TAXONOMIC SIGNIFICANCE OF STEM, LAMINA AND EPIDERMAL MICRO-CHARACTERS IN UNDERSTANDING CHENOPODIACEAE AND AMARANTHACEAE ALLIANCE

MOHAMED E. TANTAWY, MOHAMED A. SALIM^{*}, AYA T. BAYOUMY AND ALSAFA H. MOHAMED

Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt *Corresponding author's email: mohamed.salim@sci.asu.edu.eg

Abstract

Despite the importance of Chenopodiaceae and Amaranthaceae, the two families were not thoroughly explored and discussed from taxonomic point of view, because of the limited taxonomic characters and the succulent nature of several species. The stem and lamina anatomical characteristics as well as epidermal micro-characters of 35 wild and cultivated taxa (29 of Chenopodiaceae and six of Amaranthaceae) were investigated using LM and SEM. The specific objective is to estimate the taxonomic weight of these characters in understanding the Chen-Am alliance. The obtained stem, lamina and epidermal micro-characters were considered diagnostic at generic and specific level. Two major aspects of growth: normal secondary growth (five taxa belonging to Chenopodiaceae) and abnormal growth (30 taxa of Chenopodiaceae & Amaranthaceae). Five sub-types of anomalous growth were recognized *viz*, successive cambia, medullary bundles, included phloem, included phloem with bipolar vascular bundles or included phloem with medullary bundles. Six types of lamina anatomy were recognized based on mesophyll type, size and distribution of kranz cells *viz*, atriplcoid, kochioid, kranz-ventrodorsal, salsoloid, flat-leaved salsoloid and non-kranz type. Brachyparacytic and anomocytic stomata, rhomboid crystals, platelets, fissured crust, and granules epicuticular wax were recorded. Most of the obtained data reinforce the alliance between the studied taxa of Chenopodiaceae and Amaranthaceae. The most common characters that support this alliance are anomalous secondary growth (medullary, successive, included phloem), leaf mesophyll (dorsiventral), Kranz anatomy (atriplcoid type), trichomes, druses and sandy crystals, C_4 photosynthetic pathway and epidermal characteristics.

Key words: Amaranthaceae, Anatomy, Chenopodiaceae, Lamina, Micro-characters, Stem.

Introduction

The Chenopodiaceae Vent. and Amaranthaceae Juss. are two closely related families of Caryophyllales (Dahlgren, 1980; Cronquist, 1988; Thorne, 1992; Takhtajan, 2009; Kadereit *et al.*, 2003 and Reveal, 2012). Recently, it has been proposed to merge both families in Amaranthaceae *s.l.* (APG III and IV, 2009 & 2016; Judd *et al.*, 2002) and referred to Chen-Am alliance (Pratt, 2003).

The Amaranthaceae s.l. is of worldwide distribution, comprising nearly 169 genera and 2040 species (Christenhusz & Byng, 2016). According to Stevens 2001 onwards, Amaranthaceae s.l. comprises five subfamilies viz.: Amaranthoideae, Polycnemoideae, Betoideae. Salicornoideae and Chenopodoideae. Amaranthaceae s.s are classified into three subfamilies: Amaranthoideae, Polycnemoideae Gomphrenoideae and while Chenopodiaceae are classified to four distinct subfamilies: Chenopodioideae, Salsoloideae, Salicornioideae and Microteoidea (Takhtajan, 2009). Members of these families are dominant in arid, saline, and temperate regions. They are morphologically and anatomically similar and also show C₄ photosynthetic pathway (Borsch *et al.*, 2001).

The stem anatomy of Chenopodiaceae and Amaranthaceae is characterized by unusual anatomical features, such as anomalous secondary growth and occurrence of two or more rings of primary vascular bundles (Gibson, 1994). These features may be useful in discrimination between the two families (Cronquist, 1981; Gibson & Nobel, 1986). Fahn & Zimmermann (1982) reported the abnormal secondary growth occurrence in *Atriplex halimus* (successive layers) when a new cambium appears outside the primary vascular bundles in the pericycle. Heklau *et al.*, (2012) studied the wood

anatomy of Chenopodiaceae (Amaranthaceae *s. l.*) and explained different growth aspects occurred *viz.*, successive cambia, included phloem and medullary bundles. De Bary (1884) reported that in the abnormal secondary growth the cambium arose from parenchyma cells between the primary vascular bundle and remained active during the plant life (in Amaranthaceae). Wilson (1924) thought the permanent renewal of cambium. Mao (1933) reported that the medullary bundles of the family formed from a permanent active cambium, while Schinz (1925), believed that the secondary vascular tissue in the stem arise from successive cambia restricted activity.

Kishore (2002) recorded a rayless xylem due to a short life cycle in some studied taxa of Amaranthaceae. Duarte & Debur (2004) found that the most obvious anatomical characteristics of the stem was continuous siphonostelic structure, vascular tissue of only vertical system and two to six vascular bundles in a bipolar position in pith in *Alternanthera brasiliana*. Ravindra *et al.*, (2019) studied the secondary xylem in some taxa and reported that stem sections showed the renewal cambium by replacing with new segments and the secondary phloem formed by earlier cambial segments form isolated islands of phloem, distributed within conjunctive tissues, embedded in the secondary xylem, as the stem grew, a complete ring of cambium was formed.

In Amaranthaceae the dorsiventral mesophyll is the most common while Chenopodiaceae exhibit dorsiventral to centric mesophyll or homogenous rounded cells (Metcalfe & Chalk, 1950).

Chenopodiaceae have the highest number of C_4 species, succulent leaves which are drought tolerant with great diversity in leaf anatomy. The C_4 type of leaves vary in structure, arrangement of chlorenchyma, arrangement

In Chenopodiaceae, the leaf structure is of two main types; non Kranz and Kranz type (depending on layers of chlorenchyma and vascular bundle embedded in water storage cells). Carolin (1983); Freitag & Stichler (2000 & 2002) and Kadereit *et al.*, (2003) recorded 6 types of Kranz anatomy *viz*. Atriplicoid, Kochioid, Salsoloid, Salsinoid, Schoberioid or Kranz-Tecticornoid (Chenopodiaceae). Butnik *et al.*, (2017) reported 14 leaf mesophyll types of kranz anatomy, separating them according to the presence of water bearing cells and spongy parenchyma (Chenopodiaceae and Amaranthaceae).

Metcalfe & Chalk (1950) described various types of hairs (vesicular in Chenopodiaceae or candelabra in *Aerva*; Amaranthaceae) and stomata (anomocytic and anisocytic) on ab- and adaxial leaf surface. Carolin (1983) used leaf trichomes and other morpho-anatomical characters to create an evolutionary suggestion for the Chen-Am alliance. El Ghazali *et al.*, (2016) studied leaf surface of 9 species in Chenopodiaceae and reported sunken, slightly depressed, leveled or slightly raised stomata.

Fank-de-Carvalho *et al.*, (2010) reported that the leaf surfaces had epicuticular wax, uniseriate epidermis, amphistomatic leaves, anomocytic stomata in some *Gomphrena* spp. (Amaranthaceae). Members of Chenopodiaceae have small platelets with parallel orientation not restricted to the cells near stomata (Engel & Barthlot, 1988).

Ogundipe & Kadiri (2012) found that the epidermis had curved anticlinal wall on both surfaces, straight anticlinal wall on adaxial surface, anomocytic or paracytic stomata in *Alternanthera* and unicellular, multicellular, candelabra, filiform or peltate trichome of some species in Amaranthaceae.

The specific objective of the present work was to study, investigate and collect the diagnostic stem and lamina anatomical characteristics as well as epidermal micro-characters of the studied taxa. Discus, analyze and evaluate whether these characters can provide additional contribution to the understanding of the closure relationship between Chenopodiaceae and Amaranthaceae.

Material and Methods

Sampling: In the present study, 35 taxa were collected from different natural habitats and botanical gardens in Egypt. Of these, 29 taxa belong to Chenopodiaceae (representing 14 genera, 26 species and three subspecies) and six taxa to Amaranthaceae (representing four genera and six species). The identification of the 30 wild taxa was done with the help of Täckholm (1974) and Boulos (1999), while the cultivated taxa were identified with the aid of Bailey (1949). Synonyms were derived from International Plant Names Index (IPNI; http://www.ipni.org/ipni/plantnamesearchpage.do) and The Plant List (http://www.theplantlist.org/) as shown in Table 1.

Micro-morphological characteristics

Stem and lamina anatomical investigation: Segments from stem and lamina (at third internode) were taken and

preserved in F.A.A.sloution (Formalin. Glacial acetic acid. Alcohol). Cross section of the stem and vertical section of lamina were prepared using hand microtome at 10-16 μ m, double stained using a combination of safranine and light green then mounted by Canada Balsam according to the customary method of Johansen (1940). The sections were examined using light microscope and photographed by Canon G15digital camera. The internal structures were described with the help of Eames (1929) and Metcalfe & Chalk (1950). Butnik *et al.*, (2017) was followed for Kranz anatomy terminology and description.

Epidermal characteristics: It was carried out for stem peels (in six studied taxa with rudimentary leaves belonging to Chenopodiaceae) and lamina epidermal peels (Stace 1984). The photomicrographs were taken using Canon power- shot G15, 12.1 mega pixels. For SEM investigation, small portions of fresh or dried leaves were fixed on a stub with a double-sided adhesive tape then coated with gold in sputter coater (SPI-Module). Both abaxial- and adaxial surfaces of the lamina was examined and photographed by SEM (JEOL-JSM-5500LV) using high vacuum mode at the Regional Center of Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt.

Results and Discussion

The stem, lamina anatomy as well as epidermal characteristics using LM and SEM of the investigated taxa are presented in Tables 2, 3 & 4. Some of the specific structures (micro-photographs) are illustrated in Figs. 1, 2 & 3 in order to simplify deducing the most diagnostic characters.

Stem anatomical characteristics: The stem outline was triangular in Beta vulgaris subsp. cicla and B. vulgaris subsp. Maritima and terete in 5 studied taxa, ridged and furrowed in 10 taxa or \pm terete in the remaining 18 taxa (Table 2). Trichomes were e-glandular, branched, candelabra in Aerva javanica, e-glandular, multicellular, uniseriate in Alternanthera dentata, unicellular glandular and e-glandular in Amaranthus caudatus, unicellular, glandular in Celosia spictata all belonging to Amaranthaceae. In Chenopodiaceous taxa glandular vesicular trichomes were recorded in Atriplex halimus, A. leucoclada, A. lindleyi subsp. inflata, A. nummularia, A. semibaccata, Chenopodium opulifolium and C. quinoa, unicellular and multicellular, glandular, and e-glandular in Bassia arabica and Halopeplis amplexicaulis, glandular vesicular and unicellular in Salsola inermis, glandular unicellular in Salsola volkensii, e-glandular unicellular and multicellular in Bassia eriophora, B. indica and Salsola kali, or wanting in the remaining 17 studied taxa (Chenopodiaceae and Amaranthaceae). This finding was in accord with Metcalfe & Chalk (1950) who recorded a diverse type of trichomes varying between uniseriate and vesicular in Chenopodiaceae and special types with restricted occurrence in Amaranthaceae. Cuticle was thick in 9 studied taxa or thin in the remaining 26 taxa (Table 2). The multiseriate epidermis was recorded in Anabasis articulata and Haloxylon salicornicum and the uniseriate epidermis was present in the remaining 33 studied taxa. The

epidermis was tangentially- radially elongated in *Atriplex halimus, A. lindleyi* subsp. *inflata* and *A. semibaccata*, it was tangentially elongated in 13 studied taxa or radially in 19 taxa. The cortex of collenchyma and parenchyma in 6 studied taxa was palisade, spongy and polyhedral parenchyma (*Arthrocnemum macrostachyum*), chlorenchyma, collenchyma and polyhedral parenchyma (in 5 taxa), collenchyma, parenchyma and sclerenchyma (in 6 taxa), palisade, spongy, parenchyma and sclerenchyma (*Anabasis articulata, Halocnemum strobilaceum, Haloxylon salicornicum, Sarcocornia fruticosa* and *S. perennis*) or collenchyma, chlorenchyma, parenchyma and sclerenchyma (in 12 taxa). The 6 studied taxa with rudimentary leaves and articulated stem belonging to Chenopodiaceae (as assimilating shoots) were characterized by well-developed cortex and narrow pith (Fig. 1; M, N & O), which was in accord with previous studies (Zhibin & Zhang, 2011; Saad Eddin & Doddem, 1986).

Sandy crystals were found in *Beta vulgaris* subsp. cicla, *B. vulgaris* subsp. maritima and Amaranthus lividus, druses & sandy in Amaranthus caudatus, Salsola kali and Traganum nudatum, druses in 15 taxa or wanting in the remaining 14 studied taxa. The type and occurrence of crystals in the present study was in agreement with Grigore *et al.*, (2014) who reported the presence of calcium oxalate crystals in many halophytic Chenopods.

Fig. 1. (A- L) Hand drawings and micro-photographs showing different growth aspects of the stem of the studied taxa. (A, B) *Bassia eriophora*; Normal secondary growth. (C, D) *Atriplex leucoclada*; Abnormal secondary growth with successive cambium rings. (E, F) *Chenopodium album*; Abnormal secondary growth with medullary bundles. (G, H) *Suaeda pruinosa*; Abnormal secondary growth with included phloem. (I, J) *Alternanthera dentata*; Abnormal secondary growth included phloem & bipolar bundles. (K, L) *Amaranthus lividus*; Abnormal secondary growth with included phloem & medullary bundles. (M- O) micro-photographs showing different growth aspects of the assimilating stem. (M) *Halocnemum strobilaceum*, (N) *Anabasis articulata*, (O) *Haloxylon salicornicum*. (Pa.): Palisade tissue, (Sp.): Spongy tissue, (WB.): Water bearing cell.

No.		Taxa	Locality/ Source
1.		Anabasis articulata (Forssk.) Moq.	El Alamein, Wadi El- natrun road, Mediterranean coastal
		Arthrocnemum macrostachvum (Moric.) K. Koch	
2.		= Salicornia macrostachya Moric.	Borg El-Arab, Mediterranean coastal region
3.		Atriplex halimus L.	Marriott lake, Mediterranean coastal region
4.		A. leucoclada Boiss.	//
5.		A. lindleyi subsp. inflata (F.Muell) P. G. Wilson	Borg El-Arab, Mediterranean coastal region
6		<i>A nummularia</i> [ind]	Mazhar Botanical garden Cairo
0. 7.		A. semibaccata R. Br.	Marriott lake. Mediterranean coastal region
o		Bassia arabica (Boiss.) Maire & Weiller	Wadi Hahia Marza Matruk Maditarranaan acastal ragion
0.		<i>=Chenolea arabica</i> Boiss.	wadi Habis, Marsa Matrun, Mediterranean coastar region
9.	ae	B. eriophora (Schrad.) Asch.	Marriott lake, Mediterranean coastal region
	ace	=Kochia eriophora Schrad. B indiag (Wight) A L Scott	
10.	ibo	=Kochia indica Wight	//
11.	dou	Beta vulgaris subsp. cicla (L.) W. D. J. Koch *	Botanical garden, Faculty of Science Ain Shams University
12.	Che	B. vulgaris subsp. maritima (L.) Thell.	Borg El-Arab, Mediterranean coastal region
13		-Beta martuma L. Chenopodium album L.	Marsa Matruh Mediterranean coastal region
14		C murale L	//
15		C opulifolium Schrad ex W D I Koch& Ziz	Borg El-Arab Mediterranean coastal region
1 <i>5</i> . 16.		<i>C. quinoa</i> Willd.	Agriculture Research Center, Cairo
17		Halocnemum strobilaceum (Pall.) M. Bieb.	Porg El Arch Mediterrangen gegetel region
17.		=Salicornia strobilacea Pall.,	Borg El-Arab, Mediterralean coastar region
18		Halopeplis amplexicaulis (Vahl) UngSternb. ex Ces.,	Wadi Habis Marsa Matrub Maditarranaan coastal ragion
10.		= Salicornia amplexicaulis Vahl	wadi Habis, Marsa Marun, Medherranean coastar region
		Haloxylon salicornicum (Moq.) Bunge ex Boiss.	
19.		=Haloxylon schweinfurthii Asch.	El Salam road, Cairo
		<i>= Hammada elegans</i> Botsch.	
20		Salsola inermis Forssk.	
20.		= Bassia pulverulenta H. Lindb. - Caroxylon inermis (Forssk) Akhani& Roalson	Borg El-Arab, Mediterranean coastal region
21.		S. kali L.	Marriott lake, Mediterranean coastal region
		S. volkensii Schweinf. & Asch.	
22.		= Caroxylon volkensii (Schweinf. & Asch.) Akhani&	. //
		Roalson	
23		- Arthrochamum fruticosum (L.) A. J. Scott	Borg El-Arah Mediterranean coastal region
23.		= Salicornia fruticosa (L.) L.	borg El-Arab, Mediterratean coastar region
		S. perennis (Mill.) A. J. Scott	
24.		= Salicornia perennis Mill.	//
		= Arthrocnemum perenne (Mill) Moss	
25.		Spinacia oleracea L. *	Botanical garden, Faculty of Science, Ain Shams University
		<i>Suaeda maritima</i> (L.) Dumort	
26.		= Suaeda indica (Willd) Moq.	Borg El-Arab, Mediterranean coastal region
27.		S. pruinosa Lange	Marsa Matruh, Mediterranean coastal region
20		S. vera Forssk. ex J.F. Gmel.	
28.		= Salsola fruticosa (L.) L., = Suaeda fruticosa (L.) Dumort	Borg El-Arab, Mediterranean coastal region
29.		Traganum nudatum Delile	Wadi Habis, Mediterranean coastal region
30	۲D	Aerva javanica (Burm. f.) Juss. Ex. Schult.	Nuwaibaa Taba road South Sinci
50.	cea	<i>= Iresine javanica</i> Burm. f.	
31.	tha	Alternanthera dentata Scheygrond *	Botanical garden, Faculty of Science, Ain Shams University
32. 33	ran	Amaraninus cauaaius L. A lividus I	// //
33. 34	ma	Celosia argentea L. *	El Orman botanical garden. Cairo
	A		

//

 Table 1. List of plant taxa and their collection localities in Egypt.

 34.
 The celosia argentea L.*

 35.
 C. spicata Spreng. *

 (=): synonym, (//): as previous, (*): cultivated species

Ī				Table 2.S	tem anatomical ch	aracteristics of the ta	<u>xa studied u</u>	inder light micr	oscope	-	
	Outline	Trichomes	Cuticle	ida .	dermis	Cortex		Pith	Growth aspect	Crystals	Fascicular & inter- fascicular xylem
				Rows	Shape		Width	Cells			components
	Terete ± Terete	Absent //	Thin //	Multiseriate Uniseriate	Tangential Radial	Pa., Sp., Par., Scl. Pa., Sp., Par.	Narrow //	Thin walled //	Abnormal Included phloem	Druses Absent	Same Different
з.	Ridged & furrowed	Glandular vesicular	//	//	Tangential/ radial	Col., Chl., Par.	Wide	//	Abnormal successive cambia	Druses	Same
4	\pm Terete	11	//	//	Tangential	Col., Par., Scl.	Narrow	Lignified	//	"	//
5.	Ridged & furrowed	11	//	//	Tangential/ radial	Col., Chl., Par.	Wide	Thin walled	//	//	//
٦. 9	//	2	11 1	11 1	Radial	Col., Chl., Par., Scl.	Narrow Wide	Lignified	Abnormal Included phloem	11	Different
8		Unicellular glandular & multicellular e diadular &	. =		1 augential 1 autai Radial	Col., Par., Scl.	Narrow	11111 wancu //	Normal Successive Camola	Absent	Different
c	E	e-glandular unicellular &	Ē			//	- H 111		2		ŭ
<i>.</i>	± l erete	multicellular	Ihick	<u> </u>	<u> </u>	:	Wide	1	// · ·	1	Same
10.	// Trianoular	// Ahsent	= =	2	// Tanoential	// Col Chl Par Scl	=	2	// Ahnormal medullarv hundles	// Sand	// Different
12.	minguin //	//		. ~	1 ang 2000 a				Normal Normal	//	//
13.	± Terete	//	//	//	//	//	//	//	Abnormal medullary bundles	Druses	//
14.	Ridged &	11	//	//	Radial	//	Narrow	//	Normal	"	//
15.	//	Glandular vesicular	//	11	//	//	Wide	//	Abnormal Included phloem	//	//
16.	\pm Terete	//	//	//	Tangential	//	//	//	Abnormal medullary bundles	//	//
17.	//	Absent Hnicellular &	Thin	//	Radial	Pa., Sp., Par., Scl.	Narrow	//	Abnormal Included phloem	Absent	//
18.	//	multicellular glandular &	//	//	11	Col., Par., Scl.	//	//	//	Druses	Same
19.	Terete	e-glandular Absent	//	Multiseriate	Tangential	Pa Sp Par Scl.	//	//	//	//	1
	E	Glandular, vesicular &					I.		2		
70.	± l erete	unicellular	~	1	Kadial	Col., Par.	Narrow	//	//	Absent	Different
21.	Terete	e-glandular unicellular & multicellular	//	11	11	Col., Chl., Par., Scl.	Wide	//	//	Druses & sand	"
22.	± Terete	Glandular, unicellular	//	1	Tangential	Col., Par.	Narrow	11	//	Absent	Same
23. 24.	2	Absent	22	2	Radial	Pa., Sp., Par., Scl.	2	2	11	==	~~~
25.	Terete	: <		. ~	. ~	Col., Par.	Wide	Pith cavity	Abnormal medullary bundles	. ~	. ~
26.	± Terete	11	Thick	11	11	Col., Par., Scl.	Narrow	Thin walled	Abnormal Included phloem	11	11
27.	Ridged &	11	Thin	//	//	Col., Chl., Par., Scl.	Wide	//	//	"	//
28.	//	//	//	"	"	//	Narrow	//	//	//	//
29.	\pm Terete	Absent	Thick	//	Tangential	Col., Par.	11	//	//	Druses & sandy	11
30.	//	e-glandular candelabra	Thin	//	11	Col., Chl., Par., Scl.	Wide	Lignified& nonlignified	//	Druses	//
31.	//	e-glandular multicellular, uniseriate	11	11	11	//	11	Thin walled	Abnormal Included phloem with bipolar bundle	//	11
32.	Terete	Unicellular glandular &e-glandular	11	//	Radial	Col., Chl., Par.	Narrow	//	Abnormal medullary bundles	Druses & sand	Different
33.	± Terete	Absent	//	"	Tangential	//	Wide	//	Abnormal Included phloem with medullary bundles	Sand	//
34.	Ridged & furrowed	//	//	11	Radial	Col., Par.	//	//	Abnormal successive cambia	Druses	11
35.	± Terete	Unicellular glandular	//	//	Tangential	//	Narrow	//	//	Absent	//
(//): as	previous, (±)): more or less, (Chl.): isodiar	metric chlor	enchyma, (Col.).	: angular collenchyn	na, (Pa.): palisade, (Pa	r.): polyhedra	al parenchyma, (Scl.): sclerenchyma, (Sp.): spongy		

			Table 3. Lamin:	a anatomical chara	icters of the taxa s	tudied under lig	ht microscope.			
	Outline	Trichomes	Epidermis Shape	Mesophyll type	Palisade	Mechanical tissue	Ground tissue	Crystals	Kranz anatomy	Vascular bundles
		·	'	,	,	I		I	ı	
6.	ı	·		ı	I	ı	ı	ı	ı	
З.	Rounded ab- & adaxially	Glandular vesicular	Tangential	Isolateral	One row ab-& adaxially	Angular collenchyma	Parenchyma (WBT)	Druses	Present	Four
4	Convex ab- & rounded adaxially	11	//	//	//	//	//	//	//	//
5.	Flattened differentiated into midrib & wings	11	//	//	//	Absent	11	//	//	One
6.	Rounded ab- & adaxially	//	//	//	//	Angular collenchyma	11	//	//	Two
7.	Flattened differentiated into midrib & wings	//	//	//	//	Absent	11	//	//	Four
×.	Ovate not differentiated into midrib & wings	Absent	11	Centric	One ring	//	Palisade & parenchyma (WBT)	Sandy	11	14-15
9.	Ribbon like not differentiated into midrib $\&$ wings	1	11	11	//	//	11	Druses	11	Three with numerous peripheral
10.	11	11	//	11	//	//	11	//	//	One with numerous peripheral
11.	Wavy ab- & convex adaxially	//	//	Dorsiventral	One row	Angular collenchyma	Polyhedral parenchyma	Druses & sand	Absent	One
12.	Straight ab- & convex adaxially	//	//	Isolateral	//	//	11	//	//	11
13.	Rounded ab- & straight adaxially	//	//	Dorsiventral	One row	Absent	11	Druses	//	Three
14.	Flattened differentiated into midrib & wings	11	//	Isolateral	One row ab-& adaxially	//	11	Absent	//	One
15.	11	Glandular vesicular	//	//	//	//	11	//	//	Three
16.	Rounded ab- & adaxially	//	//	Dorsiventral	One row	//	//	Druses	//	//
17.	I	ı	ı	I	I	I	ı	ı	ı	ı
18.	Triangular not differentiated into midrib & wings	Absent	Radial	Centric	One ring	Absent	Parenchyma (WBT)	Druses	Present	Four with few peripheral

282

				Ta	uble 3. (Cont'd.).					
	Outline	Trichomes	Epidermis Shape	Mesophyll type	Palisade	Mechanical tissue	Ground tissue	Crystals	Kranz anatomy	Vascular bundles
19.	ı	,	I	I	,	1	1	,	1	ı
20.	Semi- terete not differentiated into midrib & wings	Glandular vesicular	Tangential	Centric	One row	Absent	Palisade, kranz cells &WBT	Druses	Present	Three with numerous peripheral adaxially
21.	Terete	E-glandular unicellular & multicellular	Radial	11	One ring	11	11	11	11	One with numerous peripheral
22.	Semi- terete not differentiated into midrib & wings	Glandular unicellular	Tangential	//	One row	11	"	11	"	One with numerous peripheral adaxially
23.	ı		·	I	I	ı		ı	ı	·
24.		·	·	ı	ı	·		ı	ı	
25.	Rounded ab- & straight adaxially	Absent	Tangential	Dorsiventral	One row	Absent	Folded parenchyma	Druses	Absent	Three & two small, winged strands
26.	Ovate not differentiated into midrib & wings	11	//	Centric	One ring	11	Palisade, kranz cells &WBT	//	Present	One large & 8 small
27.	//		//	//	//	//	Palisade &WBT	Absent	Absent	One large & 11 small
28.	//	//	//	//	//	//	//	//	//	//
29.	Kidney- shaped not differentiated into midrib & wings	1	11	//	11	11	Palisade, kranz cells &WBT	Druses	Present	One with numerous peripheral
30.	Crescent form	e-glandular candelabra	11	Ill-defined	Absent	11	Folded parenchyma	11	Absent	One
31.	Rounded ab- & adaxially	e-glandular multicellular	11	Dorsiventral	One row	11	Polyhedral parenchyma	11	//	Four
32.	Basin-like	1	Radial	//	//	Angular collenchyma	Folded parenchyma	Sandy	Present	Three
33.	Crescent	Absent	Tangential with bulliform cells	//	//	Absent	Polyhedral parenchyma	Druses& sandy	//	//
34.	Rounded ab- & adaxially	11	Tangential	//	//	11	11	Absent	Absent	One
35.	Wavy ab- & rounded adaxially	//	//	//	//	//	Folded parenchyma	Druses	//	//
)	/): as previous, (-): not pract	tically available, ((WBT): water bearing	; tissue						

ŀ		Tabl	le 4. Epidermal chara	acteristics of the taxa studied unde	er light microscope and s	canning electron micros	cope.	
			LM			S	EM	
	Leaf type	Cells shape (Ab-/ Adaxial)	Anticlinal wall (Ab-/ Adaxial)	Stomata type (Ab-/ Adaxial)	Sculpture (Ab-/ Adaxial)	Stomata shape (Ab-/ Adaxial)	Stomata elevation (Ab-/ Adaxial)	Epicuticular wax (Ab-/ Adaxial)
	Stem peels	Polygonal/ -	Straight/ -	Brachyparacytic/ -			I	
5.	//	11	//	//				I
3.	Amphistomatic	Polygonal/ Same	Straight/ Same	Anomocytic & brachyparacytic, Same	Ruminate/ Same	Elliptic with slit-like opening/Same	Sunken/ Same	Platelets & granules/ Same
4	11	1	//	Anomocytic & brachyparacytic	1	Filintic/ Same	I eveled/ Same	Grannles/ Same
÷	2			Anomocytic		and and me		Ciminos camo
5.	//	//	//	Anomocytic/ Same	//	-/-	-/-	Matelets& granules/ platelets
9.	//	//	//	//	//	-/-	-/-	Platelets & granules/ Same
7.	11	//	11	Anomocytic & brachyparacytic/ Same	minate/ Oscillate-reticulat	-/ Elliptic	-/ Sunken	ðranules/ platelets& granule:
×	//	//	//	//	Reticulate/ Same	Ellintic/ Same	Sunken/ Same	Rhomboid& platelets/ Same
5 0	. 1			Brachvnaracytic/ Same	Reticulate/ Same	Slit-like/ Same	I eveled/ Same	Platelets & oraniles/ Same
10	. 1	. 1		arring ton former former	//	//	//	
1	. 1	Irreoular/ Same	Sinuate/ Same	Anomocytic/ Same	Ruminate/ Same	Ellintic/ Same	Elevated/ Leveled	Granules/ Same
12	. 1	2000 //	//		Reticulate/ Same		Leveled/ Same	
13.	. 1		Curved/ Same	Anomocytic/ Same	Ruminate/ Same	. //	Elevated/ Sunken	Platelets/ Same
14	11	Irreonlar/ Polvoonal	Sinnate/ Straioht	, =	Ruminate/ Ill-defined	11	I eveled/ Sunken	Granules/ Fissured crust &
ţ		mucguiai i uiyguiai	omuaic/ outagin					granules
15.	"	Polygonal/ Same	Straight/ Same	Anomocytic & Brachyparacytic. Same	Rugose/ Same	Slit-like/ Same	Sunken/ Leveled	Platelets & granules/ Same
16.	//	Polygonal/ Same	Straight/ Same	Anomocytic/ Same	Reticulate/ Same	Elliptic/ Same	Sunken/ Same	Platelets & granules/ Same
17.	Stem peels	Polygonal/-	Straight/ -	Brachyparacytic/ -				I
18.	Amphistomatic	Polygonal/ Same	Straight/ Same	Brachyparacytic/ Same	Rugose/ Ruminate	Slit-like/ Elliptic	Sunken/ Leveled	Granules/ Same
.61	Stem peels Hypostomatic	Polygonal/ - Dolygonal/ Sama	Suraignt/ - Straight/ Sama	Brachyparacyuc/ -	- Datioulata/Ducosa	- Oval/	- I avalad/	- Granulae/ Sama
7 0 .7	rrypostoniaute	ruiygunai/ Janic	ouaigint oanic	Decohimonoritio/Anomonitio P.	ncuculated nugose	Oval/ -	- reveren -	Oranucs/ Same
21.	Amphistomatic	//	11	bracnyparacytic/Anomocytic & brachyparacytic	Colliculate/ Same	Elliptic/ Slit-like	Leveled/ Same	//
22.	Hypostomatic	//	//	Brachyparacytic/ -	Colliculate/ Rugose			//
23.	Stem peels	Polygonal/-	Straight/ -	//			·	
24.	//	//	//	//				T
25.	Amphistomatic	Irregular/ Polygonal	Sinuate/ Straight	Anomocytic/ Same	Ruminate/ Same	Elliptic/ Same	Elevated/ Same	Granules/ Same
26.	"	Polygonal/ Same	Straight/ Same	Brachyparacytic/ Same	Rugose/ Same	Slit-like/ Same	Leveled/ Same	Crust& granules/ Platelets, fissured crust & granules
27.	//	//	//	//	Ill-defined/ Same	//	//	Platelets/ Same
28.	//	//	//	//	Rugose/Same	-/ Elliptic	-/ Sunken	- /-
29.	//	//	//	//	Reticulate/ Same	Elliptic/ Same	Sunken/ Leveled	Platelets/ Granules
30.	//	Irregular/ Polygonal	Sinuate/ Straight	Anomocytic/ Brachyparacytic	Colliculate/ Reticulate	//	Leveled/ Same	Granules/ Same
31.	//	//	//	Anomocytic/ Same	Rugose/ Same	//	//	//
32.	//	//	//	//	Ruminate/ Same	//	Elevated/ Same	//
33.	//	Irregular/ Same	Sinuate/ Same	//	Rugose/ Ruminate	//	//	//
34.	//	Irregular/ Polygonal	//	//	Ruminate/ Same	//	Leveled/ Sunken	//
35.	//	Irregular/ Same	Undulate/ Same	//	//	Slit-like/ Same	Leveled/ Same	//
:())	as previous, (-): not p	ractically available						

284

Fig. 2. (A- L) Hand drawing and microphotographs of lamina anatomical characteristics showing different types of Kranz anatomy, outlines shapes & vascular supplies. (A, B) *Atriplex leucoclada*; Atriplicoid type, (C, D) *Salsola inermis*; Flat-leaved salsoloid type. (E, F) *Bassia arabica*; Kochoid type, (G, H) *Halopeplis amplexicaulis*; Kranz-ventrodorsal type (I, J) *Salsola kali*; Salsoloid type. (K, L) *Suaeda maritima*; Salsina type. (M-R); Major aspects of lamina anatomical characteristics showing different outlines shapes & vascular supplies. (M) *Bassia indica*, (N) *Atriplex lindleyi* subsp *inflate*, (O) *Spinacia oleracea*, (P) *Traganum nudatum*, (Q) *Alternanthera dentate*, (R) *Amaranthus caudatus*. (B.): Bulliform cell.

Two major types of secondary growth aspects were recorded viz. normal secondary growth in Bassia arabica, B. eriphora, B. indica, Beta vulgaris subsp. maritima and Chenopodium murale (Fig. 1, A & B) and abnormal or anomalous secondary growth in the remaining 30 studied taxa. The latter aspect (abnormal) can be categorized into five sub-types viz. successive cambia in Atriplex halimus, A. leucoclada, A. lindleyi subsp. inflata, A. semibaccata, Celosia argentea & C. spicata (Fig. 1, C & D), medullary bundles in Beta vulgaris subsp. cicla, Chenopodium album, C. quinoa, Spinacia oleracea & Amaranthus caudatus (Fig. 1, E & F), included phloem in 17 taxa (Fig. 1, G & H), included phloem and bipolar vascular bundles in Alternanthera dentata (Fig. 1, I & J) or included phloem and medullary bundles in *Alternanthera dentata* and *Amaranthus lividus* (Fig. 1, K, L).

The foregoing stem anatomical data is in accord with Esau (1965) who reported the occurrence of medullary bundles as an aspect of anomalous secondary growth. Metcalfe & Chalk (1950) reported that abnormal secondary growth occurred in all species of Chenopodiaceae that had relatively thick stems in contrast with genera of thin stems. Chandurkar (1983) reported the presence of vascular bundles in the pith in addition to the normal ring of vascular bundles, and treated them as 'leaf trace bundles', due to the entering of leaf traces to the node and running through internodes before reaching the vascular system in the stem. Costea & Demason (2001) reported the same mechanisms of secondary growth formation in Chenopodiaceae and Amaranthaceae. Heklau *et al.*, (2012) reported the anomalous secondary thickening was widespread in Amaranthaceae and Chenopodiaceae as well as the successive cambia and included secondary phloem were typical in Chenopodiaceae. The inter-fascicular xylem regions were filled with xylem vessels, xylem fibers & xylem parenchyma in 19 studied taxa or sclerenchymatous tissue in the remaining 16 studied taxa.

The pith was wide in 17 taxa or narrow in the remaining 18 taxa. Lignified pith parenchyma was recorded in *Atriplex leucoclada* and *A. nummularia*. Lignified and non-lignified parenchyma was in *Aerva javanica* and *Spinacia oleracea*. The pith cavity or thinwalled parenchyma was reported in the remaining 31 studied taxa. This finding agreed with (Zhibin & Zhang, 2011; Saad Eddin & Doddem, 1986).

Lamina anatomical characteristics: The lamina outline was terete in Salsola kali, triangular, not differentiated into mid-vein and wings in Halopeplis amplexicaulis, kidney-shaped not differentiated into mid-vein and wings in Traganum nudatum, wavy abaxially- convex adaxially in Beta vulgaris subsp. cicla, straight abaxially- convex adaxially in Beta vulgaris subsp. maritima, wavy abaxially- rounded adaxially in Celosia spictata, basinlike in Amaranthus caudatus, convex abaxially- rounded adaxially in Atriplex leucoclada, ribbon-like not differentiated into mid-vein and wings in Bassia eriophora and B. indica, semi-terete not differentiated into mid-vein and wings in Salsola inermis and S. volkensii, rounded abaxially- straight adaxially in Chenopodium album and Spinacia oleracea, ovate not differentiated into mid-vein and wings in Bassia arabica, Suaeda maritima, S. pruinosa and S. vera, crescent form in Aerva javanica and Amaranthus lividus, rounded abaxially- and adaxially in 5 taxa or flattened not differentiated into mid-vein and wings in the remaining 4 studied taxa (Table 3; Fig. 2).

The epidermal cells were tangentially elongated with bulliform cells in *Amaranthus lividus*, radial in *Halopeplis amplexicaulis*, *Salsola kali* and *Amaranthus caudatus* or tangential in the remaining 25 studied taxa.

Trichomes were candelabra in Aerva javanica, multicellular in Alternanthera dentata and Amaranthus caudatus belong to Amarantaceae, e-glandular unicellular and multicellular in Salsola kali, glandular unicellular in S. volkensii, vesicular in eight studied taxa belong to Chenopodiaceae or wanting in the remaining 16 studied taxa. This was in accord with Batanouny (2001) who reported the occurrence of salt bladders in all species of Atriplex and some species of Salsola and Chenopodium. Lu et al., (2012) also detected salt bladders on the leaves of Chenopodium album. El Ghazali et al., (2016) reported a diversity in trichomes types in Salsola sp.

The ground tissue in the form of folded parenchyma in 5 taxa, water bearing tissue (WBT) in 5 taxa, palisade and WBT in 6 taxa, Palisade and WBT with Kranz cells in 5 taxa or polyhedral parenchyma in 8 studied taxa. Mechanical tissue in the form of angular collenchyma abaxially- and adaxially at mid-vein was recorded in 6 taxa (Chenopodiaceae and Amaranthaceae) or wanting in the remaining 23 studied taxa. Nine out of 29 studied taxa of Chenopodiaceae was characterized morphologically by fleshy leaves having water bearing cells anatomically.

The mesophyll was ill-defined in *Aerva javanica* (Amraranthaceae) dorsiventral in *Beta vulgaris* subsp. *cicla, Chenopodium album, C. quinoa, Spinacia oleracea* of Chenopodiaceae, *Alternanthera dentata, Amaranthus caudatus, A. lividus, Celosia argentea & C. spicata* of Amranthaceae, isolateral in *Atriplex halimus, A. leucoclada, A. lindleyi* subsp. *inflata, A. semibaccata, Beta vulgaris* subsp. *maritima, Chenopodium murale* and *C. opulifolium* of Chenopodiaceae). The foregoing data was in line with Metcalfe & Chalk (1950) who reported that, the leaves of Chenopodiaceae exhibited dorsiventral to centric or composed of homogenous rounded cells while in Amaranthaceae dorsiventral mesophyll was the most common but isolateral was also recorded in few species.

Number of vascular bundles were 2 in *Atriplex nummularia*, 14-15 in *Bassia arabica*, one large and 8 small in *Suaeda maritima*, one large and 11 small in *S. pruinosa* and *S. vera*, 4 in 5 taxa, 3 in 8 taxa or one bundle in the remaining 11 studied taxa. Sand crystals and druses were present in 30 taxa or absent in five taxa.

Out of 35 studied taxa, two main types of leaf structure were recorded; Kranz type (16 studied taxa) and non Kranz type (13 studied taxa). The data concerning lamina microcharacters 6 kranz types were recognized (based on type of leaf mesophyll, size, and distribution of kranz), i. atriplcoid type in Atriplex halimus, A. leucoclada, A. lindleyi subsp. inflata, A. nummularia, A. semibaccata, Amaranthus caudatus and A. lividus (Amaranthaceae and Chenopodiaceae; Fig. 2, A& B), ii. flat- leaved salsoloid type in Salsola inermis and S. volkensii (Chenopodiaceae; Fig. 2, C& D), iii. kochioid type in Bassia arabica, B. eriophora and B. indica (Chenopodiaceae; Fig. 2, E& F), iv. kranz-ventrodorsal in Halopeplis amplexicaulis (Chenopodiaceae; Fig. 2, G& H), v. salsoloid type in Salsola kali and Traganum nudatum (Chenopodiaceae; Fig. 2, I& J), vi. salsina type in Suaeda maritima (Chenopodiaceae; Fig. 2, K& L). The non-kranz or Axiroid type was detected in the rest 13 taxa belonging to Amaranthaceae and Chenopodiaceae (Fig. 2, O). This is in accord with Butnik et al., (2017), they registered 14 leaf types based on mesophyll, kranz cell occurrence. Hauri (1912), Moser (1934) and Rosengart-Famel (1937) examined the distribution of Kranz anatomy in Atriplex and provided good quality data on the anatomy and distribution of the Kranz syndrome in other genera. Metcalfe & Chalk (1950), Napp-Zinn (1973), Voznesenskaya et al., (2001& 2002) reported that species in the Chenopodiaceae had unusual chlorenchyma and Kranz anatomy.

Chenopodiaceae contained the highest number of C_4 species and C_4 lineages among eudicots (Kadereit *et al.*, 2003, 2012; Sage *et al.*, 2011). The studied taxa were divided into two groups; 16 taxa with kranz anatomy having C_4 photosynthetic pathway and the remaining 13 taxa with non kranz anatomy having C_3 photosynthetic pathway and this data was in accord with Freitag & Kadereit (2014).

Fig. 3. A-L. Major aspects of lamina epidermis (LM & SEM; abaxial surface). (A) Beta vulgaris subsp. Maritime, (B) Chenopodium album, (C) Salsola kali, (D) Alternanthera dentate, (E) Celosia spicata, (F) Bassia arabica; Reticulate sculpture, platelets wax (G) Chenopodium quinoa; Reticulate sculpture, platelets & granulate wax, (H) Salsola kali; Colliculate sculpture, granulate wax. (I) Suaeda pruinosa; platelets wax, (J) Alternanthera dentata; Rugose sculpture, granulate wax, (K) Amaranthus lividus; Ruminate sculpture, granulate wax, (L) Aerva javanica; Candelabra trichomes. (M- X); Major aspects of lamina epidermis (LM & SEM; adaxial surface). (M) Beta vulgaris subsp. Cicla, (N) Beta vulgaris subsp. maritima, (O) Chenopodium album, (P) Suaeda pruinosa, (Q) Celosia spicata, (R) Atriplex halimus; Ruminate sculpture, platelets & granulate wax. (S) Atriplex semibaccata; Oscillate-reticulate sculpture, platelets & granulate wax. (T) Chenopodium murale; Fissured crust & granulate wax. (U) Salsola kali; Colliculate sculpture, granulate wax. (V) Suaeda maritima; Rugose sculpture, granulate, platelets & fissured crust wax. (W) Traganum nudatum; Reticulate sculpture, granulate wax. (X) Chenopodium opulifolium; Vesicular trichomes.

The six studied taxa with rudimentary leaves belong to Chenopodiaceae having stem with anatomical leaf-like structure were considered C_4 plants as kranz anatomy was detected in these assimilatory shoots and this finding was in accord with Saad Eddin & Doddem (1986) and Zhibin & Zhang (2011).

Epidermal characteristics: (LM), in stem peels of the six studied taxa with rudimentary leaves, the stomata were brachyparacytic. In a typical lamina, the leaf was hypostomatic in Salsola inermis and S. volkensii or amphistomatic in the remaining studied taxa. Based on stomatal variation the leaf type was heterostomatic (brachyparacytic and anomocytic) in Atriplex halimus, A. leucoclada, Α. semibaccata, Bassia arabica. Chenopodium opulifolium and S. kali belon to Chenopodiaceae or homostomatic (anomocytic or brachyparacytic) in the remaining 23 studied taxa. Metcalfe & Chalk, (1950) registered the ranunculaceous stomata in the majority of Chenopodiaceae and rubiaceous in few genera. Also, they reported that Amaranthaceae had amphistomatic leaves. Abaxial cell shape was irregular in 11 taxa or polygonal in the remaining 18 taxa. Abaxial anticlinal wall ranged from sinuate in two taxa, curved in Chenopodium album, sinus in five taxa, undulate in Celosia spicata or straight in the rest 24 studied taxa (Fig. 3, A-E). Adaxial cell shape was irregular in 5 taxa or polygonal in the remaining 24 taxa. Adaxial anticlinal wall was curved in Chenopodium album, sinus in Beta vulgaris var. cicla, sinuate in Beta vulgaris subsp. maritima, Amaranthus lividus, undulate in Celosia spictata or straight in the remaining 24 studied taxa (Fig. 3, M-Q).

Four patterns of abaxial epidermal surface sculpture were recorded *viz*. reticulate, colliculate, rugose or ruminate (Fig. 3, F- K) and 5 patterns for adaxial surface *viz*. ruminate, oscillate-reticulate, colliculate, rugose or reticulate (Fig. 3, R- W). Four patterns of abaxial epicuticular wax *viz*. platelets, granules, rhomboid crystals, or crust were observed and 4 patterns of adaxial epicuticular wax *viz*. fissured crust, platelets, rhomboid crystals, and granules were recorded. The foregoing data of epidermal surface sculpture and epicuticular wax agreed with Engel & Barthlott (1988) and Jetter & Riederer (1994), who observed different shapes of platelets with various orientations on the leaves of some taxa in Chenopodiaceae.

Ab-/Adaxial stomatal shape: It was elliptic with slitlike opening in *Atriplex halimus*, oval in *Salsola inermis*, slit-like in 7 taxa or elliptic in 15 taxa. From the epidermal characteristics investigation, there was a minor difference between the ab- and adaxial surfaces in Chenopodiaceae and this result coincided with Zarinkamara (2007).

Conclusion

Most of the obtained data of the studied taxa contribute greatly in understanding the relationships between Chenopodiaceae and Amaranthaceae and reinforce the alliance between them. The most common characters that support this alliance are anomalous secondary growth (medullary, successive, included phloem), leaf mesophyll (dorsiventral), Kranz anatomy (atriplcoid type), trichomes, druses and sandy crystals, C_4 photosynthetic pathway and epidermal characteristics. This finding is similar to that of Judd & Ferguson (1999), Judd *et al.*, (2002), APG III, IV (2009 & 2016), Stevens (2001 onwards) and Shipunov (2021) who stated that the Chenopodiaceae nested within Amaranthaceae *s.l.* based on molecular criteria. The authors recommended further studies based on morphological, chemical, and molecular investigation for more accurate systematic relationships between the two families.

References

- Angiosperm Phylogeny Group. APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: *Bot. J. Linn. Soc.*, 161: 105-121.
- Angiosperm Phylogeny Group. APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: *Bot. J. Linn. Soc.*, 18(1): 1-20.
- Bailey, L.H. 1949. Manual of Cultivated Plants. The Macmillan Company, New York.
- Batanouny, K.H. 2001. Adaptation of plants to saline conditions in Arid Regions. In: (Ed.): Cloudsley-Thompson, J.L. Adaptations of desert organisms: Plants in the deserts of the Middle East, Springer-Verlag: Berlin, Heidelberb: 145-166.
- Borsch, T., S. Clemants and S. Mosyakin. 2001. Symposium: Biology of the Amaranthaceae-Chenopodiaceae alliance. J. Torrey Bot. Soc., 128: 234-235.
- Boulos, L. 1999. Flora of Egypt. Vol. 1(Azollaceae-Oxalidaceae). Al Hadara Publishing Cairo, Egypt.
- Butnik, A.A., G.M. Duschanova, D.M. Yusupova, A.T. Abdullaeva and S.H. Abdinazarov. 2017. Types leaf mesophyll species of Chenopodiaceae Vent. in central Asia and their role in the monitoring of desertification. J. Nov. Appl. Sci., 6(1): 13-21.
- Carolin, R.C. 1983. The trichomes of the Chenopodiaceae and the Amaranthaceae. *Bot. Jahrb. Syst.*, 103: 451-466.
- Carolin, R.C., S.W.L. Jacobs and M. Vesk. 1975. Leaf structure in Chenopodiaceae. *Bot. Jahrb. Syst.*, 95: 226-255.
- Chandurkar, P.J. 1983. Plant Anatomy. New Delhi: Oxford and IBH publishing Co.
- Christenhusz, M. and Byng, J.W. 2016. The number of known plant species in the world and its annual increase. *Phytotaxa*, 261(3): 201-217.
- Costea, M. and D.A. Demason. 2001. Stem morphology and anatomy in *Amaranthus* L. (Amaranthaceae) taxonomic significance. J. Torrey Bot. Soc., 128(3): 254-281.
- Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press.
- Cronquist, A. 1988. The Evolution and Classification of Flowering Plants. 2nd ed. New York Botanic Garden. U.S.A.
- Dahlgren, R. 1980. A revised system of classification of angiosperms. *Bot. J. Linn. Soc.*, 80: 91-124.
- De Bary, A. 1884. Comparative wood anatomy of the vegetative organs of Phanerogams and Ferns. Oxford.
- Duarte, M. and M.C. Debur. 2004. Characters of the leaf and stem morpho-anatomy of *Alternanthera brasiliana* (L.) O. Kuntze, Amaranthaceae. *Braz. J. Pharm. Sci.*, 40: 86-92.
- Eames, A.J. 1929. The role of floral anatomy in the determination of angiosperm phylogeny. *Proc. Int. Congr. Plant Sci.*, 423-427.

- EL Ghazali, G.E.B., A. Al Soqeer and W.E. Abdalla. 2016. Epidermal micro-morphological study on stems of members of the family Chenopodiaceae. *Appl. Ecol. Environ. Sci.*, 14(4): 623-633.
- Engel, T. and W. Barthlott. 1988. Micromorphology of epicuticular waxes in Centrosperms. *Plant Syst. Evol.*, 161: 71-85.
- Esau, K. 1965. Plant Anatomy 3rd ed. John Wiley& Sons, Inc., Hoboken, New Jersey.
- Fahn, A. and M.H. Zimmermann. 1982. Development of the Successive Cambia in *Atriplex halimus* (Chenopodiaceae). *Bot. Gaz.*, 143(3): 353-357.
- Fank-De-Carvalho, S.M., M.R. Gomes, P.T. Silva and S.N. Bao. 2010. Leaf surfaces of *Gomphrena* spp. (Amaranthaceae) from Cerrado biome. *Biocell*, 34(1): 23-35.
- Freitag, H. and G. Kadereit. 2014. C₃ and C₄ leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). *Plant Syst. Evol.*, 300: 665-687.
- Freitag, H. and W. Stichler. 2000. A remarkable new leaf type with unusual photosynthetic tissue in a central Asian genus of Chenopodiaceae. *Plant Biol.*, 2: 154-160.
- Freitag, H. and W. Stichler. 2002. *Bienertia cycloptera* Bunge ex Boiss., Chenopodiaceae, another C₄ Plant without Kranz Tissues. *Plant Biol.*, 4(1): 121-132.
- Gibson, A.C. 1994. Vascular tissues. In: (Eds.): Behnke, H.–D. and T.J. Mabry. Caryophyllales: Evolution and Systematic. Springer Verlage. 45-74.
- Gibson, A.C. and P.S. Nobel. 1986. The Cactus Primer. Harvard Univ. Press.
- Grigore, M.N., L. Ivanescu and C. Toma. 2014. Halophytes. An integrative anatomical study. Springer, Cham, Heidelberg, New York, Dordrecht, London.
- Hauri, H. 1912. Anabasis aretioides Moq. and Coss., eine Polsterpflanze der algerischen Sahara. Beih. Bot. Centralbl., 28: 323421.
- Heklau, H., P. Gasson, F. Schweingruber and P. Baas. 2012. Wood anatomy of Chenopodiaceae (Amaranthaceae s. l.). *IAWA Journ.*, 33(2): 205-232.
- Jetter, R. and M. Riederer. 1994. Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits. *Planta*, 195(2): 257-270.
- Johansen, D.A. 1940. Plant microtechnique (Jodrell Lab). New York: McGraw-Hill.
- Judd, W.S. and I.K. Ferguson. 1999. The genera of Chenopodiaceae in the southeastern United States. *Harv. Pap. Bot.*, 4: 365-416.
- Judd, W.S., C.S. Campbell, E.A. Kellogg and P.F. Stevens. 2002. *Plant Systematics*: A Phytogenetic Appro., 2nd ed. Sinauer Associates, Inc. Mass., USA.
- Kadereit, G., D. Ackerly and MD. Pirie. 2012. A broader model for evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc. Roy Soc., London, 279: 33043311.
- Kadereit, G., T. Borsch, K. Weising and H. Freitag. 2003. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C₄ photosynthesis. *Int. J. Pl. Sci.*, 164: 959-986.
- Kishore, S.R. 2002. Stem anatomy of Amaranthaceae: Rayless nature of xylem. *Flora*, 197: 224-232.
- Lu, X., T. You, S. Zhao Chen and H. Lan. 2012. Morphology and physiological responses of *Chenopodium album* L. under salt stress. *Plant Physiol.*, 48 (5): 477-484.
- Mao, T.L. 1933. Etude comparative des caracteres anatomiques et du parcous des faisceaux liberoligneux des Chenopodiacees et des Amarantacees. Ph. D. Thesis, Paris.

- Metcalfe, C.R. and L. Chalk. 1950. Anatomy of the dicotyledons: leaves, stem, and wood in relation to taxonomy with notes on economic uses. Oxford: Clarendon.
- Moser, H. 1934. Untersuchungen her die Blattstruktur von *Atriplex. Beih. Bot. Centralbl.*, Kassel 52: 378-388.
- Napp-Zinn, K. 1973. Anatomie des Blattes. II. Blattanatomie der Angiospermen. In: Handbuch Pflanzenanatomie, vol. 8, Part 2A. -Borntraeger, Berlin and Stuttgart.
- Ogundipe, O.T. and A.B. Kadiri. 2012. Comparative foliar epidermal morphology of the West African species of Amaranthaceae Juss. *Feddes Repert.*, 123: 97-116.
- Pratt, D.B. 2003. Phylogeny and morphological evolution of the Chenopodiaceae-Amaranthaceae alliance. Retrospective thesis and Dissertation, Iowa State Univ. PP. 613.
- Ravindra, A.S., G.R. Dhara, D.G. Amit and S.R. Kishore. 2019. Development of successive cambia and structure of the secondary xylem in some members of the family Amaranthaceae. *Plant Sci. Today*, 6(1): 31-39.
- Reveal, J.L. 2012. An outline of a classification scheme for Extant Flowering Plants. *Phytotneuron*, 37: 1-221.
- Rosengart-Famel, Yr. 1937. Etude botanique, chimique et pharmacodynamique de diverses espècees des genes *Anabasis et Haloxylon*. Th. Docr. Pharm. Univ. Paris, 13, 135 p. ill.
- Saad Eddin, R. and H. Doddema. 1986. Anatomy of the 'Extreme' Halophyte *Arthrocnemum fruticosum* (L.) Moq. in Relation to its Physiology. *Ann. Bot.*, 57: 531-544.
- Sage, R.F., P.A. Christin and E.J. Edwards. 2011. The C₄ plant lineages of planet Earth. *J. Exp. Bot.*, 62: 3155-3169.
- Schinz, H. 1925. Amaranthaceae in A. Engler, K. Prantl, (eds). Die Natürlichen Pflanzenfamilien. ed. 2, Vol 16 c: 585-586, Leipzig.
- Shipunov, A.B. 2021. Systema Angiospermarum. Vol. 5. 32. http://herba.msu.ru/shipunov/ang/current/syang.pdf
- Stace, C.A. 1984. The taxonomic importance of the leaf surface. In: (Eds.): Heywood, V.H. & D.M. Moore. current concepts in plant taxonomy. Academic Press, London and Orlando U.K. 67-94.
- Stevens, P.F. 2001 onwards. Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]." will do. <u>http://www.mobot.org/</u> MOBOT/ research/APweb/.
- Täckholm, V. 1974. Students' Flora of Egypt. Cairo University. 211-215.
- Takhtajan, A.L. 2009. Flowering Plants 2nd ed. Springer-Verlag, New York, USA.
- Thorne, R.F. 1992. An updated phylogenetic classification of the flowering plants. *Aliso*, 13: 365-389.
- Voznesenskaya, E.V., O. Franceschi, L. Kiirats, G. Artyusheva, H. Freitag and G.E. Edwards. 2002. Proof of C₄ photosynthesis without Kranz anatomy in *Bienertia cycloptera* (Chenopodiaceae). *Plant J.*, 31: 649-662.
- Voznesenskaya, E.V., V.R. Franceschi, O. Kiirats, H. Freitag and G.E. Edwards. 2001. Kranz anatomy is not essential for terrestrial C₄ plant photosynthesis. *Nature*, 414: 543-546.
- Wilson, C.L. 1924. Medullary bundles in relation to the primary vascular system in Chenopodiaceae and Amaranthaceae. *Bot. Gaz.*, 78: 175-199.
- Zarinkamar, F. 2007. Stomatal observations in dicotyledons. *Pak. Jour. Biol. Sci.*, 10(2): 199-219.
- Zhibin, W. and M. Zhang. 2011. Anatomical types of leaves and assimilating shoots and carbon ¹³C/ ¹²C isotope fractionation in Chinese representative of Salsoleae *s.l.* (Chenopodiaceae) *Flora*, 206(8): 720-730.

(Received for publication 23 August 2021)