seen in Fe content at post-reproductive phase (62 μ g/g). Cobalt concentration remained at 8800 μ g/g at pre-reproductive phase that rose up to 9721 μ g at reproductive phase. At post reproductive phase, Co levels fell to 8973 µg/g. Copper levels were low at all phenological stages. At pre-reproductive phase Cu contents were 9.9 µg/g, 5.9 µg/g at reproductive phase & 6.9 µg/g at post-reproductive phase. Zinc levels stood at 7.90 µg at pre-reproductive phase that showed substantial increase i.e 39 µg/g at reproductive phase. Mn was recorded as 54 µg/g at pre-reproductive phase. Ni content increased slightly with the age of the plant as it was just 2 µg/g, 4 µg/g, and 8 µg/g at pre-reproductive and post-reproductive phases in order. Similar pattern was seen in case of chromium. Chromium levels were 5 µg/g, 23 µg/g and 31 µg/g at reproductive, pre and post-reproductive phases in order.

Trace elements: At pre-reproductive stage Na content was recorded as 12 μ g/g which showed four times increase at reproductive stage (49 μ g/g), it further rose up 51.0 μ g/g at post-reproductive stage. Our results are backed by the results of Ali *et al.*, 2018; Cheema *et al.*, 2011; Zafar *et al.*, 2010 and Adnan *et al.*, 2010) (Fig. 3).

4. Rubus fruticosus L.

R. fruiticosus is among the preferred species for grazers and browsers. It is highly palatable at young stage as it has higher levels of potassium, magnesium, cobalt, sodium, nickel and chromium during pre-reproductive phase. During reproductive phase that one had higher levels of Cu and Zn. During post reproductive stage it had greater levels of Fe and Mn (Sagliocco & Bruzzese, 2004).

Macronutrients: A decrease in K levels was noticed from pre-reproductive phase (53500 μ g/g) to post reproductive phase (33500 μ g/g). Highest K levels observed at reproductive phase i.e., 89300 μ g/g. Mg levels were noted 5900 μ g/g at pre-reproductive phase which rose to 8100 μ g/g and 9670 μ g/g at reproductive and post- reproductive phases. Ca concentrations reduced with the age of plant. At pre-reproductive phase Ca concentration was noted 69900 μ g/g at pre-reproductive while 44400 μ g/g at reproductive and 8800 μ g/g at post-reproductive phases.

Micronutrients: As the plant aged, iron content increased. Iron levels were noted as 2900 $\mu g/g$ at pre- reproductive phase that substantially rose to 9100 μ g/g at reproductive and 18800 µg at post-reproductive phase. The Cobalt concentration was an exception as its values remained 17800 $\mu g/g$ at pre reproductive phase while it decreased to 8800.0 µg/g equally at post-reproductive & reproductive phases. Similarly, Cu, contents were greater at reproductive phase (59900 which reduced to (18900 μg/g) μg/g) Postreproductive phase. Zinc concentrations were lowest at post-reproductive phase (8.8 μ g/g). Manganese levels were 19900 µg/g at pre-reproductive phase that drastically reduced (8000 µg/g) at reproductive phase. At post reproductive manganese content again increased markedly to phase 93300 µg/g. Nickle content was lowest at post-reproductive phase (42 µgg.) At pre reproductive phase, Ni levels remained 46400 μ g/g, and then dropped to (16600 μ g/g) at reproductive phase. Similar pattern was noticed for Cr, which remained (35600 µg/g), at pre-reproductive phase while (3500 µgg) at reproductive and post-reproductive phases respectively (Fig. 4).

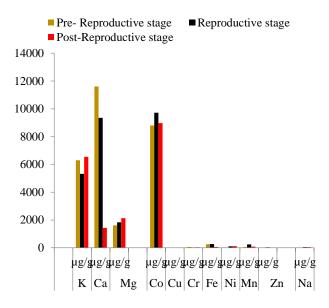


Fig. 3. Mineral composition of Quercus baloot Griffth.

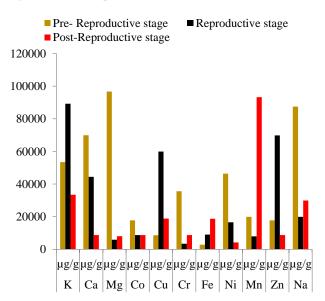


Fig. 4. Mineral composition of Rubus fruitcosus L.

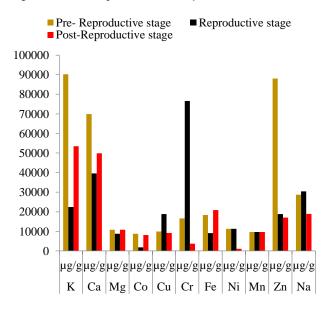


Fig. 5. Mineral composition of Tagates minuta L.

Trace elements: Highest Na levels were recorded at prereproductive phase (87500 μ g/g). Sodium levels dropped to19900 μ g/g at reproductive phase but once again improved at post-reproductive phase (29900 μ g/g). These results are supported by studies carried out by Cheema *et al.*, 201; Zafar *et al.*, 2010, James *et al.*, 2010 and Hanif *et al.*, (2006. Ali *et al.*, (2018) have documented lesser levels of sodium in rest of the plants.

5. Tagetes minuta L.

T. minuta is palatable annual herb, commonly found along the road sides and in plains of Upper Kurram valley. Phytochemical analysis revealed that this plant had higher levels of Ca, Fe, Mn and Mg at post-reproductive stage. This might be a cause of its palatability at this stage (Deel *et al.*, 2016).

Macronutrients: Highest K concentration was recorded during pre-reproductive phase i.e., 90200 μ g/g that decreased with time and at reproductive stage, the K levels were 22400 μ g/g. Potassium was recorded (53500 μ g/g) at Post-reproductive phase. Magnesium level was greater than before with maturity of the plant. Magnesium contents were (88000 μ g/g) during reproductive phase which gradually decreased to 9300 μ g/g at reproductive phase. Highest Mg concentrations were observed at Postreproductive phase 10800 μ g/g) Pre-reproductive phase, 49900 μ g/g at reproductive phase and 69900 μ g/g during Post-reproductive phase. This clearly indicates that Ca uptake in *T. minuta* increases with the age of the plant.

Micronutrients: Among micronutrients, Fe content was noticed 18300 µg/g during pre-reproductive phase that dropped 9100 µg/g during reproductive phase. A notable increase in Fe levels was seen at Post-reproductive phase (20900µg/g). Co contents were greater during Prereproductive and Post-reproductive phases. At prereproductive phase Co content remained 8800 µg/g while 8100 µg/g at post-reproductive phase. Lowest Co levels were observed during the reproductive phase (1800 μ g/g). Copper content was found to be 9900 µg/g at prereproductive phase which raise to 18800 µg/g at reproductive phase. Lowest Cu values were found at post reproductive phase (9200µg/g). Zinc content also decreased as the plant matured. Zn concentration was 88000µg/g at Pre-reproductive, 18800µg/g at reproductive and 1700µg/g during Post-reproductive phases. Ni concentrations remained the same at equally pre and reproductive phases 11300 µg/g. Nickle content was at its lowest at post reproductive phase (1100 µg/g). No substantial change was observed in Mn level at all phenological stages. Highest levels of Cr were note down during reproductive phase (76600 µg/g). Cr content was lowest at the Postreproductive phase that is $3700 \ \mu g/g$ (Fig. 5).

Trace elements: The Na levels were 28700 μ g/g during reproductive, 30400 μ g/g at pre-reproductive, and 30400 μ g/g at post reproductive phase (Fig. 5). Lowest Na levels were noticed during post-reproductive stage (18900 μ g/g). These findings are line with the Del *et al.*, 2016;

Cheema *et al.*, 2011, Zafar *et al.*, 2010; James *et al.*, 2010 and Hanif *et al.*, (2006). It is important to mention in some other plant species low Na concentration was documented (Ali *et al.*, 2018).

Conclusions

This research was designed to understand that how palatability preferences of herbivores change with changing mineral content of plants during three phenological stages. A total of 11 minerals were studied in 5 different plant species belonging to different palatability classes. Results clearly indicate that the concentration of these minerals was different in all selected plant species as well as different at various phenological stages. It was noticed that Ca, Mg and K levels showed an increase as the passage of plants aged. In Q. baloot Ca levels decreased while other micronutrients varied at three phenological stages. At prereproductive and post-reproductive phases, Fe, Mn, Mg and Ca levels increased. This may be the reason behind palatable status of selected palatable plants at different phenological stages while rest of the micro minerals varied at different phonological stages due to edaphic and environmental variables. The mineral profile of the plants analyzed indicated that mineral levels were as per the required standards and their concentrations were not drastically different from other parts of Pakistan.

References

- Adnan, M., J. Hussain, M.T. Shah, Z.K. Shinwari, F. Ullah, A. Bahader, N. Khan, A.L. Khan and T. Watanabe. 2010. Proximate and nutrient composition of medicinal plants of humid and sub-humid regions in North-West Pakistan. J. Med. Plant Res., 4(4): 339-345.
- Ahmad, K., Z.I. Khan, A. Ashfaq, M. Ashraf and S. Yasmin. 2014. Assessment of heavy metal and metalloid levels in Spinach (*Spinacia oleracea* L.) growth in wastewater irrigated agricultural soil of Sargodha, Pakistan. *Pak. J. Bot.*, 46(5): 1805-1810.
- Ali, A., L. Badshah and F. Hussain. 2018. Screening of five plant species for macro/micro nutrients and heavy metals at various phenological stages. *Pak. J. Bot.*, 50(5): 1941-1949.
- Ali, A., L. Badshah, F. Hussain and Z.K. Shinwari. 2017. Ecological Evaluation of Plants Resources and Vegetation structure of Chail, Valley, District Swat, Pakistan. Ph.D. Thesis. University of Peshawar. 188-189.
- Amjad, M.S., M. Arshad, S. Fatima and N. Mumtaz. 2014. Palatability and animal preferences of plants in tehsil Nikyal, district Kotli, Azad Jammu and Kashmir Pakistan. Ann. Res. & Rev. Biol., 4(6): 953.
- Anderson, E.R. and B.R. Roberts. 1987. Palatability studies on plants in the South-Western Orange Free State Sandveld. *S. Afr. J. Bot.*, 53(1): 12-16.
- Anderson, R.C. 1994. Height of white flowered trillium (*Trillium grandiflorum*) as an index of deer browsing intensity. *Ecol. Appl.*, 4: 104-109.
- Badshah, L. and F. Hussain. 2011. Farmers' preferences and use of local fodder flora in Tank District, Pakistan. Afr. J. Biotechnol., 10(32): 6062-6071.
- Cheema, U.B., J.I. Sultan, A. Javaid, P. Akhtar and M. Shahid. 2011. Chemical composition, mineral profile and *in situ* digestion kinetics of fodder leaves of four native trees. *Pak. J. Bot.*, 43: 397-404.

- Dastagir, G., F. Hussain and M.A. Rizvi. 2014. Mineral composition of plants of Zygophyllaceae and Euphorbiaceae. *Pak. J. Bot.*, 46(3): 887-896.
- Del Carman Sosa, M., M.J. Salazar, J.A. Zygadlo and E.D. Wannaz. 2016. Effects of Pb in *Tagetes minuta* L. (Asteraceae) leaves and its relationship with volatile compounds. *Ind. Crops & Prod.*, 8(2): 37-43.
- Fleming, G.A. 1963. Distribution of major and trace elements in some common pasture species. *J. Sci. Food Agric.*, 14(2): 203-208.
- Ganskopp, D. and D. Bohnert. 2003. Mineral concentration dynamics among 7 northern great Basin grasses. J. Range Manag., 5(6): 174-184.
- Gunasekran, S., K. Viswanathan and C. Bandeswaran. 2014. Selectivity and palatability of tree fodders in sheep and goat fed by cafeteria method. *Int. J. Sci. Env. & Tech.*, 3(5): 1767-1771.
- Hanif, R., Z. Iqbal, M. Iqbal, S. Hanif and M. Rasheed. 2006. Use of vegetable as nutritional role in human health. J. Agri. Biol. Sci., 1(1): 18-22.
- Hussain, A., A. Adhikari, I. Choudhary, M. Ayatollahi and A.S. Atta-ur-Rahman. 2016. New adduct of abietane-type diterpene from Salvia leriifolia Benth. *Nat. Prod. Res.*, 30(13): 1511-1516.
- Hussain, F. and M. Durrani. 2008. Mineral composition of some range grasses and shrubs from Harboi rangeland Kalat, Pakistan. *Pak. J. Bot.*, 40 (6): 213-223.
- Hussain, F. and M.J. Durrani. 2009. Seasonal availability, palatability and animal Preferences of forage plants in Harboi arid Range land, Kalat, Pakistan. *Pak. J. Bot.*, 41(2):539-554.
- Hussain, W., L. Badshah, A. Ali and F. Hussain. 2019. Quantitative aspects of the Koh-E-Safaid Range vegatation across the altitudinal gradient in Upper Kurram Valley, Pakistan. *Appl. Ecol. Environ. Res.*, 17(4): 9905-9924.
- Hussain, W., L. Badshah, F. Hussain and A. Ali. 2020. Floristic configuration and ecological characteristics of plants of Koh-e-Safaid range, northern Pakistani-afghan borders. *Acta Ecologica Sinica.*, 40(3)221-236.Doi; 10.1016/ j.chnaes. 2020.04.006
- Hussain, W., W. Abbas, W. Hussain, L. Badshah, K. Hussain and A. Pieroni. 2020. Traditional wild vegetables gathered by four religious groups in Kurram District, Khyber Pakhtunkhwa, North-West Pakistan. *Genet. Resour. Crop Eval.*, 1-16. doi.org/10.1007/s10722-020-00926-3(0123456789.
- Ibrahim, M., I. Hussain, S. Hussain, A. Hameed, T. Farooq, A. Hussain and S. Hussain. 2016. Amberinone, a new guaianolide from Amberboa ramosa. *Nat. Prod. Res.*, 30(1):110-114.
- Jackson, M. L. 1962. Soil chemical Analysis. Constable & Co., Ltd., 10 London. 406-407.
- James, O., A.A. Rotimi and B.O.J. Bamaiyi. 2010. Phytoconstituents, proximate and nutrient investigations of *Saba florida* (Benth.) from Ibaji forest. *Int. J. Nutr. & Metabol.*, 2(5): 88-92.
- Khan, M. and F. Hussain. 2012. Palatability and animal preferences of plants in Tehsil Takht-e-Nasrati, District Karak, Pakistan. *Afr. J. Agri. Res.*, 7(44): 5858-5872.
- Miller, S.M. and R.P. Thompson. 2005. Seasonal patterns of diet composition, herbage intake and digestibility identify limitations to performance of weaker sheep grazing native pasture in the Falkland Islands. *Grass & Forage Sci.*, 60(4): 356-366.
- Nawaz, H., I. Javed and M. Hameed. 2008. Mineral profile, palatability and digestibility of marginal land grasses of Trans-Himalayan grasslands of Pakistan. *Pak. J. Bot.*, 40(1): 237-248.

- Palkova, K. and J. Leps. 2008. Positive relationship between plant palatability and litter decomposition in meadow plants. *Comm. Ecol.*, 9(1):17-27.
- Rominger, R.S., D. Smith and L.A. Peterson. 1975. Yields and elemental composition of alfalfa plant parts at late bud under two fertility levels. *Can. J. Plant Sci.*, 55(1): 69-75.
- Sagliocco, J.L. and E. Bruzzese. 2004. Biological control of Rubus fruticosus agg. (blackberry): is the leaf rust the only option for Australia. In XI International Symposium on Biological Control of Weeds (141).
- Smith, D. 1970. Yield and chemical composition of leaves and stems of alfalfa at intervals up the shoots. J. Agri. Food Chem., 18(3): 652-656.
- Sultan, J.I., I.U. Rahim, M. Yaqoob, M.I. Mustafa, H. Nawaz and P. Akhtar. 2009. Nutritional evaluation of herbs as fodder source for ruminants. *Pak. J. Bot.*, 41(6): 2765-2776.
- Tariq, S.A., T. Bashharat, N. Khan, B.S. Hamid and Y. Rehman. 2015. Elemental analysis of *Indigofera gerardiana* Wall By Atomic Absorption Spectrophotometer (AAS). *Adv. Basic Med. Sci.*, 1(1): 85-90.

- Tiffany, M.E., L.R. McDowell, G.A. O'Connor, H. Nguyen, F.G. Martin, N.S. Wilkinson and E. C. Cardoso. 2000. Effects of pasture applied biosolids on forage and soil concentrations over a grazing season in north Florida. I. Macrominerals. Crude Protein and *In vitro* Digestibility. *J. Commun. Soil Sci Plant Anal.*, 31: 201-203.
- Wilkinson, S. R. and C. F. Gross. 1967. Macro and micronutrient distribution within ladino clover (*TrifoLium* repens L.). Agron. J., 59(1): 372-37 4.
- Yin, Z.L., J.A. Zhang, J. K. Zhao, C. C. Zhu, S. Gang and Y. Jin. 2017. Minerals element level and Proliferative Effects *Davallioides* from different zones of China on *Osteoblast*-Like Umr-L06 Cell. *Pak. J. Bot.*, 49(6): 2161-2168.
- Zafar, M., M.A. Khan, M. Ahmad, G. Jan, S. Ultana, K. Ullah, S.K. Marwat, F. Ahmad, A. Jabeen, A. Nazir, A.M. Abbasi, Z. Rehman and Z. Ullah. 2010. Elemental analysis of some medicinal plants used in traditional medicine by atomic absorption spectrophotometer (AAS). *J. Med. Plant Res.*, 4(19): 1987-1990.

(Received for publication 21 October 2019)