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Abstract 
 

In search for models of succession a number of mathematical and statistical models have been tried by various 

ecologists and range workers including, descriptive, based on ordinary or partial differential equations, cellular automata, 

fractals and stoichiometric models as well as ordination techniques and matrix models including Markov chains. This paper 

examines the old-field succession using Markov chain stochastic model to describe, predict and simulate the vegetation 

dynamics of the abandoned fields at Malir-Landhi area, southern Sind, Pakistan. 

Recorded data over 4-years period from permanent plots (patches) permitted an estimation of transition probabilities using 

the frequency of plots in various states that moved to other states over a period of one year at various sampling times. Average 

transition matrix using four years data was employed for the sake of accuracy in the estimation of probabilities. The paper 

discusses the Markov properties and its features, studies and exemplifies the test of first order Markov chain. The results 

indicate that the secondary succession under study conform to first-order Markovian process since the observed field data was 

found to fit closely to the first–order transition process. Transition matrix successfully exposed the nature and mechanism of 

succession and provided insights into the process of secondary succession. Succession was found to be almost unidirectional. 

Stability of the system was also checked which disclosed relatively greater stability at the later stage of succession pointing it to 

be the disclimax of the area. Though not all assumptions of Morkovian process were held by the data it appears that the 

transition matrices provide useful descriptive devices even when the system is not absolutely Markovian. The succession was 

related to second law of thermodynamics and entropy. The entropy of the successional ecosystem changed with the onward 

march of the succession. The overall system Entropy of the successional ecosystem was moderately high. 
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Introduction 

 

Biotic communities are not static but constantly under 

the state of flux. Syndynamics or succession is one the 

most important community process that can play a 

significant role in vegetation preservation, recovery and 

restoration (Bazzaz, 1975; Miles et al., 1987; Peng et al., 

2004; Tucker & Anand, 2004; Hang, 2005; Walker & del 

Moral, 2003, 2009; Pickett et al., 2009; Hanson, 2011). 

Secondary succession which follows a major perturbation 

such as fire, flood, clearcutting of a forest or abandonment 

of a cultivated field, etc. is much more rapid than primary 

succession (Anderson, 1987; Burrows, 1990; Ricklefs & 

Miller, 2000). Succession is currently not viewed as a 

deterministic process that eventually leads to a unique 

stable climax community (Connell & Slatyer, 1977). 

The earliest models of succession such as those of 

Drury & Nisbet (1973) recognizing the importance of 

environmental gradients that influence the differential 

growth and survival rates of species), Grime (1974, 

1979) (Competitors-Stress-tolerators-Ruderals) and 

Connell & Slatyer (1977) (Facilitation-Tolerance and 

Inhibition models) were dioristic models, i.e., they were 

descriptive or verbal. 

The first mathematical models developed were 

simulation or computer models (e.g., Leak, 1970; Botkin 

et al., 1972a, Shugart et al., 1973; Shugart & West, 1980; 

Pickett et al., 1987; Favier et al., 2004). Botkin et al., 

(1972b) developed a gap model JABOWA that was 

founded on tree establishment, growth and mortality. 

Pacala et al., (1996) constructed a spatially structured 

stand level model (SORTIE) incorporating seed dispersal, 

recruitment, growth and mortality. In essence it was based 

on an earlier model FOREST developed by Ek & 

Monsurd (1974). The gap model of mangrove forest 

dynamics (FORMAN) developed by Chen & Twilleys 

(1998) that incorporates the influence of salinity on 

mangrove tree growth. These models were basically 

designed to have predictive value for a specific succession 

or sere. Acevedo et al., (1996) employed transition and 

gap model to forest dynamics. 

Various ordination models have also been employed 

by many ecologists to analyse and examine successional 

sequences (Shaukat, 1985; Shaukat & Uddin, 1989; 

Shaukat et al., 1981, 2014; Odland & del Moral, 2002; 

Tucker & Anand, 2003; Prach et al., 2007; Marler & del 

Moral, 2013; Prach et al., 2013; Chang et al., 2014; Dini-

Andreote et al., 2016). 

Succession can be modelled by means of ordinary 

differential equations (Shigesada et al., 1984; Yang et al., 

2010; Hastings & Gross, 2012; Marino et al., 2014) or 

partial differential equations; Holmes et al., 1994; 

Hastings & Gross, 2012). Based on population dynamics 

model, van Hulst (1979 a-b) used logistic equations 

(sigmoidal equation) of population growth: 

Using ordinary differential equations Shigesada et al., 

(1984) modelled a system of N competing species. Under 

this system, they used the intrinsic growth rate, within-

species competition, between-species competition, and 

the species resilience (σ) (or the degree to which they are 

capable of resisting competition). Marino et al., (2014) 

used a modified Lotka-Volterra equation.  

Brennan & Reneke (1984) used diffusion process in 

conjunction with continuous parameter Markov chain. Blatt 

et al., (2001) included herbivore effect in Lotka-Volterra 

equations to model succession. Leps & Prach (1981) used 
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discrete logistic equations to model secondary succession 

with considerable success. Marleau et al., (2011) presented 

a primary succession model based on ecological 

stoichiometry that permitted integration of major biotic 

processes with other aspects including biogeochemical 

cycles. Hodgeweg (1988) applied cellular automata as a 

paradigm for ecological modelling and provided a model 

for succession based on cellular automata. Cellular 

automata models have also been employed by a number of 

workers (Silvertown, 1992; Colasanti & Grime, 1993; 

Ermentrout & Edelstein-Kechet, 1993; Halley et al., 1994; 

Baltzer et al., 1998; Atkinson et al., 1998; Caswell & Etter, 

1999; Soares-Filho et al., 2002; Almeida et al., 2003; 

Walther et al., 2003; and Sloot et al., 2004). Almeida et al., 

(2003) used stochastic cellular automata model for urban 

land use dynamics. Ecological applications dealing with 

time-series such as successional data often require the use 

of nonlinaear techniques. Cellular automata models provide 

potentially useful approach that could decipher linear as 

well as nonlinear dynamics of ecological succession and 

consequently lead to applications in conservation and 

management issues. 
Another approach to modelling succession is by 

means of fractal analysis. Excellent reviews are presented 
by Kenkel & Walker (1996) and Milne (1997) on the 
application of fractals in ecological and landscape 
research as well as ecosystem dynamics. Hastings et al., 
(1982) and Mandelbrot (1983) showed how fractal 
exponents might be integrated into diffusion processes for 
normalizing increments in space and time. It was pointed 
out that D can be used as a fractal dimension (DI) in 
different point patterns including regular, random, random 
clumped pattern and aggregated clumped point patterns 
serving as index of succession in circumstances where 
simple patch-extinction models are reasonable. Li (2000) 
described patch patterns and patch dynamics using fractal 
analysis. Alados et al., (2003) characterized an ecological 
succession using fractal geometry and demonstrated a 
drastic change in the fractal dimensions that disclosed a 
change in the vegetation structure, accurately indicating 
last successional vegetation stages. Saravia et al., (2012) 
examined multifractal spatial patterns and diversity to 
elucidate ecological succession. Basically the fractal 
analysis methods help to disclose spatial and temporal 
complexity that involve purposeful manipulation of the 
scale of observation to explore how phenomena change 
steadily and predictably, with the change in scale. 

Another widely used approach is the application of 

the so-called matrix models. Among the matrix models, 

Markovian models are more appealing and have received 

comparatively greater attention because they are more 

tractable form of stochastic  mathematical models that 

may be employed in successional studies (Horn, 1975a,b; 

Usher, 1979, 1981; van Hulst, 1979b; 1980; Runkle, 

1981; Lippe et al., 1985; Facelli & Pickett, 1990; Isagi & 

Nakagoshi, 1990 - missing; Orloci et al., 1993; Rego et 

al., 1993; Aaviksoo, 1995; Osho, 1996; Baltzer, 2000; 

Logofet & Lesgnaya, 2000, Korotkov et al., 2001; 

Benabdellah et al., 2003; Logofet, 2003; Yin et al., 2009). 

Markov models regard the landscape as an infinitely large 

area with a set of patches or points in space. A list of plant 

describes the occupancy of a plant species at each point 

while in another class of the model the list may comprise 

of multiple coexisting species at each patch (or plot),  the 

latter are often categorized as patch occupancy models 

(Hill et al., 2004). Although time-varying models with 

non-homogeneous Markov process have been analysed 

(Hill et al., 2002) as non-linear dynamics, the results are 

not encouraging (Hill et al., 2004). Whereas models with 

time-invariant transition probabilities are homogeneous 

Markov chains seem to provide better results. 

Old-field dynamics can be usefully described in 

terms of a finite number of states and the transition 

probabilities between these states. The Markov models 

are based on the idea that succession is an orderly process 

(as originally suggested by Clements) and therefore 

probabilities of transition from one succession stage to 

another can be estimated assuming that they remain 

constant throughout the time period and do not depend on 

past history of vegetation. 

Here we focus on time invariant transition 

probabilities that furnish homogeneous finite-state 

Markov process to analyse the successional sequence 

associated with old-fields in southern Sind. The current 

paper investigates the possibility of modelling secondary 

succession of vegetation using the stationary Markov 

process to test certain hypothesis of interest. Markov 

models provide a unifying concept with regards to 

multiple approaches to succession. The Markov chains 

have been applied to ecological succession by a number 

of workers (see above for references). Appropriate 

Markovian models could be used to test a number of 

hypotheses pertaining to the process of succession 

analogous to the Markovian assumptions. It has be 

advocated by Hill et al., (2004) that although Markovian 

models are effective tool for exploring ecological 

succession properties but they have  not been gainfully 

employed to unravel various properties at population and 

community level in a successional ecosystem. 

There are several approaches to modelling of 

succession as pointed out above. However, often the 

dominating role of historical and spatial factors in 

syndynamics creates difficulties in the development of 

reasonably satisfactory models. 

Exposing successional trends in energy and matter 

exchange across the ecosystem–atmosphere boundary 

layer is a necessarily required aspect in ecological 

research although no general theory in this respect exists 

as yet that describes the observed patterns. Attempt has 

been made to evaluate whether the principle of maximum 

entropy could provide a reasonable solution (Harte, 2011; 

Banavar et al., 2010). For this purpose pre- and post-

entropy of the successional ecosystem has been 

computed, in addition to the overall system entropy. 

 

Materials and Methods 
 

Markovian models have usually been successful in 

predicting successional changes when the states of the 

system are clearly defined (Usher, 1975, 1979, 1992). 

Similar to other transition models, Markov models are 

stochastic since at any point in time transition from one 

particular state to the next may or may not take place. The 

principal assumption of Markov models is that when a 

system is in a particular state  then there exists a fixed 
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probability that it would move to some new state (or 

remain in the same state) at the next point in time. The 

number of prior states that are mandatory to determine the 

future behaviour of the model is known as the order of the 

Markov chain. When the future behaviour of the system 

depends solely on the present state then the model is said to 

be the first order Markov chain. Moreover, any change in 

the system does not depend on the initial conditions. 

Neither of these assumptions is usually true in both primary 

or secondary succession (Facelli & Pickett, 1990). 

If a plant or animal assemblage, in a specific area, is 

examined at times t1 and t2 with an appropriate time 

interval, the observed data will show that the collection has 

changed, i.e., the composition of the collection 

(assemblage) would be altered. This can be represented as: 

 

Collection X     Collection Y 

 

The term „collection‟ here does not imply clearly 

recognizable community of species or a change from one 

seral stage to another rather it is used in a „loose sense‟ as 

a set individuals of species. When a similar piece of land 

is observed at a number of occasions, a sequence of 

communities can be disclosed: 

 

Collection K    Collection L    Collection M   Collection N 

 

where collections K, L, M and N in the context of 

succession represent concrete communities at various 

stages of a particular sere. 

 

Although the process of succession is continuous, for 

the sake of convenience and description, different stages 

can be distinguished with each other and usually a few 

key-species are selected to recognize each of the seral 

stage of a particular succession (Usher, 1979; Shaukat, 

1985). In many of the Markov chain model application to 

ecological succession the workers use sampling points 

(often on a grid) where replacement of one species by 

another is recorded (Horn, 1975a; Lippe et al., 1985). 

Alternatively, in other class of models multiple coexisting 

species in permanent plots are recorded. The latter models 

are referred to as patch occupancy models. The present 

study employs the latter approach. 

The current study focuses on secondary succession of 

old-fields in Southern Sind, Pakistan. For this purpose in 

all 100 plots (6 X 6 m) were permanently marked with 

metallic stakes in Landhi (near Karachi) area in 2000, 

where the cultivation was abandoned by the farmers 

during June 1999-January 2000. The total area of the 

fields surveyed was about 40 ha. The species composition 

and structure of the area was typical of abandoned fields 

in Southern Sind. To apply discrete Markov chain, we 

must break down the successional sequence into a series 

of discrete states (S1, S2, S3, ..Sk). Thus in this study the 

dynamics of patches of coexisting plant species rather 

than the individual plants are under investigation. In each 

plot vegetation was surveyed using a Braun-Blanquet 

cover scale (Mueller-Dombois & Ellenberg, 1974). 

With respect to changes in vegetation, five more or 

less mutually exclusive states (k=5) that could easily be 

distinguished were identified (S1, earliest stage (mostly 

annual herbs, e.g., Chenopodium album, C. murale, 

Argemonemexicana, Rhynchosia mininma, Tephrosia 

strigosa, Corchorus triloccularis, Euphorbia geniculata, 

E. thymifolia), and a number of annual grasses (Cenchrus 

biflorus, Eragrostis ciliaris, Eleusine indica and 

Brachiaria racemosa), S2 = admixture of annuals and 

perennial herbs including Pluchea lanceolata, Zaleya 

pentandra, Tribulus terrestris, Fagonia indica, Launaea 

procumbens, S3= perennial grasses (e.g., Chrysopogon 

aucheri, Cymbopogon jawancusa, Desmostach 

abipinnata, Dicanthium annulatum, Eleusine compressa, 

Cenchrus setigerus and perennial herbs such as Sida spp., 

Withania somnifera, Launaea procumbens, Pluchea 

lanceolata and Solanum surattense; S4 = assemblages 

mostly constituted by shrubs or undershrubs (e.g., 

Abutilon indicum, A. glaucum, Salsola inermis, Senna 

holosericea), and S5 = shrubs (often tall) or small trees 

(e.g., Capparis decidua, Calotropis procera, Salvadora 

persica, Prosopis juliflora). 

Occasionally, a species present in one state (patch) 

may also occur in another state but the overall 

composition of the patch and its dominant species remain 

conspicuous and can easily be recognized and categorized 

accordingly. Note that in this study „vegetation states‟ 

were defined in terms of the dominance of particular set 

of species in each of the patch (plot) following the 

practice of Waggoner & Stephens (1970), Lippe et al., 

(1985) and Rego et al., (1993). Thus the categorization of 

the states is not problematic. According to Lippe et al., 

(1985) one practical difficulty is the “measurement of real 

rather than inferred transition probabilities”. Each plot 

was categorized into one of the state in the survey of 2000 

based on its dominant species. The transition probabilities 

Pij of transition from state Si to state Sj have to be 

estimated. When repeated observations on the permanent 

plots are available, estimation of Pij is a straightforward 

matter but without repeated observations, the estimation 

of transition probabilities is a complex procedure (cf. 

Usher, 1981). Transition probabilities represent functions 

of the natural rates of succession. Resampling of the 

permanent plots was performed after a period of one-year 

in the late summer (Sept. to Oct) for a period of four years 

(2001-2004) the plots were revisited and the vegetation 

examined and categorized into the appropriate states. The 

true transition matrix P can be estimated by converting 

transition frequencies to estimated probabilities from an 

observed sequence of successional states. Thus the 

transition probabilities calculated in this study are fairly 

close to real values. The non-negative row entries 

summing up to 1. The transition matrix provides an 

average picture of dynamics for the study period.  The 

first step in the development of a Markov model is to 

construct a tally matrix that summarizes the number of 

times each state is followed by the rest of the states. Let 

mij be the observed number of transitions (i.e., transition 
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frequencies) from state i to state j in one-step transition. 

The transition probability pij can be estimated by dividing 

each row by its total that gives the maximum likelihood 

estimate of pij: 

 

P 
^
ij=  mij/ ∑ j mij≥ 0. . .  . . . . . . . . . . . . . . . . . . . . 

i=1, . . . . ,k ; j=1, . . . , k              0 ≤ p ij ≤ 1   (i,j = 1, 2, 

3, . . . ,k), ∑ jpij = 1. Usually one has to obtain a pooled 

time series i.e., macro-data on state frequencies as mi (t) 

which means that the frequency of state i at time t .The 

estimator of transition probability is shown to be 

consistent, asymptotically unbiased and asymptotically 

normally distributed (Kelton & Kelton, 1984). The 

resulting transition matrix P is: 

 

    P11  P12  P13 . . . P1k 

    P = P21   P22 P23  …  P2k 

    Pk1  Pk2Pk3…  Pkk 

    P31  P32  P33 …   P3k  

  

 

P is a square matrix of transition probabilities, i.e., 

probability of moving from each state to all other states 

during one time step. The syndynamics are modeled by 

setting the probability distribution of the patch (plot) state 

at time t + 1, conditioned on its state at time t (the time 

interval was set at 1-year). In this case, the transition 

probabilities solely depend on the preceding state and are 

not dependent on any previous transitions. This implies 

that the first-order Markov model was employed that is a 

system in which probability distribution over next state is 

assumed to be dependent only on the current state, though 

higher order Markovian processes are possible and can be 

utilized to build-up models in ecology. 

 
If there are k possible states then X(t) ∈ {1,2,3, ... , k}, then 

Pij=P[x(t +1) =i {x(t) =j]  i, j=  . . . . . . . , k 

 

Pij is a row stochastic i.e., each row adds up to 1). Let 

X (t) be a k-valued probability vector (i.e., xi ≥ 0, ∑ i xi = 

1) whose elements give the probability that an object is in 

state i then; 

 

X (t + 1) = P X (t) 

 

where P is the maximum likelihood estimate of the 

transition probability matrix. The matrix P is successively  

multiplied by a 1 X k state vector X (t) which contains the 

relative abundances of each vegetation type or patch 

(1,. . . k) that eventually  translate to a steady state vector 

X stable after a large number of iterations under the given 

set of environmental conditions including occasional mild 

grazing. The state vector is independent of the initial 

conditions provided that P is a stochastic matrix. This 

property can be represented as. 

 

X stable = P * X stable 

 

In the context of ecological succession X stable   can be 

interpreted as the species composition of the climax 

community of the area. This vector can be calculated 

directly as the right eigenvector of P and the 

corresponding eigenvalue is the largest eigenvalue of the 

matrix P that equals 1, thereby  indicating  that there is no 

net change to the sum of state vector. There are a number 

of assumptions inherent in the Markov models as pointed 

out above: 1) It is assumed that transitions within the 

system are temporarily stationary. This is seldom valid in 

ecological investigations because climate, the extent of 

disturbance and anthropogenic activity in the area vary to 

a large extent; also processes such as density-dependence 

operate in the biota. To build up models for non-stationary 

systems, several transition matrices may be required with 

each matrix being appropriate for a specific set of 

environmental conditions. 2) Local neighbourhood 

processes are disregarded, i.e., local spatial stationarity is 

assumed. This implies that the patches of one type do not 

affect the transition rates of the neighbourhood patches. 

Neighbourhood effects usually play an important role in 

shaping the structure and pattern of vegetation 

(Bergelson, 1993; Khan & Shaukat, 1997; Hubbell et al., 

2001;. 3) The state of the system at time t+1 solely 

depends on the system at time t and therefore disregards 

the past-history. Nonetheless, this assumption is relaxed 

when higher order Markov models are employed (Orloci 

et al., 1993). A chi-square (χ
2
) test for independence in a 

matrix of transition probabilities developed by Anderson 

& Goodman (1957) was employed. In this case the null 

hypothesis implies that the successive steps are 

independent of each other (i.e., randomness of the 

process) while the alternative hypothesis postulates that 

they are not independent and may constitute a first order 

Markov chain (Harbough & Bonham-Carter, 1970). The 

asymptotically equivalent test statistic for the likelihood 

test statistic is given by. 

 

χ
2 
 = - 2ln (λ) = - 2 ∑ i ∑ j mijln (pij / Pj)           i=1,....,k; j=1,...,k 

 

where mij is the frequency with which that transition from 

state i to state j has been observed (matrix M) and pij is 

the transition probability from state i to state j 

(i,j=1,2,3,... , k) and Pj is the  marginal probability of 

column j (Pj= ∑ j mij / ∑ i  ∑ jmiji=1, . . . , k ; j=1, . . ., k.). 

The approximate χ 
2
 is asymptotically distributed with (k-

1)
2
 degrees of freedom (Usher, 1979). Generally the 

probability matrix (P) described above is called an 

upward transition matrix. The downward transition 

probability matrix (Q) is determined by dividing each 

element of the transition frequency matrix (M) by the 

corresponding column total: 

 

qij =  mij/ ∑ j  mij≥ 0                               i=1 to k,  j=1 to k 
 

0 ≤ qij ≤ 1   (i,j = 1, 2, 3, . . . ,k). 
 

According to Hill et al., (2004) Markovian model 

has been used to disclose useful information at two 

ecological levels: i) Species level properties and ii) 

Community level properties. 
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Species (or group of species at state) level properties 

 

Turnover rates: The turnover rate here implies the rate at 

which plot (assemblage) change states and therefore 

provides a useful measure of rate of change of the 

successional process. The turnover rate of the ith 

assemblage (state) equals the probability that a plot in state 

i will change during the interval t to t+1, this is found as: 

 

Ti   = (1- pii) 

 

whereas, the expected value of the turnover rate is 

obtained as: 

 

E (turnover time) = τi= 1/ Ti 

 

Replacement: The process ofreplacement takes place 

when a species (or a group of ecologically similar 

species) that occupies a plot at time t is occupied by a 

different species (or a group of species) at time t+1. 

According to Sebbens (1986) this occurs when a more 

competitive species (or a group of spp) from a 

neighbouring area replace(s) a less competitive species. 

The Replacement probability is assessed as: 

 
P(replacement of species/state j) = 1- pjj - pkj       j=1,... k-1 

 

On the contrary, one can look at replacement by a 

species (or a group of species). Focus on ith row species 

(group) that replaces the other species with probability 

pij ; the mean for these probabilities is given as: 

 
P(replacement by species/state  i) = 1/(k-2) * ∑ pijj≠i,. . . k 

 

In this formulation piiand pikare ignored as they do 

not represent replacement but stand for colonization and 

persistence respectively. 

 

Persistence: Persistence takes place when a species (or a 

group of species at time t remains in a plot at time t+1. 

This is determined as follows; 
 

P (persistence of species/state  i) = pii 

P(total persistence species/state i) = ∑ i  pii  i=1, . . . k 

 

Community properties 
 

Entropy: The extent and nature of ordering of seres 

(states) can be examined following the concept of entropy. 

In the present context entropy is defined as the 

uncertainty in the composition of the system. Perhaps the 

earliest use of entropy in ecology is in the use of 

Shannon-Wiener index that measures informational 

entropy of a system. In a succession having Markovian 

property, it is pertinent to ask what is the type of 

repetition (or cyclicity). Secondary succession belongs to 

the category of cyclic (asymmetric) succession. From the 

P matrix where the row total is unity, E
post

 i.e., entropy 

after successional progression for each state can be 

calculated using the following expression: 
 

E
post

=  -∑ jpijlog2pijj=1, . . . . ,k 

The second matrix (Q) where qij represents the 
probability that the given transition is preceded by any 
other transition. The column total of qij matrix sums to 
unity. E

pre
  i.e., entropy before the development of seres 

(states), can be calculated as: 
 

E
pre

 = -∑ jqijlog2qijj=1, . . . . -,k 
 

The normalized entropies can be obtained as: 
 

R
post

 = E
post

 / E max 

R
pre

 = E
pre

 /Emax 
 

where Emax(maximum entropy) = - log2 [ 1/(k-1) ] 
 

The entropy of the entire successional system E
syst

 
can also be calculated as follows: 
 

E
syst

 = - ∑ I ∑ jtijlog2tij       i=1, . . . .,k      j=1, . . . . ,k 
tij= mij / T 
T= ∑ I ∑ jmij                       i=1,. . . . . ,k      j=1, . . . . ,k 
 

Results 
 

The vegetation: The recorded data from the permanent plots 
disclosed that the vegetation succession proceeded rapidly 
after the commencement of the observations in 2000, it 
attained almost a stable state after 4-years of vegetation 
progression. Community replacement was a progressive, 
orderly and directional process. In the beginning when 
observations were taken , about 8 to 14 months following 
abandonment of cultivation (S1 patches), the area was mostly 
occupied by annual forbs such as Chenopodium album, C. 
murale, Argemone mexicana, Rhynchosia minima, Tephrosia 
strigosa, and Corchorus trilocculularis, and annual grasses 
like Sporobolus coromandelianus, Dactyloctinium aegyptium  
and Aristida adscensionis. Also there were almost bare 
ground patches that contained only one or a few annual plant 
species. Following two-years of abandonment (S2 patches) 
could be recognized easily with the dominance of perennial 
herbs (e.g.  Pluchea lanceolata, Zaleya pentandra, Tribulus 
terrestris, Fagonia indica, Launaea procumbens and 
perennial grasses including Dicanthium annulatum, Chloris 
barbata, Dactyloctenium scidicum, Chrysopogon aucheri. 
Other patch types, particularly S3, S4 and S5 were rare in the 
first sampling (2000). Whenever they were seen, they 
appeared around the periphery, near the hedges of the 
individual old-fields and represented older vegetation 
compared to vegetation element common after one or 2-year 
of abandonment. They were included in the respective 
categories as per their particular dominant species. 
Chenopodium album was relatively the abundant species in 
the first year which in many countries including Pakistan 
appears as a dominant element in the initial stage of 
secondary succession presumably because of its high 
dispersal ability and allelopathic potential (Shaukat, 1985; 
Holzner & Numata, 2013). After the first year two 
noteworthy changes occurred: a rapid decline in the annual 
species and an increase in perennial species both 
dicotyledonous species and perennial grasses. Apparently, 
perennial grasses mentioned above are more adapted to 
grazing and other disturbances and they usually reproduce by 
vegetative mode as well as through seeding; therefore, they 
persist for longer duration and even prevail in the disclimax 
communities. The perennial herbs, small shrubs or under 
shrubs dominated during 2002 to 2003 (for two years) and 
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subsequently (2004) shrubs such as Abutilon indicum, A. 
glaucum and Prosopis juliflora attained dominance. Prosopis 
juliflora, an exotic species from South America that can be 
seen invading different patches and suppressing the other 
herbaceous perennials and shrubs owing to its allelopathic 
nature (Khan & Shaukat, 2006; Siddiqui et al., 2009). 
Besides, this species is fairly drought and salinity tolerant 
and invades saline and disturbed soils with low moisture 
regimes replacing the native shrub species (Khan & Shaukat, 
2006). Thus when it invades an area, particularly a disturbed 
area it rapidly achieves dominance and attains the position of 
disclimax. Any burning or cutting in such areas also favours 
its growth and the species quickly achieves the dominant 
status after any major perturbation. 
 
PCA ordination: To examine the vegetation changes over 
the sampling period (2000-2004) a principal component 
analysis (PCA) of the covariance matrix of transformed  
cover estimate data (Braun-Blanquet scale) was 
performed for all the states (patches) and for species 
recorded in at least 5 plots (Fig. 1). The first component 
explained 43.74% of the total variance while the second 
component accounted for 37.20% of the variance. It is 
apparent from the PCA ordination that the years of 
sampling, corresponding to the duration of the secondary 
succession occurred sequentially in the ordination plane, 
from the left to right of the configuration (Fig. 1). The 
ordination also disclosed that the species composition of 
the assemblages of first year of succession differed 
greatly from those for the rest of the year (the 
composition of the states is given earlier). 
 

Transition matrix: A transition matrix that comprises of 

probabilities that a system currently in a state will be in 

some state j in a next time step (one year in this case). The 

calculated transition matrix based on 5 years data of the 

permanent plots and averaged over the years is as follows: 
 

Table 1. Transition probability matrix for the old-fields of 

Malir-Landhi area. 

States S1 S2 S3 S4 S5 

S1 0.14 0.48 0.21 0.15 0.02 

S2 0.03 0.26 0.51 0.16 0.04 

S3 0.01 0.03 0.82 0.10 0.04 

S4 0.01 0.02 0.05 0.82 0.10 

S5 0 0.01 0.02 0.06 0.91 

 
Table 1 shows that the high probabilities are 

generally located on the principal diagonal which is 
presumably because most of the patch (state) types (S2, 
S3, S4 and S5) are predominately composed of perennial 
species and these species persist for more than a year. The 
highest transition probability (0.91) was for S5 to S5. 

A test was performed to determine if the transition 
probability matrix is a zero-order probability matrix. A 
zero-order transition probability matrix would mean that 
all the future states of the system are independent of the 
previous states. This also implies that all the rows are 
equal (here row sum is unity). As a consequence of this 
the replacement of any patch (species consortium) would 
be dependent on the species abundance of a given patch. 
The observed probabilities of the transition matrix do not 
fit this model (χ

2
 = 994.8; df= 16; p<0.001), in part this is 

owing to the fact that self-replacement probabilities (i.e., 
the diagonal probabilities), in general, are large. This 
shows that the replacement of species (patches) is not 
dependent on the proportional abundance of species that 
predominately constitute various patch types. 
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Stability: The stability of the system needs to be 

evaluated. A simple measure is to employ the frequency 

matrix of states. One such stability measure is calculate 

the ratio of the sum of frequencies on the principal 

diagonal (i.e., the trace of the matrix) to the total sum of 

frequencies of the matrix (Rego et al., 1993): 

 

Stability = ∑ fii/ ∑ fij   ……..i=1,…S; j=1, ….S 

 

The transition matrix P, as pointed out earlier, can 

also be employed to simulate the equilibrium or the stable 

state of the system, i.e., the species composition that 

would be attained by the terminal community. Such 

equilibrium vector can either be computed by successive 

multiplication of the transition matrix P by an arbitrary 

initial vector until stabilization or by calculating the first 

eigenvector (i.e., eigenvector corresponding to the largest 

eigenvalue). The ratio of the largest eigenvalue λ1 to the 

second largest eigenvalue  λ2  i.e.,  |λ1|  /  |λ2|  provides the 

rate at with which the system approaches towards stability 

because matrix P is stochastic λ1 is=1. 

 

ρ = |λ1|  /  |λ2| 

 

The ratio of the two largest eigenvalues for this study 

was found to be 1.175. For the purpose of comparison, the 

ratios of the eigenvalues |λ1|  /  |λ2| for various transition 

matrices of previous studies are given in Table 2. 

 

Table 2. The Ratio of the modulus of the first two largest eigenvalues |λ1|  /  |λ2|  for transition matrices of animal 

or plant communities. 

S. No. Community Reference |λ1|  /  |λ2| 

1. Mixed hardwoods (New Jersey) Horn (1975a) 1.57 

2. Mixed hardwoods (Connecticut) Waggoner & Stephens (1970) 1.34 

3. Termites in Ghana Usher (1975)  3.82 

4. Predator and prey mites on oranges  Huffaker (1958) 5.60 

5. Heathland (Netherland) Lippe et al., (1985) 1.58 

6. Oldfield succession (Karachi, Sindh) Shaukat and Khan (this study)  1.175 

 

Evidently, the ratio found in this study was the 

smallest of all those previously reported. It is also 

apparent from Table 2 that the eigenvalue ratios of the 

processes involving animals are larger than those of 

forest succession. It is not certain whether it truly 

represents the difference between animal and plant 

succession. For the current study the ecosystem mostly 

includes the early part of secondary succession that 

involves mostly herbaceous (or shrubby) vegetation. The 

stability of such vegetation is expected to be low as the 

constituent species prevailing in plots are mostly short-

lived (exception being Prosopis juliflora a tall shrub to a 

small tree) and the vegetation could change relatively 

easily by even slight perturbation. Given the longevities 

of various species involved in the sere such a result for 

stability test is not unexpected. The community structure 

converges in the long run to the equilibrium.  

 

Turnover rates: Theturnover rates of state i into j and the 

corresponding turnover time are given in Table 3. 

Turnover rates were high in the beginning of the 

vegetation dynamics (first two states) and then the rate 

declined dramatically (states 3 and 4) and finally it was 

very low in state 5. On the other hand, turnover time 

followed the inverse trend with a non-significant negative 

correlation (r = -0.7098). 

 
Replacement: Replacement of a species (patch) j for 

state 1-5 and the replacement by species (patch)i  are 

given in Table 4. 

Replacement of species (patch) j declined rapidly 

with the state (1 to 5). On the other hand, replacement by 

species (patch) i increased with the state. The two 

attributes were found negatively related (r= 0.835ns) 

though non-significant (Table 5). 

Persistence 
 

Total persistence of all states = 2.95 
 

Evidently the persistence of the species (states) 
increased rapidly with the onward march of the 
succession. The total persistence of all states (2.95) was 
also high though no such parameter values are available 
for comparison. 
 

Entropy: E
post

i.e., entropy after successional progression and 
E

pre
i.e., entropy before the development of seres (states) and 

their normalized values are presented in Table 6. 
 

Table 3. Turnover rates (Ti) and the expected turnover time 

( τi ) between states for the succession. 

States 1 2 3 4 5 

Turnover rate 0.86 0.74 0.18 0.18 0.04 

Turnover time 1.162 1.351 5.555 5.555 24.999 

 
Table 4. Replacement of a Species (patch) j with the and 

replacement by species (patch) i. 

States 1 2 3 4 5 

Replacement of 0.84 0.70 0.14 0.08 0.09 

Replacement by 0.387 0.450 1.851 1.851 3.703 

 

Table 5. Persistence of species (patch) is presented in Table 

5 as follows. 

States 1 2 3 4 5 

Persistence  0.14 0.26 0.82 0.82 0.91 

 

Table 6. Pre and post- entropy of the successional system, 

their normalized values and the total entropy of the system. 

States 1 2 3 4 5 

 Entropy type 

Epost 1.901 1.761 0.970 0.962 0.546 

Epre 1.615 2.019 1.355 1.240 0.598 

Rpost 0.950 0.880 0.485 0.481 0.273 

Rpre 0.807 1.009 0.677 0.620 0.299 

Esyst = 3.550     
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Both Pre- and Post-entropies and their normalized 

quanta declined steadily with the onward march of the 

chronosequence though post-entropy declined with a 

slightly lesser rate. However, the total entropy E
syst

of the 

system was moderately high, which perhaps indicated that 

though the successional ecosystem under study reached 

its destined culminating stage (disclimax) it had sizable 

entropy component. 
 

Discussion 
 

While testing of ecological models it is necessary that 
the behaviour of the system under investigation should be 
well-understood. From this standpoint the abandoned field 
(old-field) vegetation offers an effective test data for 
several basic reasons. Considerable understanding has been 
achieved for this type of disturbed ecosystem. It is 
noteworthy that a large number of ecologists have focussed 
attention on the vegetation of abandoned fields in North 
America and Europe (Bazzaz, 1975; Shaukat, 1985; 
Benjamin et al., 2005; Stolcova, 2002; Osbornova et al., 
2012; Prach et al., 2013). However, Markovian models 
have been rarely utilized in such studies.  Though the 
transition matrix modelling approach used here did not 
explicitly incorporate the environmental and interactive 
effects of species that occurred in the successional 
sequence, this was perhaps indirectly expressed by the 
response at the composite level of patches (plots) where 
processes such as allelopathy played a significant role in 
the replacement of species (cf. Osho, 1996, Fernandez et 
al., 2013). In fact it has been demonstrated by Shaukat 
(1985) that allelopathy plays an important role in species 
replacement by way of inhibition of germination and 
growth during the old-field succession in London, Ontario, 
particularly at the initial stages of the sere. 

Before making any predictions using the Markov 

chain model, we must assure that the stochastic model 

possesses Markovian property. Only by conforming to 

this we can be confident of accuracy and precision of 

prediction. To test whether the calculated transition matrix 

confirms to Markovian property, appropriate statistical 

test developed by (Anderson & Goodman, 1957 and 

Harbaugh & Bonham-Carter, 1970) was employed. This 

test yielded a significant value of chi-square which would 

mean that the successional process at hand was a non-

independent sequence in character and therefore 

Markovian in its broader perspective and not merely 

random (sensustricto, a sequence of statistically 

independent events). The significance of the χ
2 

test also 

implies that the process is not stationary. The first of the 

inference is regarded as fairly robust (Usher, 1979) and 

leads to the generalization that the “successional process 

is not independent in character” which mathematically 

conforms to a first order Markov chain. For the second 

statement Usher (1979) suggested that on theoretical 

grounds a generalization could be drawn that “most 

ecological succession are non-stationary processes”. 
Entropy and Boltzman‟s second law of thermodynamics 

are the fundamental themes of organization of ecosystems 
and succession. This direct linkage to thermodynamics and 
entropy was noticed in several pioneering works in the field 
of landscape ecology (see Cushman, 2017). Ecosystems are 
open systems that continuously exchange energy and entropy 

with their external environment that leads to continuous 
evolution of the internal structure and function of the 
successional ecosystem. In accordance with the universal 
law of the maximal energy dispersal, an ecosystem evolves 
toward a stationary state in its surroundings by consuming 
free energy through diverse mechanisms. The results of this 
and several other studies are consistent with the hypothesis 
that the development of successional ecosystems leads to 
greater interactions and organization thereby moving towards 
lesser disorder (entropy) (Holdaway et al., 2010). The pre-
succession entropy declined to a lesser degree because 
perhaps the ecosystem before the abandonment of the field 
was more organized (organismic sensu Clements). 
Accordingly, E

pre
 declined at a lower rate than E

post
after the 

completion of each stage (state) there was less disorder 
compared to that at the beginning of the seral stage. The 
decreasing law of entropy is a characteristic of an organized 
system (Chakrabarti & Ghosh, 2010). The extent of 
organization at any stage is quantified by the loss of entropy 
(or gain of information). EP (entropy production) changes 
owing to dynamic change from r- to K-selected dominance 
of communities through time.For example, using a mature 
ecosystem, a maximum in EPmature could be tested for by 
manipulating conditions more or less favorable (e.g. through 
experimental water stress, reducing the in incoming solar 
energy or removing certain species) and looking for the 
expected increase or decrease in ecosystem entropy 
production (Holdaway et al., 2010). In long duration studies 
of succession, species could be limited only to r- or K-
strategists to test for changes in dEP/dt. In a successional 
sequence, r-strategists attain dominance in the early stage of 
succession and are gradually replaced by K-selected species. 
In order to make detailed investigation of entropy change, 
the accuracy and comparability of the energy balance 
measurements improved methods are available (Holdawayet 
al., 2010). The higher the ecological diversity, the lower the 
production of entropy per unit of biomass, because resources 
are better utilized and support the growth of the entire 
spectrum of ecosystem hierarchy. This fact is also borne out 
by the result of the present study. Esyst was moderately high 
which perhaps indicates that though the successional 
ecosystem under study reaches its destined culminating stage 
(disclimax) it has sizable entropy component as it is not a 
primary succession that is more organismic (sesu Clements) 
with less entropy (because of greater interactions between 
the constituent species), while in the secondary succession in 
the beginning the substratum  retains a vast and diverse pool 
of propagules of species representative of different 
succession stages i.e., most species of the chronosequence 
are present at the beginning (though possibly with little 
interaction with each other) (Egler, 1954) and different 
species take the role of dominance at different times, 
therefore the system contains moderate  entropy when taken 
as whole. Instead, before abandoning the field simplified 
ecosystems with fewer species (such as agricultural 
monocultures) do not use available resources and co-
products as effectively, resulting into a higher production of 
entropy per unit of time and biomass. Nonetheless, it has 
been noted that relationship between succession and entropy 
production depends on vegetation characteristics (Stoy et at., 
2014). It must be pointed out that Soil entropy also changes, 
in addition to vegetation alteration during succession, owing 
to the degree of soil weathering (residual soil) and soil 
structural development (fluxes) (Li, 2000). 
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Conclusions 

 
Lastly, it can easily be concluded that Markov models 

provide interesting insight into the process of secondary 
succession on abandoned fields and instead of focussing on 
individual dominant species of successive stages we can 
consider the vegetation patches (plots of vegetation at 
various stages of succession) and trace their dynamics. 
Ecological succession as suggested by this study and other 
workers seem to follow the second law of thermodynamic 
and the entropy appears to decrease as the secondary 
succession proceeds to termination (disclimax).  Although 
not done here but perturbations including fire and grazing 
intensity can also be conveniently incorporated into the 
Markovian models. 
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