HIMALAYAN MEDICINAL PLANTS WEALTH, THREATS AND CONSERVATION FOR SECURING THE FUTURE OF BIODIVERSITY

AFNAN KHAN SHINWARI¹, MUSTHAQ AHMAD^{1,2*}, ABDULAZIZ ABDULLAH ALSAHLI³, AISHA ISRAR^{1,} ZABTA KHAN SHINWARI^{2, 4}, SHEHLA SHINWARI¹, LIXIN ZHANG⁵, YUSUFJON GAFFOROV^{6,7,8} AND MUHAMMED ENES YILMAZ⁹

¹Sino-Pak Biodiversity Research Centre, Quaid-i-Azam University, Islamabad, Pakistan ²Pakistan Academy of Sciences 3-Constitution Avenue, G-5/2 Islamabad, Pakistan ³Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

⁴Federal Urdu University of Arts, Science and Technology, Karachi-75300, Pakistan

⁵College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China

Concege of Life Sciences, Normwest A&F Oniversity, Tangung, 712100, Smaanxi, T.K. China

⁶Central Asian Center for Development Studies, New Uzbekistan University, Tashkent, 100007, Uzbekistan

⁷Department of Education and Training Management, Tashkent International University of Education,

Tashkent, 700207, Uzbekistan

⁸Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan,

Tashkent 100125, Uzbekistan

⁹Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Turkey *Corresponding author's mushtaq@qau.edu.pk

Abstract

The Himalayas are a rich reservoir of medicinal plants, which span across eight countries and cover 18% of the Indian subcontinent, with approximately 1,748 species utilized for medicinal purposes. However, these resources are jeopardized by excessive harvesting and climate change. This is the first comprehensive analysis of the Himalayan plants in order to demonstrate the traditional features of the Himalayan flora up to this point, the data on the medicinal flora was categorized. The family names were recorded alongside the number of plants. The species' habits, the components used, and the application technique were observed. The diseases cured by the medicinal flora were categorized into 12 types. A total of 150 species of medicinal plants representing 68 families were recorded. The plant family Asteraceae, comprising of 21 species, was found to be the most often indicated, followed by Lamiaceae, which had 9 species. The components most often used were the leaves and roots. Paste (75 Plants) and powder (69 plants) were the most often utilized preparations for these medicinal plants. The current analysis reveals substantial variation in the preparation methods of medical medicines among the plant species. 126 plant species were utilized for treating dermatological conditions, and 120 species were found to be effective against gastrointestinal conditions. This study underlines the importance of these medicinal plants for tackling global efforts to protect biodiversity to ensure the future of upcoming generation through conservation efforts essential to the continued use of these invaluable resources.

Key words: Medicinal plants, Himalaya, Diversity, Conservation.

Introduction

The Himalayas is spread across eight countries including: Pakistan, Nepal, Myanmar, India, China, Bhutan, Bangladesh, and Afghanistan. These countries are renowned for their remarkable biodiversity and the abundance of useful medicinal plants. Encompassing 18% of the Indian subcontinent, the Himalayas are home to approximately 8,000 species of angiosperms, with 1,748 species utilized for medicinal purposes (Kala, 2005). The Himalayas form a vast arc that spans over 2500 km from west to east. The Himalayas are often divided into three regions: the central, eastern and the western Himalayas. The western Himalayas are amongst India's most established and widely recognized phytogeographic areas. Hooker's (1875-1897) book Sketch of the Flora of British India established the western Himalayan as a botanical zone, which spans from Kumaun to Chitral. Kumaun comprises six districts throughout Uttarakhand's hills: Alomra, Bageshwar, Champawat, Nainital, Pithoragarh, and US Nagar. Almora district is in Uttarakhand's Kumaun region of India.

Asia has many medicinal plant species in the Himalayan Mountain range, which are essential to rural livelihoods because they provide a variety of valued goods for food and

medicine due to its unique topographical, physiographical, geographical, biological, and climatic conditions (Britto et al., 2005). Globally, around 70 per cent of people rely on medicinal plants to cure a variety of medical conditions, including viral disorders. Herbal medicines are being very commonly used due to their low costs, simplicity of adaptation, and reduced risk of adverse patient reactions (Joshi et al., 2010). The Kashmir Himalayan valley is home to a wide variety of flora. William Moorcroft (1822) was the first person to document floristic research in Kashmir. Vigne, von Huegel, Royle, and Victor Jacquemont were amongst the other Western explorers. Royle published taxonomic diagnoses and illustrations of various Kashmiri florae. J. D. Hooker includes in his Flora of British India (1872–1897) plant material from this region that included a wide variety of taxa. Following this, three botanists-Coventry, Blatter, and Stewart-contributed significantly to Kashmir's flora (Dar, 2008), (Kumari et al., 2018), (Myers et al., 2000), (Kala and Manjrekar, 1999). The Indian Himalayan Region (IHR) is home to important ancestral populations, including the Baiga tribe, Bhoksa, Bhotias, Chenchu people, Gurjar, Jarawas, Jaunsaries, Kharvar, Mahigiri, Shaukas and the Tharus. These people utilize medicinal herbs as a natural way of treating diseases (Joshi et al., 2016), (Kumari et al., 2018).

The Himalayan region is recognized as the world's center for biodiversity, in which ecological, evolutionary and phytogeographical variables favor a high species diversity. It is a source of several medicinal and aromatic plants (MAPs). Though making up only 18% of the land area of India, the Himalayan region is home to over 30% of the endemic species that are found throughout the Indian subcontinent. In this area alone, there are over 18,440 plant species, of which 45% have the potential to be used medicinally (Maikhuri et al., 1998). The trans-Himalayan regions of India are well known for having poorly distributed vegetation and a low diversity of species. They cover an area of more than 186,000 km² above the natural zone of the tree line. This zone is home to over a thousand different plant types, 225 different kinds of birds, and several rare and endangered animal species, such as the snow leopard (Fox, 1994; Kala and Manjrekar, 1999). Bioactive secondary metabolites are thought to be responsible for the therapeutic effects of herbal medicine (Croteau et al., 2000). Naturally occurring medicinal plants have been increasingly popular as a component for pharmaceuticals and conventional healthcare systems throughout the last 20 years. Medicinal plants are considered a source of more than 85% of the herbal remedies utilized in traditional healthcare systems (Bhattacharya et al., 2008; Phondani et al., 2014). In many developing countries, such as Nepal (75%), India (80%), Myanmar (85%) and Bangladesh (90%) most of the population are living in rural areas. According to WHO estimates, India accounts for \$1 billion in the global herbal medicine market annually (Joshi et al., 2004) and US \$14 billion annually worldwide (Sharma et al., 2010). Communities of the Sikkim Himalaya region utilize about 550 medicinal plants to treat many illnesses however, only a small number are used commercially. (Nepal et al., 2024). The medicinal plants found in the Himalayas account for a large percentage of the non-timber forest products (NTFPs) (Ghimire et al., 2005). Nowadays; most of the medicinal plants found in the Himalayan are a part of subalpine and alpine regions (Singh and Dey, 2005). Many of these plant-derived medications were first found through research into indigenous peoples' folklore and traditional remedies; some of these couldn't be replaced despite significant advancements within the field of synthetic chemicals (Kumar et al., 2011).

Many of the remote Himalayan valleys have not been well documented for their medicinal plant applications, even though the local indigenous population has a longestablished system of health care and cure utilizing the accessible medicinal plants. The effectiveness of medicinal plants is increased by the elderly since they have more precise information about the components and recipes than the younger generation. Other ethnobotanists in the Hindu Kush region and Southern Ethiopia have documented a similar trend (Jan et al., 2017). It is critical to understand that one of the primary factors contributing to the loss in plant populations is the unsustainable harvesting of medicinal herbs. The other factors are the growing human population, excessive grazing, habitat destruction, multipurpose collection, and negligence (Suzuki et al., 2014). This kind of scenario is more likely to occur in the Himalayan region, which is warming more quickly than the rest of the world and has a vast attitudinal range, a variety of ecosystem types, changing climatic zones, slopes, and soil nutrient availability (Liu and Chen, 2000). Nevertheless, environmental stressors are reducing their availability in the natural world, which is lowering the quality of bioactive chemicals and impacting their application in both conventional and contemporary medical systems. Plant morpho-physiological, biochemical, and molecular traits are said to be altered by these stresses (Pandey and Shukla, 2015), which also reduce medicinal plant yield (Yang *et al.*, 2013; Jayasinghe *et al.*, 2017) and put biodiversity at risk (Kumar and Clark, 2012; Negi *et al.*, 2012). This is the first comprehensive analysis of the Himalayan plants in order to demonstrate the traditional features of the Himalayan flora for a sustainable future.

Methodology: This is the first extensive study regarding the traditional uses of the flora of Himalayas. The available published literature was downloaded from various search engines such as Google Scholar, PubMed, Science Direct, etc. The habit of different plants, ability to cure diseases, plant part used, method of use, their ethnobotanic features, tradition uses, major threats and many other features were critically reviewed, and the important information was abstracted. The data on the medicinal flora was categorized to demonstrate the traditional aspects of the Flora of Himalayan to date. The family names with the number of plants were observed. The habit of the species (herb, shrub, tree, climber), parts used (root, stem, rhizome, leaves, stems, flowers, fruit, seed, bark, entire plant), method of use (powder, decoction, ripe fruit, paste, juice) were noted. The diseases cured by the medicinal flora were categorized into 12 types. These include gastrointestinal disease, circulatory disease, respiratory disease, and others. Within each disease type the ailments were also separated. The number of plants for each disease type was also counted. The Ethnomedicinal inventory provided the information under the categories scientific name, family, elevation, habit, ailment, parts used, method of use, conservation status, major chemical constituents, and references.

Results and Discussions

The findings of this study underscore the extensive and intricate use of Himalayan Medicinal Plants, revealing a rich tradition of utilizing nature's resources for medicinal purposes. The wide range of plant species and the consumption of various plant parts are indicators of the Himalayan region's deeply ingrained customs and traditional knowledge.

Himalayan medicinal plants have been assessed for a wide range of ailments, which highlights their importance from a cultural, medical, and economic aspect. In addition to conservation efforts to ensure the long-term usage of these resources, it is essential to treat common illnesses and investigate unexplored possibilities for treating fewer common ailments. There are many native and herbal medicinal plants in the Himalayan region (Dhar et al., 2002). Plenty of individuals in rural Uttarakhand rely significantly on medicinal plants as a source of income; they contribute between 17–35% of the household income (Chauhan, 2010). Several remedies are widely used globally. For example, kidney stones can be relieved by Bergenia ciliata and skin disorders can be treated using Rubia manjith in Far West Nepal (Kunwar et al., 2009). In Himachal Pradesh, Berberis asiatica is used to treat diabetes, and Viola canescens is used to treat common colds (Unival et al., 2006).

Pakistan is known for possessing over 600 species of medicinal plants, of which approximately 300 can be found in the Lesser Himalayas, as reported by (Shinwari, 2010). *Ajuga bracteosa* is prescribed for jaundice, *Viola canescens* for the common cold, *Juglans regia* is utilized for toothaches, and *Taraxacum officinale* is used for liver problems in Pakistan (Ali *et al.*, 2011). *Aegle marmelos* is consumed for digestive problems (Dhuley, 2003). *Cedrus deodara* is utilized for dysentery (Kumar *et al.*, 2011), *Centella asiatica* is used for skin diseases (Brinkhaus *et al.*, 2000); *Cinnamomum tamala* is consumed for cough and cold (Thamizhselvam *et al.*, 2012) and *Solanum nigrum* is used for liver tonic (Hsieh *et al.*, 2008).

Ajuga bracteosa, with its anti-inflammatory, antifungal, antibacterial, and anthelmintic qualities, has been used as a medicine since ancient times (Israili and Lyoussi, 2009). Chemical components present in the seeds of *Azadirachta indica* contains limonoids (azadirachtin) and insecticidal triterpenoids (azadiradione) (Devi and Sharma, 2023). The sesquiterpene and artemisinin chemical compounds were found active in *Artemisia annua* species (Konovalov and Khamilonov, 2016).

The constant decline and eventual extinction of traditional knowledge in the Himalayas due to generational gaps makes the global situation of medicinal plants very concerning (Prakash, 2015). The locals of villages have given up a great deal of indigenous knowledge since written communication replaced oral communication as the main form of communication. As a result, it has become more difficult for the elder generation to share their knowledge with the younger generation (Jabeen *et al.*, 2009).

Human activities include overharvesting medicinal plants, expanding agricultural land, overgrazing, gathering fuel wood and fodder, and igniting forest fires are major dangers to medicinal plants (Abbasi et al., 2013). Overexploitation for domestic use is one of the main threats to the native populations of indigenous medicinal plants in the Western Himalayas. Aconitum heterophyllum is one of the species in the highest threat category, according to reports from other Himalayan regions, and its conservation is urgently required (Pandey et al., 2019). The threatened plant species are a result of local people collecting either the entire plant or specific parts. The main reason Himalaya's economically significant medicinal plants are disappearing is excessive and uncontrolled exploitation (Tali et al., 2019). In Kashmir, Himalaya, decades of excessive harvesting of medicinal plants have led to the extinction of numerous taxa. Overexploitation is causing the medicinal flora of the Kashmir Himalaya to decline at an alarming rate (Ganie et al., 2019). According to the IUCN (2008), one of the significant threats to India's medicinal plants is overexploitation. It is also estimated that overexploitation of medicinal plants has resulted in about 15,000 species at risk of extinction globally (IUCN, 2007). Several commercially valuable wild medicinal plant species are seriously threatened by overexploitation by humans for local use, endangering their habitats. All these plant species are being depleted, whether legally or illegally, in the wild for local use and sale in regional, national, or worldwide markets due to their significance as medicines. The primary threat to these plant species is the over-extraction of different herbs (e.g., *Aconitum heterophyllum*, *Picrorhiza kurrooa*) by locals for medical purposes and export to other regions for local use (Ganie *et al.*, 2019).

Large-scale dispersion of habitat is a result of landslides, which also have an impact on the natural population. One of the main factors putting medicinal plant species at risk is landslides. Landslides alter the physicochemical characteristics of the soil and cause a rise in other ruderal species that have a competitive advantage over endemic species. This could ultimately result in the extinction of endemic species by creating unfavorable conditions in their natural habitat (Tali et al., 2019). There has been a decline in numerous highly valuable medicinal plants due to the ongoing removal of several medicinal plant species from their natural habitats and the significant loss of those habitats over the past few decades. The continuous rate of landslides may result in the natural habitats of various medicinal plants in the area being degraded (Tali et al., 2016).

Most medicinal plants that are used to make herbal remedies and nutraceuticals are harvested in the wild. The massive amount of plant materials extracted from the few plant populations present in natural habitats is an intolerable situation, especially as traditional healthcare systems gain popularity (Dwivedi et al., 2019). The percentage of reports of medical plant use grew gradually with height and the richness of medicinal plants declined with altitude. Locals from higher altitude regions tend to choose medicinal herbs as a remedy (Kunwar et al., 2016). Asteraceae is considered a very dominant family in the region of Western Himalaya (Hamid and Raina, 2014; Asif et al., 2021). Many plants are used for their medicinal properties in the Northwestern Himalayas (Haq and Singh, 2020). Locals believe it is sustainable and safe to utilize leaves for medicinal uses (Jan et al., 2020). A high concentration of bioactive compounds is found in most medicinal roots, also local population prefers to use roots as a medicinal remedy (Pandey et al., 2019). Overharvesting of endangered medicinal plants should be avoided because it puts the plant at even more risk of becoming extinct (Rathore et al., 2020).

In the present study 30 trees, 86 herbs, 26 shrubs, and 8 climbers were among the 150 plant species which were abstracted via review on the Himalayan Medicinal Plants as mentioned in Table 1. Herbs makes up about 58%, Trees about 20%, Shrubs about 17% and Climbers about 5% of the total 150 medicinal plants (Fig. 1). Every plant has special medical qualities and uses different portions for different reasons. Roots of 44 species were found to be used, leaves of 50, complete plant 38, and a variety of other parts such rhizomes, stems, flowers, seeds, fruit, and bark as seen in Table 1. The highest percentage of plant part used was leaves at 23% and the lowest were stems at 2% as shown in Fig. 2. (Samant and Mohinder Pal, 2003) discovered 701 kinds of medicinal plants from different forest types of Uttarakhand, 138 of which were trees, 135 of which were shrubs, and 421 of whom were herbs. (Bhat et al., 2013) 12 genera and 61 families comprise the 152 species of medicinal plants that have been documented from the Kedarnath Wildlife Sanctuary. In the Himachal Pradesh Renuka Wildlife Sanctuary, 228 species having aromatic and therapeutic properties were found (Subramani et al., 2007).

Habit	No. of plants	Parts used	No. of plants	Method of use	No. of plants
Tree	30	Root	44	Powder	69
Shrub	26	Rhizome	12	Decoction	56
Herb	86	Stem	4	Ripe fruit	9
Climbers	8	Leaves	50	Paste	75
		Seeds	8	Juice	59
		Flowers	11		
		Fruit	29		
		Entire plant	38		
		Bark	20		

Table 1. Number of Habitat, Parts used and methods of use by Medicinal Plants found in Himalayas.

Table 2. Families of the selected medicinal plants found in Himalayas.

Family	No. of plants	Family	No. of plants	Family	No. of plants
Aceraceae	1	Rhamnaceae	1	Hypericaceae	1
Acoraceae	1	Rosaceae	9	Juglandaceae	2
Adiantaceae	2	Rubiaceae	2	Lamiaceae	9
Amaranthaceae	1	Rutaceae	2	Lauraceae	2
Amaryllidaceae	1	Sapindaceae	2	Liliaceae	2
Anacardiaceae	2	Saxifragaceae	2	Linaceae	1
Apiaceae	7	Scrophulariaceae	1	Lythraceae	1
Araceae	1	Smilacaceae	1	Malvaceae	2
Asparagaceae	1	Solanaceae	3	Melanthiaceae	1
Asteraceae	21	Taxaceae	1	Moraceae	2
Berberidaceae	5	Urticaceae	1	Myricaceae	2
Betulaceae	1	Valerianaceae	1	Myrtaceae	1
Bombacaceae	1	Violaceae	1	Orchidaceae	2
Boraginaceae	2	Zingiberaceae	1	Oxalidaceae	1
Brassicaceae	3	Chenopodiaceae	1	Paeoniaceae	1
Buxaceae	1	Comberataceae	1	Papavaraceae	1
Campanulaceae	1	Convolvulaceae	1	Pinaceae	3
Cannabaceae	2	Cucurbitaceae	1	Piperaceae	1
Caprifoliaceae	3	Cuscutaceae	1	Poaceae	1
Caryophyllaceae	1	Dioscoreaceae	2	Polygonaceae	4
Euphorbiaceae	3	Dipsacaceae	1	Ranunculaceae	5
Fabaceae	1	Equisetaceae	1	Geraniaceae	1
Fagaceae	2	Ericaceae	3		

Table 3. Diseases and the Aliments reported in Himalayas.

S. N.O.	Diseases	Aliments
1.	Gastrointestinal	Abdominal pain, Constipation, Diarrhoea, Digestive diseases, Dysentery, Gastrointestinal problems, Haemorrhoids, Indigestion, Intestinal worm, Stomachache, and Vomiting
2.	Circulatory diseases	Blood ailments, Cardiovascular problems, and Heart conditions
3.	Skeleto-muscular system problems	Arthritis, Bone fracture, Joint pain, and Rheumatic diseases
4.	Respiratory systems diseases	Asthama, Cold, Cough, and Respiratory disorders
5.	Dermatological diseases	Body pain, Boils, Burns, Cuts, Scurvy, Skin diseases, and Wounds
6.	Diabetes	Diabetes
7.	Ear, Eye, and mouth disorders	Earache, Eye diseases, Mouth blister, and Toothache
8.	Other ailments	Epilepsy, Metabolic conditions, Ulcer, and Hair fall
9.	Fever	Fever, Malarial fever, and Headache
10.	Gento-urinary ailments	Genitourinary disorders, Gonorrhea, Gynecological problems, Kidney pain, Menstrual complaints, and Urinary disorders
11.	Liver problems	Jaundice and Liver diseases
12.	Poisoning	Insect bite and Snake bite

(Radha *et al.*, 2013)) presented comprehensive information on the floristic diversity of the Alaknanda Valley, including 526 plant species divided into 372 genera and 94 families. From Govind Pashu Vihar WLS, 821 species and 8 subspecies of angiosperms were identified, scattered throughout 479 genera and 125 families (Manikandan and Srivastava, 2015). As the altitude increased, the species composition of trees, shrubs, and herbs changed and showed a decline in both species and family richness. Numerous common species can be found in the montane zone, including weeds of low elevations and plains and invasive alien species that have adapted well to the region's diverse environmental conditions (Rawat *et al.*, 2020). According to (Rawat *et al.*, 2021) findings, The western Ramaganga valley is inhabited by 651 species of higher plants, out of which 85% are dicotyledons, 12.2% are monocotyledons, and 2.3% are

gymnosperms. (Arora and Daverey, 2018) recorded 125 woody plant species, comprising 72 angiosperms and 53 gymnosperms, derived from Uttarakhand, and were organized into 81 genera and 48 families.

In our research, a total of 150 plants belonging to 68 families were counted. Asteraceae was noted with the maximum number of medicinal plants followed by Rosaceae and Lamiaceae. Numerous parts such as root, stem, rhizome, leaves, stems, flowers, fruit, seed, bark, and entire plant were medicinally used. Leaves and roots were the highly utilized parts. From the review data, the highly used method of these medicinal plants was paste 28% and powder 26% as shown in Fig. 3. The method of preparing the medicinal remedies in the current review varied significantly across the plant species. The most common methods included the use of pastes (75 plants), powder (69 plants), juices (59 plants), and decoctions (56 plants) as shown in Table 1. Additionally, ripe fruit and barks were utilized in 9 and 20 species, respectively, showcasing the diverse approaches to harnessing the medicinal properties of these plants. Upon further analysis, it was observed that the Asteraceae family exhibited the highest prevalence, comprising 21 species, followed by the Lamiaceae family with 9 species. This indicates the dominance of certain botanical lineages in the region's traditional pharmacopoeia (Table 2).

The 12 categories of the diseases were gastrointestinal, circulatory, musculoskeletal system, respiratory system, dermatological, diabetes, ear, eye and mouth, fever, urinary, liver problems, poisoning, and other diseases shown in Tables 3 & 4. The highest percentage of plants (24%) were utilized for dermatological ailments which included body pain, boils, burns, cuts, scurvy, skin diseases, and wounds as shown in Fig. 4. Twenty-three percent species were reported to have effectiveness against gastrointestinal ailments abdominal pain, constipation, diarrhea, digestive diseases, dysentery, gastrointestinal problems, hemorrhoids, indigestion, intestinal worms, stomachache, and vomiting. Twelve percent of plants were used by local communities of Himalayas for respiratory ailments such as asthma, cold, cough, and other respiratory disorders. For the treatment of fever, 11% medicinal plants were employed traditionally. The accumulative percentage of medicinal species for the ear, eye, and mouth was 7%, treating ailments such as earache, eye diseases, mouth blisters, and toothache. Different musculoskeletal diseases like arthritis, bone fracture, joint pain, and rheumatic diseases were cured by 6% local medicinal plants the collective percentages of these diseases. This research indicates that the aliments for gastrointestinal and dermatological problems are widely used by the local population. On the other hand, conditions like diabetes, heart problems, and poisoning have a lower frequency, suggesting either a lower incidence in the region or a relatively limited number of plants which are useful in treating those specific conditions. The distribution of plant use by illness categories illustrates that significant focus is given to treating common ailments like gastrointestinal and dermatological problems. Table 5 contain detailed information regarding the name of the medicinal plants, their aliments, the plant part used, the method of use, conservation status of these plants, threats to the plants, major chemical constituents that make up that medicinal plant and the references.

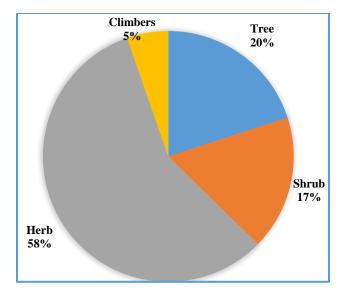


Fig. 1. Pie chart showing the percentage of plants Habits.

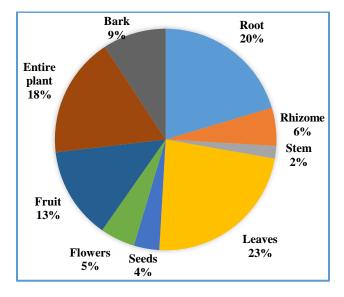


Fig. 2. Pie chart showing the percentage of plant parts used for the treatment.

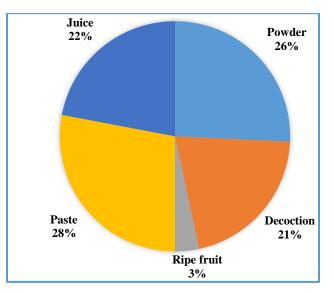


Fig. 3. Pie chart showing the percentage of method of use of the plant parts.

5			able 5. Detailed	inventory of Himal	ayan medicinal pl: Conservation	Table 5. Detailed inventory of Himalayan medicinal plants Wealth with Conservation status Diont nort Conservation	ition status.	
N.O.	Scientific name	Ailment	riant part used	Method of use	CONSET VALION status	Threats	Major chemical constituents	References
-i	Abies pindrow Royle (Pinaceae) 2200-2600m Tree	Cough, cold and fever	Bark	Juice Paste Decoction	Endangered	Invasive species	Bioflavonoids, Chalcone glycoside, Flavonoids, Glucopyranoside, Hydroxyl- flavanone, Pentacyclic triterpenoids, Phenolic compounds, Pindrolactone and	(Gupta <i>et al.</i> , 2011) (Vikram, 2014) (Kumar and Kumar, 2015)
2.	Acer oblongum Wall. ex- DC. (Aceraceae) Tree	Contraceptive	Leaves	Decoction	Least concern	Deforestation Climate change Invasive species	-	(Pande <i>et al.</i> , 2006) (Negi & Rawal, 2019)
ю.	Achillea millefolium L. (Asteraceae) 1500–3600m Herb	Cold, diarrhoea, dysentery, fever, kidney disease, snake bite, stomach disorder and toothache.	Entire plant	Decoction Paste	Vulnerable	Overharvesting for local use Construction activities in natural areas Local use for fodder	1,8-Gineole, Acetate, Achilleine, Achilloic acid, Glycosides, Terpinine-4-ol, Triterpenes, α -Pinene and β -Pinene.	(Atta and El-Sooud, 2004) (Lakshimi <i>et al.</i> , 2011)
4	Achyranthes aspera Linn (Amaranthaceae) 1600-1900m Herb	Boils, bronchitis, dysentery, fever, skin diseases, snake bite and toothache	Entire plant	Decoction Juice Paste	Least concern	r	3-Pyrrolidinecarboxylic acid, Alkaloids, Flavonoids, Tannins and Terpenoids.	(Tiwari et al., 2010) (Bhosale et al., 2012) (Radha et al., 2013) (Vikram, 2014) (Husain & Kumar, 2015)
5.	Aconitum heterophyllum Wall. ex-Royle (Ranunculaceae) 2000-3700m Herb	Abdominal pain, cough, dysentery, and fever.	Roots and rhizome	Powder Paste	Critically endangered	Excessive grazing by livestock Landslides Exploitation for local use Illicit trade	Aconitic acid, Aconitine, Alkaloids including astine, Atidine, Glycerides (Oleic, Palmitic and Stearic acids), Heteratisine, Heterophylline, Heterophyllistine, Hetidi, Hypaconitine, Indacotinine, Mesaconitine and Tamic acid.	(Sharma <i>et al.</i> , 2010) (Tiwari <i>et al.</i> , 2010) (Singh & Rawat, 2011) (Bhat <i>et al.</i> , 2013) (Jaiswal <i>et al.</i> , 2013)
.9	Aconitum violaceum Jacq. ex-Stapf (Ranunculaceae) 2000-3500m Herb	Cold, cough, fever, stomach problems and toothache	Flower and roots	Powder Decoction	Vulnerable		Aconine, Aconitic, Aconitine, Benzoic acid, Indacotinine, Resins, Sparteine and Tannins.	(Rana <i>et al.</i> , 2010)
7.	Acorus calamus L. (Acoraceae) 1000-2000m Herb	Cardiovascular problems, gastrointestinal problems, respiratory disorders, worms, and wounds	Rhizome	Decoction Powder Juice	Endangered	Construction activities in natural areas Overexploitation for local use Overexploitation for fodder	Acoragermacrone, Acorenone, Acorone, Calamusenone, Camphene, Camphor, Isohyobunones, Linalool, Terpinen 4-ol, α- Asarone, α-Calacorene, α-Selinene, and β- Gurjunene.	(Mukherjee <i>et al.</i> , 2007) (Hou and Jin, 2012)
8.	Adiantum capillus-veneris L. Herb	Bronchitis, cough, eye diseases, fever, hair fall, menstrual complaint, and mouth blister	Entire plant	Powder Paste Juice	Least concern	Landslide Excessive harvesting	,	(Pande <i>et al.</i> , 2006) (Dehdari & Hajimehdipoor, 2018)
9.	Adiantum venustum D. Don. (Adiantaceae) Herb	Cough and fever	Entire plant	Juice	Least concern	ı	Flavonoids, Saponins, Tannins and Terpenoids.	(Pande <i>et al.</i> , 2006) (Sofi Mubashir & Shah, 2011)
10.	Aegle marmelos (L.) Correa (Rutaceae) 600-1200m Tree	Digestive problems	Leaves and fruit	Decoction Ripe fruit	Least concern	Excessive harvesting Invasive species	,	(Dhuley, 2003) (Mathur & Joshi, 2013) (Anand & Deborah, 2016)
Ξ.	Aesculus indica (Wall. ex Cambess.) Hook. (Sapindaceae) 1500-2500m Tree	Rheumatism	Bark, fruit and seeds	Paste	Vulnerable	Climate change Deforestation Invasive species Overexploitation		(Rajasekaran & Joginder, 2009) (Radha <i>et al.</i> , 2013) (Khan <i>et al.</i> , 2014)

					Table 5. (Cont'd.).			
s. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
12.	Ageratum conyzoides L. (Asteraceae) Herb 1000-2000m	Cuts and wounds	Leaves	Paste	Least concern	Deforestation Excessive grazing	Ageratochromene, β-Sesquiphelandrene and β-Sinenesal.	(Gaur, 1999) (Pande <i>et al.</i> , 2006) (Rai <i>et al.</i> , 2018)
13.	Ajuga bracteosa Wall. ex Benth. (Lamiaceae) Herb 2000-4000m	Abdominal pain and Jaundice	Entire plant	Decoction Powder Paste	Endangered	Construction activities Excessive harvesting Landslides	Anthocyanidin-glucosides, Arabinose, Cerotic acid, Ceryl alcohol, d-glucoside, Glycoside, Palmitic acid, and Tannin	(Pande <i>et al.</i> , 2006) (Ahmad and Habib, 2014) (Tali <i>et al.</i> , 2016)
14.	Ajuga parviflora Benth. (Lamiaceae) Herb	Cough, fever, headache, and stomach problems	Leaves	Powder Decoction	Endangered	Over-grazing by livestock Overharvesting for local use Constructional activities Deforestation	Cerotic acid, Ceryl alcohol, Glycosides, Palmitic acid, Steroids and Tannins.	(Akriti Pal <i>et al.</i> , 2011) (Joshi <i>et al.</i> , 2016)
15.	Allium sativum L. (Amaryllidaceae) Herb	Arthritis, Metabolic syndromes, and resolizatory disorders	Leaves	Paste	Least concern		·	(Gupta <i>et al.</i> , 2013)
16.	Angelica glauca Edgew. (Apiaceae) 2500–4000m Herb	Abdominal pain, bronchitis, cold, constipation, cough, dyspepsia and stomach disorders	Roots	Powder	Critically endangered	Over-grazing by livestock Overharvesting for local use	Butylidene phthalide, Germacrene-D, Lingustilide, Nerolidol, Thujene, Trans- carveol, α –Phellandrene, β –Bisabolene, β -Pinene, β –Caryophyllene and γ –Terpinene.	(Agnihotri <i>et al.</i> , 2004) (Pandey <i>et al.</i> , 2011) (Vikram, 2014)
17.	Anthemis cotula L. (Asteraceae) Herb 1300-1500m	Insect bite, muscular pain and skin diseases	Entire plant	Decoction Paste	Valnurable	Invasive speices	Aromadendrene, Benzyl salicylate and Nonadecane.	(Rezaee and Jaimand, 2007)
18.	Arisaema jacquemontii Blume (Araceae) Herb	Boils, cough, skin diseases and snake bite	Rhizome	Powder	Least concern	Deforestation Excessive livestock grazing Land slides	Ariseminone	(Hemlata Verma et al., 2012) (Roshan et al., 2017)
19.	Arnebia benthamii Wall. ex-G. Don. (Boraginacae) 3000-3800m Herb Arnobio enchronna Rovle	Asthama, digestive disorders, fever, hair fall and headache	Entire plant	Powder Decoction	Critically endangered	Over-grazing by livestock Landslides Overexploitation for local use Illicit trade	Glycosides and Saponins.	(Rana <i>et al.</i> , 2012) (Shameem <i>et al.</i> , 2015)
20.	Johnston. Johnston. (Boraginaceae) 2800-4800m Herb	Cold, cuts, earache, toothache, and wounds	Roots	Decoction	Endangered		Arnebinone and Butyryl alkannin.	(Singh <i>et al.</i> , 2015) (Vikram, 2014)
21.	Artemisia absinthium L. (Asteraceae) Herb	Abdominal pain, Dandruff, diabetes, fever, intestinal worm and stomachache	Entire plant	Powder Juice Decoction	Vulnerable	Overharvesting for local use Landslides Overexploitation for fodder	Artemisia ketone, Chrysanthenyl acetate, Cineole, Curcumene, Linalool, α -Thujone and β -Thujone.	(Sharopov <i>et al.</i> , 2012) (Nigam <i>et al.</i> , 2019)
22.	Artemisia annua L. (Asteraceae) 3000-4000m Herb	Abdominal pain, malaria, and parasite diseases	Leaves and stem	Paste	Least concern	,	Artemisinin, Camphor, α -Gurjunene, α - Pinene and β -Eudesmol.	(Nigam <i>et al.</i> , 2019)
23.	Artemisia brevifolia Wall. (Asteraceae) 2100-3000m Herb	Blood ailments, fever and Gastro-intestinal disorder	Entire plant	Decoction	Least concern		Camphor, Carvone, Caryophyllene, Chrysanthenone, Chrysanthenyl propionate, Elixene, Pinocarveol and Piperitone	(Abad <i>et al.</i> , 2012) (Nigam <i>et al.</i> , 2019)

					Table 5. (Cont'd.).			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
24.	Artemisia nilagirica C.B.Clarke Pamp. (Asteraceae) 2500–3600m .Herb	Asthma, intestinal worms, nervous disorder, and skin diseases	Entire plant	Paste Juice	Least concern		Borneol, Camphor, Caryophyllene oxide, Farnesol, Germacrane D, Limonene, Linalool, Lynalyl acetate, Myrtenol, Thujanol and β-Thujone.	(Abad <i>et al</i> ., 2012)
25.	Artemisi roxburghiana Besser Var. purpurascens Jacq (Asteraceae) 2600–3600m Herb	Boils, fever and skin diseases	Leaves and stem	Juice	Vulnerable		Borneol, Camphor, Caryophyllene, Eugenol, Humulene, Linalyl acetate and Thujone; 1,8-cineole.	(Joshi <i>et al.</i> , 2016)
26.	Artemisia scoparia Waldst. & Kit. (Asteraceae) 2200-2900m Herb	Blood pressure, digestive diseases, ear diseases, fever and skin	Entire plant	Juice	Vulnerable	Over-grazing by livestock Overharvesting for local use Landslides	1-Phenyl-2, 4-pentadiyne, Capillene, Myrcene, p-Cymene, β - Pinene, β - Caryophyllene and γ -Terpinene.	(Joshi <i>et al.</i> , 2016)
27.	Artemisia sieversiana Ehrh. (Asteraceae) 2800–3600m Herb	Inflammation, kidney pain, skin problem and urinary disorders	Entire plant	Decoction	Vulnerable	Over-grazing by livestock Overharvesting for local use	1,8-Cineole, Borneol, Camphor, Eucalyptol and Geranyl butyrate.	(Abad <i>et al</i> ., 2012)
28.	Artemisia vulgaris L. (Asteraceae) 2000-3000m Herb	Fever and malaria	Entire plant	Juice Powder	Least concern	,	Davanone, Germacrene-D, Isobornyl isobutyrate, Limonene and Rose oxide	(Haider et al., 2014)
29.	Asparagus racemosus Willd. (Asparagaceae) 1000-2800m Shrub	Aphrodisiac, diabetes, dysentery, epilepsy, gynecological problems, spermatorrhoea and tonic	Roots and rhizome	Decoction and powder	Endangered	Excessive livestock grazing Excessive harvesting		(Jadhav & Bhutani, 2006) (Sharma & Bhatnagar, 2010) (Ganie <i>et al.</i> , 2019)
30.	Atropa acuminata Royle ex-Lindl (Solanaceae) 2000–3600m Climber	Asthma, burns, eye diseases, inflammation, narcotic, rheumatic pain and sedative	Roots and leaves	Powder Paste Juice	Endangered	Deforestation Over exploitation for local use	Scopolamine and Tropane.	(Ashtiania & Sefidkonb, 2011)
31.	Azadirachta indica A. Juss (Meliaceae) Tree 1200–2500m	Backache, diabetes, eye ailments, fracture, general weakness, jaundice, malarial fever and skin diseases	Bark and leaves	Decoction Powder Juice	Least concern	ı	Aromoline, Berbamine, Berberine, Karachine, Oxyberberine, Oxycanthine Taxilamine and Palmatine.	(Radha <i>et al.</i> , 2013) (Vikram, 2014)
32.	Berberis asiatica Roxb. ex-DC (Berberidaceae) 1500-2500m Shrub	Diabetes, eye infection, fever and jaundice	Stem, roots and bark	Powder	Least concern	ŗ	Berbarnine, Berberine, Colunbarnamine, Jatrrohirine, Oxyacanthine, Oxyberberine, Palmitine and Tetrahydropalmitine	(Andola <i>et al.</i> , 2010) (Andola <i>et al.</i> , 2011) (Bisht <i>et al.</i> , 2012) (Vikram, 2014)
33.	Berberis chitria Buch. Ham ex-Lindl. (Berberidaceae) Shrub	Diabetes, eye infection and stomachache	Roots	Decoction Juice	Vulnerable	Over-grazing by livestock Overharvesting for local use	·	(Pandey <i>et al.</i> , 2007) (Vikram, 2014)
34.	Berberis lycium Royle (Berberidaceae) 1200–3000m Shrub	Boils, chest problems, eye diseases, jaundice, stomach disorders, toothache and wounds	Roots	Paste Juice Decoction	Vulnerable	Over-grazing by livestock Overharvesting for local use Constructional activities in natural areas	Berberine, Flavonoids, Palmatine, Phenols, Tannin, Terpenoids, Vasicin and Vasicinone.	(Kapoor <i>et al.</i> , 2013) (Rahman <i>et al.</i> , 2016) (Thakur <i>et al.</i> , 2016)

P					Table 5. (Cont'd.)			
s. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
35.	Bergenia ciliata (Haw.) Strenb (Saxifragaceae) 1900–3000m Herb	Cold, cough, diarrhoea, digestive disorders, fever, kidney stone and skin diseases	Leaves, roots and rhizome	Powder Paste	Vulnerable	Excessive harvesting Landslides	Bergenin, Catechin, Gallic acid, Galloyleatechin, Glucoside, Metarbin, Mucilage, Tannic acid, Tannins, and Wax.	(Uniyal & Shiva, 2005) (Negi & Chauhan, 2009) (Radha <i>et al.</i> , 2013)
36.	Betula utilis (D. Don.) (Betulaccae) 2800–4200m Tree	Anaemia, bronchitis, burns, hysteria, jaundice, leprosy, obesity, primogenital diseases and rheumatism	Bark and roots	Powder Paste Juice	Endangered	Deforestation	Betulic acid, Betulin, Champacol, Cineol, Geranic acid, Terragon, β-Linalool, β- Seleneol and β-Sesquiphellendrene.	(Zaki <i>et al.</i> , 2011) (Pal <i>et al.</i> , 2015) (Bobrowski <i>et al.</i> , 2017)
37.	Bistorta amplexicaulis (D. Don) Greene (Polygonaceae) Herb 2000-3000m	Dysentery	Roots	Dried roots Decoction	Least concerned	ı	ī	(Pande <i>et al.</i> , 2006)
38.	Bombax ceiba Linn Saimel (Bombacaceae) 500-1500m Tree	Digestive disorders and snake bite	Flowers and leaves	Paste Decoction	Least concern	,	ï	(Pant & Samant, 2010) (Sharma et al., 2011)
39.	Bupleurum falcatum L. (Apiaceae) 2100–3900m Herb	Abdominal pain and liver diseases	Entire plant	Decoction	Least concern	,	Flavonoids, Monoterpene glycosides, Quinic acid derivatives and Saikosaponins.	(Rana & Samant, 2011)
40.	Cannabis sativa L. (Cannabaceae) 1600–2400m Herb	Arthritis, dandruff, diarrhoea, ear pain, menstrual disorder, rheumatism, and skin diseases	Entire plant	Juice Powder Juice	Least concern		Alkaloids, Cannabidiol (CBD), Cannabigerol, Cannabinoids- Tetrahydrocannabinol (THC), Cannabinol (CBN), Saponin, Steroids, β- Caryophyllene, Tannins and Terpenes.	(Audu <i>et al.</i> , 2014) (Zou & Kumar, 2018)
41.	Capsella bursa-pastoris (L.) Medik. (Brassicaceae) Herb	Abdominal pain and gastrointestinal problem	Entire plant	Powder	Vulnerable	Excessive grazing by livestock	j	(Ibrar <i>et al.</i> , 2014)
42.	Cedrus deodara (Roxb.) Loud. (Pinaceae) Tree 1600-3000m	Asthma, dysentery, fever, rheumatism, scabies, ulcer, urinary disorder and wounds	Bark and leaves	Oil Paste Powder	Endangered	Excessive grazing by livestock Exploitation for local use	ĩ	(Singh & Samant, 2010)
43.	Celtis australis L. (Cannabaceae) Tree	Cardiovascular problems and fractured bones	Bark	Juice Juice Paste	Least concern	r	Ţ	(Sharma <i>et al.</i> , 2011) (Sufyan <i>et al.</i> , 2018)
44.	<i>Centella asiatica</i> (L.) Urb. (Apiaceae) 200-2000m Herb	Dysentery, eye problems, headache, skin diseases and tonic	Leaves	Paste Juice Powder	Least concern	9	Ŧ	(Brinkhaus et al., 2000) (Mathur & Joshi, 2013)
45.	Chenopodium botrys Linn (Chenopodiaceae) 2200-2600m Herb	Stomach problems and urinary problems	Entire plant	Infusion	Least concern	л	11-dien-6α-ol, Botrydiol, Elemol, Elemolacetat, Selina-3, Selina-11-en-4α-ol, α-Chenopodiol and α-Eudesmol acetat.	(Pant & Samant, 2010) (Singh & Rawat, 2011) (Andov <i>et al.</i> , 2014)
46.	Cichorium intybus L. (Asteraceae) Herb	Fractured bones, gynecological problems, skin diseases and wound	Fruits	Decoction Ripe fruit	Endangered	Overgrazing by livestock Overharvesting by locals	Anthocyanins, Cardiac glycosides, Flavonoids, Saponins, Tannins and Terpenoids.	(Shad <i>et al.</i> , 2013) (Nwafor <i>et al.</i> , 2017) (Mir <i>et al.</i> , 2022)
47.	Cinnamomum tamala Buch Ham. Nees & Ebermaeir (Lauraceae) 500-2000m Tree	Cough and cold	Bark and leaves	Paste Powder	Endangered	Overgrazing by livestock Overharvesting by locals	α-pinene, Camphene, Cymene, Eugenol limonene and Myrcene.	(Sharma <i>et al.</i> , 2011) (Sharma & Nautiyal, 2011) (Radha <i>et al.</i> , 2013)
48.	Cirsium wallichii DC. (Asteraceae) Herb 2000-2500m	Dysentery	Roots	Dried	Least concern	ĸ	Acetylenes, Alkaloids, Flavonoids, Phenolic Acids, Lignans, Polyacetylenes, Sesquiterpene and Lactones.	(Gaur, 1999) (Pande <i>et al.</i> , 2006) (Jordon-Thaden & Louda, 2003)

					Table 5. (Cont'd.)			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
49.	Codonopsis rotundifolia Benth. (Campanulaceae) Herb	Metabolic conditions	Entire plant	Juice	Least concern		Coniferaldehyde, Coniferoside, Dillapiole and Sinapinaldehyde.	(Gupta <i>et al.</i> , 2013)
50.	<i>Colebrookta oppositijolta</i> J. E. Smith (Lamiaceae) 1000-1500m Shrub	Cuts and wounds	Leaves	Paste	Least concern	,	,	(Pant & Samant, 2010) (Radha <i>et al.</i> , 2013)
51.	Cotoneaster microphyllus Wall ex-Lindl. (Rosaceae) Shrub	Cuts, diarrhoea and wounds	Leaves, fruit and roots	Paste Juice	Vulnerable	Deforestation	,	(Gaur, 1999) (Pande <i>et al.</i> , 2006)
52.	Cuscuta europaea Linn (Cuscutaceae) 2200-2600m Climber	Earache, hair problems, jaundice, joint pain and skin diseases	Entire plant	Juice Paste	Least concern	T	ŗ	(Singh & Rawat, 2011) (Radha <i>et al.</i> , 2013)
53.	Cymodon dactylon L Pers. (Poaceae) Herb 1500-2500m	Diuretic, jaundice, respiratory disorders, and vomiting	Entire plant	Decoction Paste	Least concern			(Pande <i>et al.</i> , 2006) (Harun <i>et al.</i> , 2017)
54.	Dactylorhiza hatagirea D. Don Soo (Orchidaceae) 3000-3800m Herb	Bone fracture, cuts, diarrhea and wounds	Roots	Powder Decoction Paste	Endangered	Overharvesting for local use Over-grazing by livestock	Resveratrol and trans stilbenes	(Rana & Samant, 2011) (Vikram, 2014) (Dhiman <i>et al.</i> , 2019)
55.	Depnmum aenuaatum Wall Ex Hook F & Thomson (Ranunculaceae) 2000-2500m Herb	Body swelling, snake bite and toothache	Roots	Paste	Critically endangered	Overharvesting for local use Over-grazing by livestock	,	(Singh & Rawat, 2011)
56.	Dioscorea deltoidea Wall. ex Griseb (Dioscoreaceae) 1200-3000m Climber	Fever, genitourinary disorders, respiratory problems, and stomach problems	Rhizome	Powder Decoction Paste	Critically endangered	Landslide Deforestation Overharvesting for local use Over-grazing by livestock	Diosgenin (Cortisone, pregnenolone, progesterone), Sapogenins (Steroids or triterpenes) and Stigmasterol.	(Pant & Samant, 2010) (Singh & Rawat, 2011) (Dangwal & Chauhan, 2015)
57.	Dioscorea villosa (Dioscoreaceae) 1500-2500m Climber	Cough, fever, gastrointestinal problems and gynecological problems	Leaves	Powder Decoction Paste	Endangered	Soil erosion Over-grazing by livestock Overharvesting for local use Deforestation	Diosgenin, Sapogenins and Stigmasterol.	(Pant & Samant, 2010) (Vikram, 2014)
58.	Dipsacus inermis Wall. (Caprifoliaceae) Herb	Bone fracture	Leaves	Paste Powder	Least concern	Over-grazing Overharvesting for local use Constructional activities Landslides	8-Methyldotriacontan-7-ol, Dipsacol and Triacontan-3-one.	(Zhao & Shi, 2011) (Vikram, 2014)
59.	Engelhardtia spicata Lesch Ex-Blume (Juglandaccae) 900-1200m Tree	Boils, cuts, diarrhoea and wounds	Bark	Paste	Least concern		,	(Bhattarai <i>et al.</i> , 2020)
60.	Equisetum arvense L. (Equisetaceae) Herb	Gastrointestinal problems, jaundice, skin diseases and wound	Entire plant	Powder Juice Paste	Least concern	Grazing	×	(Carneiro et al., 2019)
61.	Lapatonian accupation an Sprengel (Asteraceae) 900-1200m Shrub	Cold, cough, cut, skin diseases and wounds	Leaves	Juice Decoction Paste	Least concern	·		(Pant & Samant, 2010) (Singh & Rawat, 2011) (Radha <i>et al.</i> , 2013)

					Table 5. (Cont'd.)			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
62.	Euphorbia royleana Boissier. (Euphorbiaceae) 900-1200m Shrub	Antiseptic, gastrointestinal problem and germicidal	Entire plant	Powder	Least concern			(Radha <i>et al.</i> , 2013) (Ashraf <i>et al.</i> , 2016)
63.	Ficus auriculata Lour. (Moraceae) Tree	Dysentery and stomachache	Fruit	Bare fruit	Least concern	ŗ	·	(Pande et al., 2006)
64.	Ficus palmata Forssk. (Moraceae) Tree 1300-2000m	Antiseptic, constipation, cuts dysentery, skin diseases and wounds	Fruit	Bare fruit	Least concern	,	Alkaloids, Cardiac glycosides, Flavonoids, Tannins and Terpenoids	(Vikram, 2014) (Kumar & Kumar, 2014) (Abbasi <i>et al.</i> , 2015)
65.	Fritillaria cirrhosa D.Don Dermatological disorders (Liliaceae) and gynecological Herb problems	Dermatological disorders and gynecological problems	Fruits	Ripe fruit	Endangered	Constructional activities Unregulated tourism Overharvesting for local use Over-grazing by livestock	,	(Wang <i>et al.</i> , 2020) (Kumar <i>et al.</i> , 2021)
66.	Galinsoga parviflora Cav 1600-2200m (Asteraceae) Herb	Indigestion and snake bite	Leaves	Juice Paste	Least concern	Ţ	3,4-Dimethoxycinnamic acid, 7-Hydroxy- β-sitosterol, 7-Hydroxystigmasterol, Fumaric acid, Phytol, Protocatechuic acid, Stigmasterol, Triacontanol, and Uracil.	(Pande <i>et al.</i> , 2006) (Devi <i>et al.</i> , 2023)
67.	Galium asperifolium Wall. (Rubiaceae) Herb	Skin diseases	Leaves	Juice Decoction	Least concerned		la -	(Gaur, 1999) (Pande <i>et al.</i> , 2006)
68.	Geranium wallichianum D. Don ex Sweet (Geraniaceae) Herb	Dysentery, fever, eye infection, earache, and toothache.	Leaves and roots	Paste Powder Decoction	Rare	Excessive harvesting Landslides	2,4,6-trihydroxyethylbenzoate and Herniarin.	(Shinwari & Khan, 2003) (Qureshi <i>et al.</i> , 2009) (Ismail <i>et al.</i> , 2012) (Rahman <i>et al.</i> , 2016)
69.	Hedychium spicatum BachHam. Ex J.E. Smith (Zingiberaceae) 1000-2000m Herb	Asthma, bronchitis, diarrhoea, dyspepsia, gastric trouble and liver diseases	Rhizome	Juice Powder	Vulnerable	ŗ	X	(Uniyal & Shiva, 2005) (Semwal <i>et al.</i> , 2010) (Vikram, 2014)
70.	<i>Heracleum candicans</i> Wall.ex DC. (Apiaceae) 1700–3100m Herb	Infertility, gynaecological disorders, Fruit and roots and joint pain	Fruit and roots	Decoction Powder	Vulnerable	Over-grazing by livestock Landslides/soil erosion Constructional activities	1, 8-cineole, Caryophyllene oxide, Germacrene D, Linalool, Pimaradiene, Sabinene, and trans-Sabinene hydrate.	(Butola & Badola, 2006) (Butola <i>et al.</i> , 2010) (Joshi <i>et al.</i> , 2016)
71.	Hypericum oblongifolium Choisy (Hyperiaceae) Shrub	Boils, diarrhea and wounds	Leaves	Juice	Least concern		,	(Pande et al., 2006)
72.	Indigofera heterantha Wall. ex-Brandis (Fabaceae) Shrub	Cough, dysentery and toothache	Leaves and seeds	Juice Powder Paste	Least concern	Over-grazing by livestock Overharvesting for local use Landslides/soil erosion	ı	(Rahman <i>et al.</i> , 2016) (Rahman <i>et al.</i> , 2018)
73.	Inula racemosa Hook f. (Asteraceae) 1500-2500m Herb	Asthma, bronchitis, cough and heart conditions	Roots	Powder	Critically endangered	Excessive grazing by livestock Overharvesting for local use Constructional activities Deforestation	Alantolactone, Aplotaxene, Daucosterol, dihydro-Alantolactone, dihydroiso- Alantolactone, Inunolide, isoAlantolactone, Isonitrile, Phenylacetonitrile and Sitisterol.	(Wang Ke Tai <i>et al.</i> , 2000) (Sharma <i>et al.</i> , 2016) (Rathore <i>et al.</i> , 2022)
74.	<i>Ipomoea nil</i> L Roth. (Convolvulaceae) Climber	Skin diseases	Entire plant	Paste Decoction	Least concern	ŗ		(Pande et al., 2006)

S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
75.	Juglans regia L. var kumaonica DC. (Juglandaceae) 1000-3000m Tree hurinoa Aolomizoa Boise	Skin diseases, intestinal worms and toothache	Bark, leaves and fruit	Decoction Ripe Fruit Paste	Least concern		Juglones, Palmitic acid and Quercetin 3- glycosides	(Singh & Rawat, 2011) (Gairola <i>et al.</i> , 2014) (Rahman <i>et al.</i> , 2016)
76.	(Asteraceae) (Asteraceae) 3200-4500m Herb	Fever and pain	Roots and leaves	Paste Juice	Vulnerable	Deforestation	,	(Singh & Rawat, 2011) (Bhat <i>et al.</i> , 2013)
77.	Lamium album Linn (Lamiaceae) 1600-1900m Herb	Bleeding after childbirth, burns and wounds	Leaves and flowers	Decoction Juice Juice	Endangered	Land sliding. Deforestation	2-Ethyl furan, 2-Heptanol, 3- Methylbutanal, 3-Octanone, 6,10,14- Trimethyl-2-pentadecanone, and Verbascoside.	(Gaur, 1999) (Singh & Rawat, 2011) (Morteza-Semnani <i>et al.</i> , 2016) (Kelaveh <i>et al.</i> , 2019)
78.	Leucas lanata Benth. (Lamiaceae) Herb 1000-3000m	Cold, cough and Wounds	Leaves	Juice	Least concern		Caffeic acid, Chlorogenic acid, Ferulic acid, Gallic acid and Protocatechuic acid	(Singh & Rawat, 2011) (Dixit <i>et al.</i> , 2015)
79.	Litsea glutinosa (Lour.) Robinson (Lauraceae) 1000-1500m Tree	Broken bones.	Bark	Paste	Least concern	,	Ţ	(Gaur & Sharma, 2011) (Sharma <i>et al.</i> , 2011)
80.	Lyonia ovalifolia (Wall.) Drude (Ericaceae) 1200- 3200m Tree	Boils and wounds	Seeds	Paste Juice	Least concern		ï	(Rana <i>et al.</i> , 2010) (Radha <i>et al.</i> , 2013)
81.	Malaxis acuminata D. Don (Orchidaceae) 1500-3500m Herb	Bronchitis and fever	Rhizome	Powder	Least concern	,	ī	(Rautela <i>et al.</i> , 2023)
82.	Mallotus philippensis (Lam.) MuellArg. (Euphorbiaceae) 300–1800m Tree	Antihelmintic, constipation, cuts, dysentery, skin diseases and wounds	Leaves and fruit	Paste Powder	Vulnerable	Overgrazing Overharvesting	ï	(Sharma <i>et al.</i> , 2011) (Radha <i>et al.</i> , 2013)
83.	Malva sylvestris L. (Malvaceae) Herb	Diarrhea and dysentery	Entire plant	Powder	Least concern	1	ī	(Hakeem, 2019)
84.	Matricaria chamomilla Linn. (Asteraceae) 2000-4000m Herb	Aromatherapy, respiratory disorders and stomachache	Flowers and leaves	Decoction	Least concern	Excessive harvesting Climate change	Ţ	(Kaur et al., 2016)
85.	Meconopsis aculeata Royle (Papavaraccae) 3000-4200m Herb	Cardiac diseases, gynaecological disorders, headache, ulcer and wounds	Entire plant	Powder Paste	Endangered	Over-grazing by livestock Overharvesting for local use Landslides/soil erosion Constructional activities	Alkaloids and Phenols	(Mudasar Ahmad <i>et al.</i> , 2016)
86.	Megacarpaea polyandra Benth (Brassicaceae) 2200- 2600m Herb	Abdominal pain, fever and stomachache	Roots	Paste Powder	Vulnerable	t	ï	(Singh & Rawat, 2011)
87.	Melothria heterophylla (Lour.) Cogn. (Cucurbitaceae) Climber 1200-2500m	Cold, cuts and fever	Leaves and fruit	Juice	Least concern	,	·	(Pande et al., 2006)
88.	Morina longifolia Wall. ex DC (Dipsacaceae) 2200-2600m Herb	Boils, burns, cuts and snake bite.	Entire plant	Paste Decoction	Vulnerable	Deforestation		(Singh & Rawat, 2011) (Vikram, 2014)

					Table 5. (Cont'd.)			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
89.	<i>Myrica esculenta</i> Buch- Ham ex-D. Don. (Myricaccae) Tree 1400-2000m	Asthma, cough, diarrhoca, dysentery, fever and wound	Bark and fruit	Powder Ripe Decoction	Least concern	,	1	(Uniyal & Shiva, 2005) (Gusain & Khanduri, 2016)
90.	Myrsine semiserrata Wall. (Myricaceae) Shrub	Colic and menstral disorder	Fruit	Decoction	Least concern	,	1	(Gaur, 1999) (Pande <i>et al.</i> , 2006)
91.	Nardostachys jatamansi DC (Valerianaceae) 3000-4000m Herb	Epilepsy, hairfall and heart related diseases	Rhizome	Powder	Critically endangered	Deforestation Overgrazing by livestock Overexploitation	Cinnamic acid, gallic acid and rutin p- coumaric acid	(Kanwal & Joshi, 2015) (Dhiman <i>et al.</i> , 2020) (Dhiman & Bhattacharya, 2020)
92.	Nasturtium officinale W.T.Aiton (Brassicaceae) Herb	Abdominal pain, bone fracture and diarrhea	Entire plant	Juice Powder	Least concern	,	,	(Lata, 2020)
93.	Ocimum basilicum L. (Lamiaceae) 500-1000m Herb	Bronchitis, cold, cough, fever, toothache, and urinary disorder	Entire plant	Decoction	Rare	Diseases	Estragole, Eugenol, Linalool, Linolenic acid, Methyl chavicol, Palmitin 2-mono, Phytol, Stigmasterol, Tetradecanoic acid, n-Hexadecanoic acid, p-Sitosterol	(Gaur, 1999) (Tewari <i>et al.</i> , 2012) (Ghani & Pai, 2015)
94.	Origanum vulgare L. (Lamiaccae) 1200-3000m Herb	Fever, menstrual complaints, respiratory disorders, stomach pain and toothache	Entire plant	Decoction, paste and powder	Least concern	Excessive harvesting	Alkaloids, Flavonoids, Ciycosides, Oleanolic acid, Origanol A and B, Phenols, Saponins, Sterols, Triacontanol, Triterpenoids, Tannins, Ursolic acid and β- Sitosterol.	(Uniyal & Shiva, 2005) (Verma <i>et al.</i> , 2010) (Singh & Rawat, 2011)
95.	Oxalis corniculata L. (Oxalidaceae) 1000-3000m Herb	Dysentery, eye problem, fever, insect bite, jaundice, scurvy, skin diseases and wounds	Entire plant	Paste Juice	Least concern	a	Flavonoids, Glycosides, Phenols, Phytosterols, Tannins and Volatile oil	(Mathur & Joshi, 2013) (Vikram, 2014)
96.	Paeonia emodi Wallich ex Royle (Paeoniaceae) 1800-2500m Herb	Abdominal pains, diarrhoea and vomiting	Entire plant	Paste	Least concern	Excessive livestock grazing and Excessive harvesting	r	(Gaur, 1999) (Vikram, 2014) (Ganie <i>et al.</i> , 2019)
97.	Paris polyphylla Smith (Liliaceae) 1500-2800m Herb	Fever, headache, stomach problems and wounds	Rhizome	Paste	Vulnerable	,	ï	(Rana <i>et al.</i> , 2020) (Kunwar <i>et al.</i> , 2021)
98.	Parnassia nubicola Wall. ex-Royle (Saxifragaceae) Herb Peneromia tetranhylla	Snake bite and vomiting	Roots	Paste Juice	Least concern	ł	Methanol	(Rao <i>et al.</i> , 2011) (Radha <i>et al.</i> , 2013)
.66	(Forst. f.) Hook. & Arn. (Piperaceae) Herb 1500-3000m	Burn and wounds	Entire plant	Paste	Least concern	ŗ	T	(Pande et al., 2006)
100.	Phyllanthus emblica Linn (Euphorbiaceae) 900-1200m Tree	Asthama, digestive problems, hair loss and skin diseases	Fruit	Paste	Least concern	,	ï	(Radha <i>et al.</i> , 2013)
101.	Prevorntza kurrooa Koyle ex Benth (Scrophulariaceae) 3200-4800m Herb	Abdominal pain, fever and stomachache	Roots	Powder Decoction	Endangered	Grazing	ŕ	(Tiwari <i>et al.</i> , 2010) (Chand <i>et al.</i> , 2016) (Debnath <i>et al.</i> , 2020)
102.	Pimpinella diversifolia DC. (Apiaceae) Herb	Cold, coughing and stomach problem	Fruit	Juice Powder	Least concern	,		(Kumar et al., 2024)

					Table 5. (Cont'd.)			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
103.	Pinus roxburghii Sarg. (Pinaceae) Tree	Boil, cuts and wounds	Leaves	Powder Paste Resin	Least concern		,	(Siddiqui <i>et al.</i> , 2009)
104.	Podophyllum hexandrum Royle (Berberidaceae) 2500-4200m Herb	Bone fracture, cough, cut, dyspepsia, skin diseases and wounds	Leaves and roots	Paste Decoction Powder	Endangered	Deforestation Excessive grazing Excessive harvesting Constructional activities	Pettatin, Picropodophyllin, Podophyllic acid, Podophyllin, Podophylloquercin, Podophyllotoxin and Tannin.	(Haleema <i>et al.</i> , 2006) (Chaurasia <i>et al.</i> , 2012) (Bhat <i>et al.</i> , 2013)
105.	Prinsepia utilis Royle (Rosaccae) Shrub 1300-3000m	Burns, cuts, diarrhea, rheumatism, stomachache and wounds	Bark, roots, fruit and seeds	Seed oil Juice	Endangered	Deforestation Excessive harvesting	L	(Pant & Samant, 2010) (Radha <i>et al.</i> , 2013)
106.	Prunus cerasoides D. Don (Rosaceae) 2200-2600m Tree	Cuts, fractured bones and wounds	Bark and fruit	Decoction Juice	Least concern	,	ì	(Pant & Samant, 2010) (Kumar <i>et al.</i> , 2011)
107.	Pyracantha crenulate D. Don. M. Roem. (Rosaceae) Shrub	Digestive disorder and body pain	Fruit	Juice	Least concern	×	ì	(Pande et al., 2006)
108.	Pyrus pashia Buch Ham. ex D. Don. (Rosaceae) Tree	Digestive diseases and eye infection	Fruit	Juice	Least concern	ſ	Lupeol and β-sitosterol	(Khandelwal <i>et al.</i> , 2008) (Pant & Samant, 2010) (Radha <i>et al.</i> , 2013)
109.	Quercus leucotrichophora A. Camus (Fagaceae) Tree 2000-2500m	Asthma, bronchial problem, digestive disorder, gonorrheal, hemorrhages and urinary disorder	Bark and seed	Resin Powder	Ţ	'n	ŗ	(Kumar <i>et al.</i> , 2011) (Rawat, 2016)
110.	Quercus semecarpifolia Smith. 2000-2500m (Fagareae) Tree	Scratch and wounds	Leaves	Paste	Least concern	ŗ		(Pande <i>et al.</i> , 2006)
111.	Ranunculus arvensis L. (Ranunculaceae) Herb 1200-3000m	Diarrhea, fever and skin problems	Entire plant	Juice Paste Decoction	Least concern	1	ı	(Gaur, 1999) (Pande <i>et al.</i> , 2006)
112.	Reinwardtia indica Dumort. (Linaceae) Shrub 12000-2200m	Wounds and mouth wash	Leaves and flowers	Juice	Least concern	,	ų.	(Pande <i>et al.</i> , 2006)
113.	Rhamnus virgatus Roxb (Rhamnaceae) Shrub 2,500 to 4,000m	Treating eye white spots, malarial fever and ringworms	Bark and leaves	Juice and paste	Least concern	Excessive livestock grazing	,	(Gaur, 1999) (Pant & Samant, 2010)
114.	Rheum australe D. Don (Polygonaceae) 3000-4000m Herb	Asthma, bronchitis, metabolic conditions, and wounds	Root and rhizome	Powder	Endangered	Excessive harvesting and Climate change	Anthraquinones (Aloe-emodin and Chrysophanol)	(Siddique & Jeelani, 2015) (Kanta <i>et al.</i> , 2018) (Mala <i>et al.</i> , 2021)
115.	Rhododendron anthopogon D. Don (Ericaceae) 3000-4000m Shrub	Arthritis, cold, cough, headache and rheumatism	Leaves and flowers	Powder	Vulnerable	Excessive harvesting Deforestation	Polyphenols, Quinones, Sterols and Triterpenes.	(Baral et al., 2014)
116.	Rhododendron arboretum. Smith. (Ericaceae) 1500-3200m Tree	Blood purifier, cardiac tonic, digestive diseases and fever	Flowers	Juice	Least concern	ŗ	ı	(Singh & Rawat, 2011) (Singh et al., 2015)
117.	Rhus javanica Linn (Anacardiaceae) 1600-1900m Tree	Body pain, cholera, fever and stomachache	Bark and fruit	Paste	Least concern	ŗ	ŗ	(Gaur, 1999) (Pant & Samant, 2010)

					Table 5. (Cont'd.).			
S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
118.	Rhus parviflora Roxb (Anacardiaceae) 1600-1900m Tree	Cholera, cough, cut, fever and wound	Leaves	Paste	Least concern	1	, ,	(Pant & Samant, 2010)
119.	Rosa brunonii Lindley (Rosaceae)2200-2600m Shrub	Cuts, diarrhoea and eye infections	Leaves and flowers	Juice Powder Paste	Least concern	2	'n	(Radha <i>et al.</i> , 2013)
120.	Rosmarinus officinalis Linn (Lamiaceae) 1200-2500m Herb	Boils, headache and skin disease	Leaves	Juice	Least concern	Excessive harvesting Excessive livestock grazing	ŗ	(Phondani et al., 2016)
121.	Rubia manjith Roxb. ex- Fleming. (Rubiaceae) Climber 1300-300m Rubus biflorus Buch. Ham	Headache, jaundice, skin problems and tonic	Roots and flowers	Paste Powder	Least concern	1	a.	(Pande <i>et al.</i> , 2006)
122.	ex - Smith.	Diarrhoea	Fruit and roots	Decoction	,	,	,	(Pande et al., 2006)
123.	(Rosaceae) Shrub Rubus ellipticus -Smith. (Rosaceae) Shrub 1200-2200m	Constipation, digestive disorders, skin diseases and stomachache.	Fruit, leaves and roots	Paste Juice Decoction	Least concern	ŗ	ſ	(Pande <i>et al.</i> , 2006)
124.	Rubus niveus -Thunb. (Rosaceae) Shrub 1200-2200m	Dysmenorrhea, fever, headache, snakebite and stomachache	Fruit, leaves and roots	Juice Juice Decoction	Least concern	ŗ	a	(Radha <i>et al.</i> , 2013) (Vikram, 2014)
125.	Rumex hastatus D. Don. (Polygonaceae) Herb 1300-2300m	Antirheumatic, cuts, scurvy, stomach pain, tonic and toothache	Leaves, flower and roots	Juice Juice Powder Paste	Least concern	,	Alkaloids, Anthraquinone glycoside, Flavonoids, Hastatusides A and B, Nepodin, Orientaloside, Phenolic compounds, Resveratrol, Rumexoside, Rutin, Saponins, Tannins and Torachrysone-8-y1 β-Dglucopyranoside.	(Shinwari & Gilani, 2003) (Pande <i>et al.</i> , 2006) (Ahmad <i>et al.</i> , 2015) (Rahman <i>et al.</i> , 2016)
126.	Rumex nepalensis Sprengel (Polygonaceae) 2200-2600m Herb	Dysentery and stomach- ache	Leaves and roots	Powder Juice Paste	Least concern	,	Hexane and Methanol	(Pant & Samant, 2010) (Singh & Rawat, 2011) (Radha <i>et al.</i> , 2013)
127.	Salvia moorcrofitana Wall. Ex Benth. (Lamiaceae) 1500–3000m Herb	Boils, chest diseases, cough, dysentery, haemorrhoids, headache, joint pain, stomach pain, throat swelling and wounds	Entire plant	Powder Paste	Least concern	1	Oxygenated monoterpenes, Oxygenated sesquiterpenes, Sabinene and β- Caryophyllene.	(Rather et al., 2011)
128.	Sapindus mukorossi Gaertn (Sapindaceae) 1500-2500m Tree	Eczema, freckles, hairfall and snakebite	Fruit	Ripe fruit	Least concern	Deforestation Overexploitation	,	(Mahar <i>et al.</i> , 2012)

S. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
129.	Sarcococca saligna D. Don. Muell Arg. (Buxaceae) 2200-2600m Shrub	Joint pain	Leaves and roots	Paste	Least concern		,	(Pant & Samant, 2010) (Singh & Rawat, 2011) (Radha <i>et al.</i> , 2013)
130.	Saussurea obvallata (DC) Edgew. (Asteraceae) 3500-4200m Herb	Body pain, boils, cuts, fever, rheumatism and wounds	Entire plant	Paste	Critically endangered	Excessive grazing Excessive harvesting	,	(Joshi & Dhar, 2003) (Singh & Rawat, 2011)
131.	Selinum tenuifolium DC (Apiaceae) 2200-2600m Herb	Asthama, cough and toothache	Roots	Powder	Vulnerable	Ţ	Derivative.	(Chauhan, 1999) (Singh & Rawat, 2011)
132.	Selinum vaginatum (Edgew.) C. B. Clarke (Apiaceae) 2200-2600m Herb	Skin diseases and toothache	Roots	Paste	Vulnerable	Ţ	Derivative.	(Chauhan, 1999) (Singh & Rawat, 2011)
133.	Smilax aspera L. (Smilacaceae) 1200-2600m Climber	Diarrhoea, joint pain, skin diseases, snake bite and wounds	Roots and fruit	Paste Decoction Juice	Least concern	Т	,	(Pande <i>et al.</i> , 2006)
134.	Solanum nigrum L. (Solanaceae) 800-3000m Herb	Fever, headache, Liver tonic, skin diseases and stomachache	Leaves, fruit and roots	Paste Juice Decoction	Least concern	,	Alkaloids, Coumarins, Flavonoids, Glycosides, Saponins, Tannins and Terpenoids	(Mahmood <i>et al.</i> , 2013) (Kayani <i>et al.</i> , 2014) (Khan <i>et al.</i> , 2015)
135.	Stellaria media (L.) Vill. (Caryophyllaceae) Herb	Boils, bone fracture, burns, skin diseases, stomach pain and wounds.	Entire plant	Paste Powder	Least concern	,	ı	(Salam <i>et al.</i> , 2011) (Rahman <i>et al.</i> , 2016)
136.	Syzygium cumini (Linn.) Skeels (Myrtaceae) 900-1200m Tree	Bronchitis and diabetes	Bark, fruit and seed	Fruit Powder Decoction	Least concern	ŗ	·	(Uniyal & Shiva, 2005) (Pant & Samant, 2010)
137.	I anacetum dolichophyllum (Kitam.) Kitam. (Asteraceae) 2600–3800m Herb	Fever, indigestion, intestinal worms and stomach problems	Leaves	Juice Decoction	Least concern	,	(E)-β-Farnesene, cis-Lanceol, Neryl acetate, Terpinen-4-ol, α-Bisabolol, β- Eudesmol and β-Pinene.	(Haider <i>et al.</i> , 2011)
138.	Taraxacum officinale Webb (Asteraceae) Herb 1300-2000m	Blood purifier, headache, jaundice, liver diseases, skin diseases and toothache	Entire plant	Juice Decoction Powder Paste	Least concern	т	1-Tridecanol and 20(30)-Taraxasten-3-ol	(Gairola <i>et al.</i> , 2014) (Rahman <i>et al.</i> , 2016)
139.	Taxus baccata L. (Taxaceae) 1800-3400m Tree	Anti-cancer, cold and fractured bones	Bark	Paste	Vulnerable	Deforestation Land sliding	,	(Jan Alam & Ali, 2010) (Radha <i>et al.</i> , 2013) (Vikram, 2014)

					Table 5. (Cont'd.).			
s. N.O.	Scientific name	Ailment	Plant part used	Method of use	Conservation status	Threats	Major chemical constituents	References
140.	Terminalia chebula Retz (Comberataceae) 1000-1500m Tree	Asthma, cough and digestive disorders	Seeds and fruit	Powder	Least concern	1	β-sitosterol, Anthraquinone, Flavonol, Glycosides, Hydrolysabletannins, Phenolics and Triterpenoids.	(Malik <i>et al.</i> , 2015)
141.	Thalictrum foliolosum DC. (Ranunculaceae) 1200-2200m Herb	Abdominal pain, blood purification, diuretic, fever, jaundice, leucoderma and toothache.	Roots	Powder Paste	Vulnerable	Excessive grazing Excessive harvesting	ı	(Uniyal & Shiva, 2005) (Pande <i>et al.</i> , 2006)
142.	Trillium govanianum Wall. ex D. Don (Melanthiaceae) Herb	Burns, diarrhoea, respiratory diseases and wounds	Roots	Powder	Endangered	Landslide Illicit trade	Brassoside, Diosgenin, Govanoside A, Pennogenin, Pennogenin E, Piosgenin, Polyphyllin VII, Sarsasapogenin and Trillarin.	(Rathore et al., 2020)
143.	<i>Urena lobata</i> L. (Malvaceae) Shrub	Body pain, diuretic and urinary problems	Leaves and roots	Paste	Least concern	ł.	,	(Pande <i>et al.</i> , 2006)
144.	Urtica dioica Linn (Urticaceae) 3000-4500m Herb	Baldness, boils, joint pain, rheumatism, skin diseases, stomachache, toothache and wounds	Leaves and roots	Juice Paste Powder	Least concerned		12-octadecadienoic acid, Carbonic, Formic and Silicic.	(Vikram, 2014) (Rahman <i>et al.</i> , 2016)
145.	Valeriana jatamansi Jones ex Roxb. (Caprifoliaceae) 1200-3200m Herb	Asthma, cholera, dysentery, skin diseases, stomachache and wounds	Roots and Rhizome	Powder	Endangered	Landslides Deforestation Excessive livestock grazing Excessive harvesting	3-Methylvaleric acid, Azulene, Kanokonyl acetate γ –Curcumene, Maaliol, Patchouli alcohol, Seychellene, Viridiflorol, ar-Curcumene, α –Bulnesene, α-Santalene, α–Guaiene, β –Gurjunene and β-Caryophyllene	(Uprety <i>et al.</i> , 2010) (Vikram, 2014) (Joshi <i>et al.</i> , 2016)
146.	Viburnum cotinifolium D. Don (Caprifoliaceae) Shrub 2000-2600m	Digestive disorder	Bark, leaves and fruit	Decoction	Least concern	Ţ	1	(Pant & Samant, 2010)
147	Viola canescens Wall. (Violaceae) 1000-2600m Herb	Cold, cough, fever and jaundice	Entire plant	Decoction	Least concern	Ţ	Alkaloid violin, Glucoside methyl salicylate, Glycoside quercitin and Saponins	(Tiwari <i>et al.</i> , 2010)
148	Withania somnifera L. Dunal (Solanaceae) 500-1500m Herb	Carbuncles, cold, cough, epilepsy, ulcer and rheumatism	Leaves and Roots	Chew, juice and powder	Vulnerable	Excessive harvesting Climate change	,	(Aslam <i>et al.</i> , 2017)
149	Woodfordia fruticosa (Linn.) Kurz (Lythraceae) 1000-1800m Shrub	Dysentery	Flowers	Decoction Powder	Endangered	Excessive harvesting Excessive grazing	·	(Pant & Samant, 2010)
150	Zanthoxylum armatum DC. (Rutaceae) 1000-2500m Shrub	Cold and toothache	Bark, seeds and stem	Powder Paste	Vulnerable	Excessive harvesting	Alkaloids, Benzenoides, Coumarins, Flavonoids, Glycosides, Lignin, Limonene, Linalool, Linoleic acid, Palmitoleic acid, Phenolics, Sterols and Terpenoids.	(Barkatullah <i>et al.</i> , 2011) (Radha <i>et al.</i> , 2013) (Rahman <i>et al.</i> , 2016)

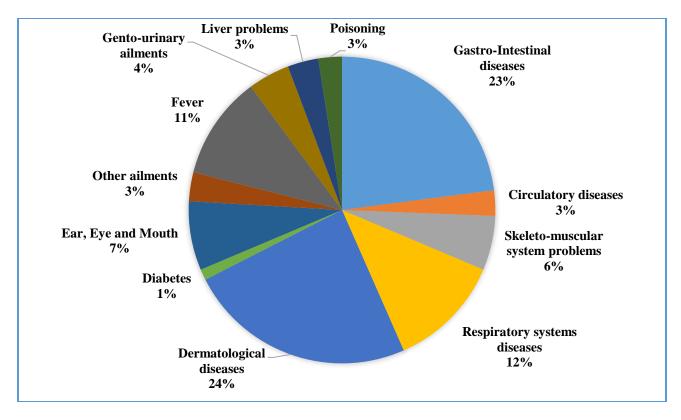


Fig. 4. Pie chart showing the percentage of different diseases.

 Table 4. Diseases cured by the medicinal plants of Himalayas.

 S
 N O

 Diseases
 Number of plants

S. N.O.	Diseases	Number of plants
1.	Gastro-Intestinal diseases	120
2.	Circulatory diseases	14
3.	Skeleto-muscular system problems	30
4.	Respiratory systems diseases	63
5.	Dermatological diseases	126
6.	Diabetes	6
7.	Ear, Eye and Mouth	38
8.	Other ailments	16
9.	Fever	57
10.	Gento-urinary ailments	23
11.	Liver problems	17
12.	Poisoning	13

Conclusion

This study underlines the importance of these medicinal plants in dealing with global health concerns as a cheaper alternative to pharmaceuticals. The results have cultural significance alongside their possible financial value given the increasing demand for traditional and natural medical treatments around the globe. Understanding the need for sustainable harvesting and preservation methods is crucial for assuring the accessibility of these medical resources. Sustainable practices and the implementation of traditional knowledge may assist in preserving biodiversity and cultural heritage. The fact that Himalayan medicinal plants are widely used to treat a wide range of illnesses illustrates the importance of these plants from a cultural, medical, and economic standpoint. The ongoing utilization of these priceless resources depends on addressing common illnesses and investigating unrealized potentials for treating fewer common disorders while assuring conservation efforts. Great efforts are needed inline to Global initiatives to protect this treasure of nature for future generations.

Acknowledgment

The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP2024R236), King Saud University, Riyadh, Saudi Arabia.

References

- Abad, M.J., L.M. Bedoya, L. Apaza and P. Bermejo. 2012. The Artemisia L. Genus: A review of bioactive essential oils. Molecules, 17(3): 2542-2566.
- Abbasi, A.M., M.H. Shah, T. Li, X. Fu, X. Guo and R.H. Liu. 2015. Ethnomedicinal values, phenolic contents and antioxidant properties of wild culinary vegetables. *J. Ethnopharmacol.*, 162: 333-345.
- Abbasi, A.M., S.M. Khan, M. Ahmad, M.A. Khan, C.L. Quave and A. Pieroni. 2013. Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan. J Ethnobiol. Ethnomed., 9: 1-21.
- Agnihotri, V.K., R.K. Thappa, B. Meena, B.K. Kapahi, R.K. Saxena, G.N. Qazi and S.G. Agarwal. 2004. Essential oil composition of aerial parts of *Angelica glauca* growing wild in north-west Himalaya (India). *Phytochemistry*, 65(16): 2411-2413.
- Ahmad, K.S. and S. Habib. 2014. Indigenous knowledge of some medicinal plants of Himalaya region, Dawarian village, Neelum valley, Azad Jammu and Kashmir, Pakistan. Univ. J. Plant Sci., 2(2): 40-47.
- Ahmad, S., F. Ullah, M. Ayaz, A. Sadiq and M. Imran. 2015. Antioxidant and anticholinesterase investigations of *Rumex hastatus* d. Don: Potential effectiveness in oxidative stress and neurological disorders. *Biol. Res.*, 48: 1-8.
- Akriti Pal, A.P., M.J. Mayank Jadon, Y. Katare, P. Singour, H. Rajak, P. Chaurasiya, U. Patil and R. Pawar. 2011. *Ajuga bracteosa* wall: A review on its ethnopharmacological and phytochemical studies. *Der Pharmacia Sinica.*, 2(2): 1-10.

- Ali, H., J. Sannai, H. Sher and A. Rashid. 2011. Ethnobotanical profile of some plant resources in Malam Jabba valley of Swat, Pakistan. J. Med. Plants Res., 5(18): 4676-4687.
- Anand, S. and S. Deborah. 2016. Enumeration of wild edible fruits from Boda hills and Kolli hills. *Int. J. Appl. Biol. Pharm. Technol.*, 7: 96-102.
- Andola, H.C., K.S. Gaira, R.S. Rawal, M.S. Rawat and I.D. Bhatt. 2011. Influence of environmental factors on production of berberine content in *Berberis asiatica* Roxb. Ex dc in Kumaun West Himalaya, India. J. Herbs, Spices & Med. Plants, 17(4): 329-338.
- Andola, H.C., K.S. Gaira, R.S. Rawal, M.S.M. Rawat and I.D. Bhatt. 2010. Habitat-dependent variations in berberine content of *Berberis asiatica* Roxb. Ex. Dc. In Kumaon, Western Himalaya. *Chem. Biodive.*, 7(2): 415-420.
- Andov, L.A., M. Karapandzova, I. Cvetkovikj, G. Stefkov and S. Kulevanova. 2014. Chemical composition of chenopodium *Botrys* L.(chenopodiaceae) essential oil. *Macedonian Pharm. Bull.*, 60(1).
- Arora, S. and A. Daverey. 2018. Inventory of the wooden alien flora of Uttarakhand Himalayas–a review. *Proceedings of* the Himalayan Res. Consor., 1(1): 62-69.
- Ashraf, M.U., G. Muhammad, M.A. Hussain and S.N. Bukhari. 2016. *Cydonia oblonga* M., a medicinal plant rich in phytonutrients for pharmaceuticals. *Front. Pharmacol.*, 7: 209166.
- Ashtiania, F. and F. Sefidkonb. 2011. Tropane alkaloids of atropa Belladonna L. And Atropa acuminata royle ex miers plants. J. Med. Plants Res., 5(29): 6515-6522.
- Asif, M., S.M. Haq, U. Yaqoob, M. Hassan and H.A. Jan. 2021. A preliminary study on the ethno-traditional medicinal plant usage in Tehsil "Karnah" of District Kupwara (Jammu and Kashmir) India. *Ethnobot. Res. Appl.*, 21: 1-14.
- Aslam, S., N.I. Raja, M. Hussain, M. Iqbal, M. Ejaz, D. Ashfaq, H. Fatima, M.A. Shah and M. Ehsan. 2017. Current status of *Withania somnifera* (L.) dunal: An endangered medicinal plant from Himalaya. *Amer. J. Plant Sci.*, 8(5): 1159-1169.
- Atta, A. and K.A. El-Sooud. 2004. The antinociceptive effect of some Egyptian Medicinal Plant extracts. J. Ethnopharmacol., 95(2-3): 235-238.
- Audu, B., P. Ofojekwu, A. Ujah and M. Ajima. 2014. Phytochemical, proximate composition, amino acid profile and characterization of marijuana (*Cannabis sativa L.*). J. *Phytopharmacol.*, 3(1): 35-43.
- Baral, B., G.S. Vaidya, B.L. Maharjan and J.A. Silva. 2014. Phytochemical and antimicrobial characterization of Rhododendron Anthopogon from high Nepalese Himalaya. *Botanica Lithuanica*, 20(2): 1392-1665.
- Barkatullah, B., M.I. Muhammad Ibrar and N.M. Naveed Muhammad. 2011. Evaluation of *Zanthoxylum armatum* dc for in-vitro and in-vivo pharmacological screening.
- Bhat, J.A., M. Kumar, A. Negi and N. Todaria. 2013. Informants' consensus on ethnomedicinal plants in Kedarnath wildlife sanctuary of Indian Himalayas. J. Med. Plants Res., 7(4): 148-154.
- Bhattacharya, P., R. Prasad, R. Bhattacharyya and A. Asokan. 2008. Towards certification of wild medicinal and aromatic plants in four Indian states. *Unasylva.*, 59(230): 35-44.
- Bhattarai, S., R.M. Kunwar, R.W. Bussmann and N.Y. Paniagua-Zambrana. 2020. *Engelhardia spicata* lesch. Ex blume Juglandaceae. In: Ethnobotany of the Himalayas. *Springer*: pp: 1-4.
- Bhosale, U.A., R. Yegnanarayan, P. Pophale and R. Somani. 2012. Effect of aqueous extracts of *Achyranthes aspera* Linn., on experimental animal model for inflammation. *Ancient Sci. Life*, 31(4): 202-206.

- Bisht, V., C. Rana, J. Negi, A. Bhandari, V. Purohit, C. Kuniyal and R. Sundriyal. 2012. Lamiaceous ethno-medicobotanicals in Uttarakhand Himalaya, India. J. Med. Plants Res., 6(26): 4281-4291.
- Bobrowski, M., L. Gerlitz and U. Schickhoff. 2017. Modelling the potential distribution of *Betula utilis* in the Himalaya. *Global Ecol. Conser.*, 11: 69-83.
- Brinkhaus, B., M. Lindner, D. Schuppan and E. Hahn. 2000. Chemical, pharmacological and clinical profile of the east Asian medical plant centella aslatica. *Phytomedicine*, 7(5): 427-448.
- Britto, R., F. Cachazo, B. Feng and E. Witten. 2005. Direct proof of the tree-level scattering amplitude recursion relation in yang-mills theory. *Physical Rev. Lett.*, 94(18): 181602.
- Butola, J.S. and H.K. Badola. 2006. Chemical treatments to improve seedling emergence, vigour and survival in *Heracleum candicans* wall. J. Plant Biol., 33(3): 215-220.
- Butola, J.S., S. Samant, R.K. Vashistha and A. Malik. 2010. Propagation and cultivation techniques for *Heracleum* candicans wall.: A Himalayan medicinal resource in peril. *Med. Plants Sustain. Develop.*, 1: 65-76.
- Carneiro, D.M., T.V. Jardim, Y.C.L. Araújo, A.C. Arantes, A.C. de Sousa, W.K.S. Barroso, A.L.L. Sousa, L.C. da Cunha, H.N.C. Cirilo and M.T.F. Bara. 2019. *Equisetum arvense*: New evidences supports medical use in daily clinic. *Pharmacog. Rev.*, 13: 50-58.
- Chand, D., Z.A. Malik and M. Nautiyal. 2016. Conservation of picrorhiza kurrooa through cultivation in Garhwal Himalaya: A review. *Int. J. Herb. Med.*, 4(1): 64-69.
- Chauhan, N.S. 1999. Medicinal and aromatic plants of himachal pradesh. *Indus publishing.*, 1: 1-447.
- Chauhan, R.S. 2010. Socioeconomic improvement through medicinal and aromatic plants (maps) cultivation in Uttarakhand, India. J. Sustain. Agri., 34(6): 647-658.
- Chaurasia, O., B. Ballabh, A. Tayade, R. Kumar, G.P. Kumar and S. Singh. 2012. *Podophyllum* L.: An endergered and anticancerous medicinal plant–an overview. *J. Tradit. Knowl.*, 11(2): 234–241.
- Croteau, R., T.M. Kutchan and N.G. Lewis. 2000. Natural products (secondary metabolites). *Biochem. Mol. Biol. Plants*, 24: 1250-1319.
- Dangwal, L. and A.S. Chauhan. 2015. *Dioscorea deltoidea* wall. Exgriseb. A highly threatened Himalayan medicinal plant: An overview. *Int. J. Pharm. Biol. Sci.*, 6: 452-460.
- Dar, G. 2008. 4.0 special habitats and threatened plants of Kashmir Himalaya. *Special Habitats and Threatened Plants of India*, 11(1): 29.
- Debnath, P., S. Rathore, S. Walia, M. Kumar, R. Devi and R. Kumar. 2020. *Picrorhiza kurroa*: A promising traditional therapeutic herb from higher altitude of western Himalayas. *J. Herbal Med.*, 23: 100358.
- Dehdari, S. and H. Hajimehdipoor. 2018. Medicinal properties of *Adiantum capillus-veneris* Linn. In traditional medicine and modern phytotherapy: A review article. *Iran. J. Public Health.*, 47(2): 188.
- Devi, J. and R.B. Sharma. 2023. Medicinal importance of *Azadirachta indica*: An overview. J. Drug Deliv. Therap., 13(6): 159-165.
- Devi, U., P. Sharma, J. Rana, R. Murugeswaran, A. Ahmad and A.S. Khan. 2023. Assessment of economically and medicinally important plant resources in Sangla valley region of Indian Himalaya. In: Plants for immunity and conservation strategies. *Springer*: pp: 259-310.
- Dhar, U., S. Manjkhola, M. Joshi, A. Bhatt, A. Bisht and M. Joshi. 2002. Current status and future strategy for development of medicinal plants sector in Uttaranchal, India. *Curr. Sci.*, 83(8): 956-964.

- Dhiman, N. and A. Bhattacharya. 2020. Nardostachys jatamansi
 (d. Don) dc.-challenges and opportunities of harnessing the untapped medicinal plant from the Himalayas. J. Ethnopharmacol, 246: 112211.
- Dhiman, N., A. Kumar, D. Kumar and A. Bhattacharya. 2020. De novo transcriptome analysis of the critically endangered alpine Himalayan herb *Nardostachys jatamansi* reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. *Sci. Rep.*, 10(1): 17186.
- Dhiman, N., N.K. Sharma, P. Thapa, I. Sharma, M. Kumar Swarnkar, A. Chawla, R. Shankar and A. Bhattacharya. 2019. De novo transcriptome provides insights into the growth behaviour and resveratrol and trans-stilbenes biosynthesis in *Dactylorhiza hatagirea*-an endangered alpine terrestrial orchid of Western Himalaya. *Sci. Rep.*, 9(1): 13133.
- Dhuley, J. 2003. Investigation on the gastroprotective and antidiarrhoeal properties of *Aegle marmelos* unripe fruit extract. *Hind. Antibiot. Bull.*, 45(1-4): 41-46.
- Dixit, V., P. Verma, P. Agnihotri, A.K. Paliwal, C.V. Rao and T. Husain. 2015. Antimicrobial, antioxidant and wound healing properties of *Leucas lanata* Wall. Ex benth. J. *Phytopharmacol.*, 4(1): 9-16.
- Dwivedi, T., C. Kanta, L.R. Singh and I. Prakash. 2019. A list of some important medicinal plants with their medicinal uses from Himalayan state Uttarakhand, India. J. Med. Plants Stud., 7(2): 106-116.
- Fox, E. 1994. Attentional bias in anxiety: A defective inhibition hypothesis. *Cognition & Emotion.*, 8(2): 165-195.
- Gairola, S., J. Sharma and Y.S. Bedi. 2014. A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. *J. Ethnopharmacol.*, 155(2): 925-986.
- Ganie, A.H., B.A. Tali, A.A. Khuroo, Z.A. Reshi and I.A. Nawchoo. 2019. Impact assessment of anthropogenic threats to high-valued medicinal plants of Kashmir Himalaya, India. *J. Nature Conser.*, 50: 125715.
- Gaur, R. 1999. Flora of the district Garhwal, North-West Himalaya. *Transmedia.*, 56: 1-251.
- Gaur, R. and J. Sharma. 2011. Indigenous knowledge on the utilization of medicinal plant diversity in the Siwalik region of Garhwal Himalaya, Uttarakhand. J. Forest & Environ. Sci., 27(1): 23-31.
- Ghani, S. and S. Pai. 2015. Chemical composition, qualitative phytochemical screening and antioxidant potential of *Ocimum basilicum* L., essential oil. *Ind. J. Appl. Res.*, 5: 888-890.
- Ghimire, S.K., D. McKey and Y. Aumeeruddy-Thomas. 2005. Conservation of Himalayan medicinal plants: Harvesting patterns and ecology of two threatened species, *Nardostachys grandiflora* DC. and *Neopicrorhiza scrophulariiflora* (Pennell) Hong. *Biol. Conser.*, 124(4): 463-475.
- Gupta, D., R. Bhardwaj and R. Gupta. 2011. In vitro antioxidant activity of extracts from the leaves of Abies pindrow royle. Afr. J. Trad. Compl. Altern. Med., 8(4): 391-397.
- Gupta, S.K., O.P. Sharma, N.S. Raina and S. Sehgal. 2013. Ethnobotanical study of medicinal plants of Paddar valley of Jammu and Kashmir, India. *Afr. J. Trad. Compl. Altern. Med.*, 10(4): 59-65.
- Gusain, Y.S. and V.P. Khanduri. 2016. *Myrica esculenta* wild edible fruit of Indian Himalaya: Need a sustainable approach for indigenous utilization. *Eco. Env. Cons.*, 22: 267-270.
- Haider, S.Z., H. Lohani, S. Sah, N.K. Chauhan and S. Tiwari. 2011. Variation in the constituents of *Tanacetum dolichophyllum* (Kitam.) Kitam. from different locations of Uttarakhand Himalaya (India). J. Essential oil Res., 23(6): 48-51.
- Haider, S.Z., M. Mohan and H.C. Andola. 2014. Constituents of *Artemisia indica* Willd., from Uttarakhand Himalaya: A source of davanone. *Pharmacog. Res.*, 6(3): 257.

- Hakeem, R. 2019. Ethno-medicinal study of Kulgam district (Jammu and Kashmir). Int. J. Sci. Res. (IJSR)., 8: 186-190.
- Haleema, A., R. Gupta, M. Siddique, M. Bhat and I. Nazki. 2006. Distribution, frequency, abundance and density of *Podophyllum hexandrum* Royle in Anantanag and Srinagar districts of Kashmir Himalayas. J. Plant Sci. Res., 22: 33-35.
- Hamid, A. and A.K. Raina. 2014. Ethnobotanical uses of plants in and around Kanji wildlife sanctuary, North-West Himalaya. *Int. J. Sci. Res.*, 3: 538-545.
- Haq, S.M. and B. Singh. 2020. Ethnobotany as a science of preserving traditional knowledge: Traditional uses of wild medicinal plants from district Reasi, J&K (Northwestern Himalaya), India. *Bot. Leads Drug Discovery*: 277-293.
- Harun, N., A.S. Chaudhry, S. Shaheen, K. Ullah and F. Khan. 2017. Ethnobotanical studies of fodder grass resources for ruminant animals, based on the traditional knowledge of indigenous communities in Central Punjab Pakistan. J. Ethnobiol. Ethnomed., 13: 1-16.
- Hemlata Verma, H.V., V. Lal, K. Pant and N.S. Nidhi Soni. 2012. A review on Arisaema jacquemontii. J. Pharmacy Res., 5(3): 1480-1482.
- Hou, J.P. and Y. Jin. 2012. The healing power of Chinese herbs and medicinal recipes. *Routledge.*, 1: 1-662.
- Hsieh, C.C., H.L. Fang and W.C. Lina. 2008. Inhibitory effect of *Solanum nigrum* on thioacetamide-induced liver fibrosis in mice. J. Ethnopharmacol., 119(1): 117-121.
- Husain, N. and A. Kumar. 2015. Comparative study of phytochemical constituents in flower of *Wedelia trilobata*, *Achyranthes aspera* and *Chrysanthemum* from Durg district of Chhattisgarh, India. *Int. J. Curr. Microbiol. App. Sci.*, 4(4): 150-156.
- Ibrar, M., G. Dastagir, M. Arif, K. Naveed and M. Adnan. 2014. Weed diversity with special reference to their ethnomedicinal uses in wheat and maize at Rech valley Hindokush range Chitral Pakistan. *Pak. J. Weed Sci. Res.*, 20(3): 335-346.
- Ismail, M., M. Ibrar, S. ur Rahman and U. Niaz. 2012. Pharmacognostic investigation of the leaves and rhizomes of *Geranium wallichianum* d. Don ex sweet. J. Med. Plants Res., 6(3): 504-509.
- Israili, Z.H. and B. Lyoussi. 2009. Ethnopharmacology of the plants of genus *Ajuga*. *Pak. J. Pharm. Sci.*, 22(4): 425-462.
- Jabeen, A., M.A. Khan, M. Ahmad, M. Zafar and F. Ahmad. 2009. Indigenous uses of economically important flora of Margallah Hills National Park, Islamabad, Pakistan. *Afr. J. Biotechnol.*, 8(5): 763-784.
- Jadhav, A. and K. Bhutani. 2006. Steroidal saponins from the roots of *Asparagus adscendens* Roxb and *Asparagus racemosus* Willd. *Ind. J. Chem.*, 45(6): 1515-1524.
- Jaiswal, Y., Z. Liang, P. Yong, H. Chen and Z. Zhao. 2013. A comparative study on the traditional Indian Shodhana and Chinese processing methods for aconite roots by characterization and determination of the major components. *Chem. Central J.*, 7: 1-16.
- Jan Alam, J.A. and S. Ali. 2010. Contribution to the red list of the plants of Pakistan. *Pak. J. Bot.*, 42(5): 2967-2971.
- Jan, H.A., S. Jan, R.W. Bussmann, L. Ahmad, S. Wali and N. Ahmad. 2020. Ethnomedicinal survey of the plants used for gynecological disorders by the indigenous community of District Buner, Pakistan. *Ethnobot. Res. Appl.*, 19: 1-18.
- Jan, H.A., S. Wali, L. Ahmad, S. Jan, N. Ahmad and N. Ullah. 2017. Ethnomedicinal survey of medicinal plants of Chinglai Valley, Buner District, Pakistan. *Europ. J. Integ. Med.*, 13: 64-74.
- Jayasinghe, S.N., R. Kruger, D.C. Walsh, G. Cao, S. Rivers, M. Richter and B.H. Breier. 2017. Is sweet taste perception associated with sweet food liking and intake? *Nutrients*, 9(7): 750.

- Jordon-Thaden, I.E. and S.M. Louda. 2003. Chemistry of cirsium and carduus: A role in ecological risk assessment for biological control of weeds? *Biochem. Sys. Ecol.*, 31(12): 1353-1396.
- Joshi, K., P. Chavan, D. Warude and B. Patwardhan. 2004. Molecular markers in herbal drug technology. *Curr. Sci.*, 159-165.
- Joshi, M. and U. Dhar. 2003. In vitro propagation of Saussurea obvallata (DC.) Edgew.—an endangered ethnoreligious medicinal herb of Himalaya. Plant Cell Reports, 21: 933-939.
- Joshi, R.K., P. Satyal and W.N. Setzer. 2016. Himalayan aromatic medicinal plants: A review of their ethnopharmacology, volatile phytochemistry, and biological activities. *Medicines*, 3(1): 6-61.
- Joshi, S.C., A.R. Verma and C.S. Mathela. 2010. Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. *Food Chem. Toxicol.*, 48(1): 37-40.
- Kala, C. and N. Manjrekar. 1999. Ethno-medicobotany of Indian Trans-Himalaya: A case study from Spiti. J. Economic. Taxonomic Bot., 23: 177–183.
- Kala, C.P. 2005. Indigenous uses, population density, and conservation of threatened medicinal plants in protected areas of the Indian Himalayas. *Conser. Biol.*, 19(2): 368-378.
- Kanta, C., I.P. Sharma and M.A. Shiekh. 2018. Ethnobotanical studies on medicinal plants of Langate area, Kupwara, Jammu and Kashmir, India. J. Med. Plants Stud., 6(2): 94-97.
- Kanwal, K.S. and H. Joshi. 2015. The impact of hydroelectric project development on the ethnobotany of the Alaknanda river basin of Western Himalaya, India. *Eur-Asian J. Biol. Sci.*, (9): 61-77.
- Kapoor, B., P. Sood, R. Modgil and M. Sood. 2013. Berberis lycium a medicinal plant with immense value. Ind. J. Pharm. Biol. Res., 1(01): 27-37.
- Kaur, T., R. Bhat and D. Vyas. 2016. Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas. J. Mountain Sci., 13: 484-492.
- Kayani, S., M. Ahmad, M. Zafar, S. Sultana, M.P.Z. Khan, M.A. Ashraf, J. Hussain and G. Yaseen. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. J. Ethnopharmacol., 156: 47-60.
- Kelayeh, T.P.S., M. Abedinzade and A. Ghorbani. 2019. A review on biological effects of *Lamium album* (white dead nettle) and its components. *J. Herbmed. Pharmacol.*, 8(3): 185-193.
- Khan, M.A., M.A. Khan, M. Hussain and G. Mujtaba. 2014. Plant diversity and conservation status of Himalayan region Poonch valley Azad Kashmir (Pakistan). *Pak. J. Pharm. Sci.*, 27(5): 1215-1239.
- Khan, M.P.Z., M. Ahmad, M. Zafar, S. Sultana, M.I. Ali and H. Sun. 2015. Ethnomedicinal uses of edible wild fruits (ewfs) in Swat valley, Northern Pakistan. J. Ethnopharmacol., 173: 191-203.
- Khandelwal, R., S. Paliwal, R. Chauhan and A. Anees. 2008. Phytochemical screening of hexane soluble fraction of *Pyrus pashia* fruits. *Oriental J. Chem.*, 24(2): 773.
- Konovalov, D. and A. Khamilonov. 2016. Biologically active compounds of *Artemisia annua*. essential oil. *Pharmacy Pharmacol.*, 4(4): 4-33.
- Kumar, D. and S. Kumar. 2015. Screening of antianxiety activity of *Abies pindrow* Royle aerial parts. *Ind. J. Pharm. Edu. Res.*, 49(1): 66-70.
- Kumar, M., M.A. Sheikh and R.W. Bussmann. 2011. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India. J. Ethnobiol. Ethnomed., 7: 1-13.
- Kumar, M., R.W. Bussmann, J. Mukesh and P. Kumar. 2011. Ethnomedicinal uses of plants close to rural habitation in Garhwal Himalayan, *Ind. J. Med. Plant Res.*, 5(11): 2252-2260.

- Kumar, P. and M.L. Clark. 2012. Kumar and clark's clinical medicine e-book. *Elsevier Health Sciences.*, 8: 1237.
- Kumar, P., V. Acharya and A.R. Warghat. 2021. Comparative transcriptome analysis infers bulb derived *In vitro* cultures as a promising source for sipeimine biosynthesis in *Fritillaria cirrhosa* D. Don (liliaceae, syn. *Fritillaria roylei* Hook.) high value Himalayan medicinal herb. *Phytochemistry*, 183: 112631.
- Kumar, S. and P. Kumar. 2014. Medicinal plant diversity in Tungal valley of district Mandi, Himachal Pradesh (India). *Asian J. Adv. Basic Sci.*, 2(3): 103-108.
- Kumar, S., S. Rani, S. Kalia, J.K. Sharma and S.M. Jellani. 2024. Morphology, cytology and ethnobotany of three *Pimpinella* L., species (Apiaceae) from the North-Western Himalayas, India. *Asian J. Biol.*, 20(5): 66-74.
- Kumari, S., A.K. Badana and R. Malla. 2018. Reactive oxygen species: A key constituent in cancer survival. *Biomarker Insights.*, 13: 1177271918755391.
- Kunwar, R.M., B. Rimal, H.P. Sharma, R.C. Poudel, D. Pyakurel,
 A. Tiwari, S.T. Magar, G. Karki, G.S. Bhandari and P.
 Pandey. 2021. Distribution and habitat modeling of Dactylorhiza hatagirea (d. Don) soo, Paris polyphylla sm.
 And taxus species in Nepal Himalaya. J. Appl. Res. Med. Arom. Plants, 20: 100274.
- Kunwar, R.M., K. Baral, P. Paudel, R.P. Acharya, K.B. Thapa-Magar, M. Cameron and R.W. Bussmann. 2016. Land-use and socioeconomic change, medicinal plant selection and biodiversity resilience in far Western Nepal. *PLoS One.*, 11(12): e0167812.
- Kunwar, R.M., Y. Uprety, C. Burlakoti, C. Chowdhary and R.W. Bussmann. 2009. Indigenous use and ethnopharmacology of medicinal plants in far-west Nepal. *Ethnobot. Res. Applications*. 7: 5-28.
- Lakshimi, T., R. Geetha, A. Roy and S. Kumar. 2011. Yarrow (Achillea millefolium Linn.) a herbal medicinal plant with broad therapeutic use-a review. Int. J. Pharm. Sci. Rev. Res., 9(2): 136-141.
- Lata, M. 2020. Nutritional, medicinal and indigenous use of Nasturtium officinale in Tehsil Thunag of District Mandi, Himachal Pradesh, North-Western Himalayas, India. Internat. J. Chem. Stud., 8(5): 1648-1653.
- Liu, X. and B. Chen. 2000. Climatic warming in the Tibetan Plateau during recent decades. *Int. J. Climatol., A J. Royal Meteorolog. Soc.*, 20(14): 1729-1742.
- Mahar, K.S., B. Meena, T.S. Rana and S.A. Ranade. 2012. ISSR analysis of soap nut (*Sapindus mukorossi* Gaertn.) genotypes in Western Himalaya (India). *Plant Biosys.*, 146(3): 614-621.
- Mahmood, A., A. Mahmood, R.N. Malik and Z.K. Shinwari. 2013. Indigenous knowledge of medicinal plants from Gujranwala district, pakistan. J. Ethnopharmacol., 148(2): 714-723.
- Maikhuri, R., S. Nautiyal, K. Rao and K. Saxena. 1998. Role of medicinal plants in the traditional health care system: A case study from nanda devi biosphere reserve. *Curr. Sci.*, 152-157.
- Mala, D., S. Awasthi, N.K. Sharma, M.K. Swarnkar, R. Shankar and S. Kumar. 2021. Comparative transcriptome analysis of *Rheum australe*, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. *Sci. Rep.*, 11(1): 3702.
- Malik, Z.A., J.A. Bhat, R. Ballabha, R.W. Bussmann and A. Bhatt. 2015. Ethnomedicinal plants traditionally used in health care practices by inhabitants of Western Himalaya. J. Ethnopharmacol., 172: 133-144.
- Manikandan, R. and S. Srivastava. 2015. Diversity, medicinal and threatened plants in Govind Pashu Vihar wildlife sanctuary, Western Himalaya. *Ind. For.*, 141(9): 966-973.
- Mathur, A. and H. Joshi. 2013. Ethnobotanical studies of the Tarai region of Kumaun, Uttarakhand, India. *Ethnobot. Res. Applications.*, 11: 175-204.

- Mir, T.A., M. Jan and R.K. Khare. 2022. Ethnomedicinal practices and conservation status of medicinal plants in the Bandipora district of Kashmir Himalaya. J. Herbs Spices Med. Plants, 28(2): 125-142.
- Morteza-Semnani, K., M. Saeedi and M. Akbarzadeh. 2016. Chemical composition of the essential oil of the flowering aerial parts of *Lamium album L. J. Essential Oil-Bearing Plants*, 19(3): 773-777.
- Mudasar Ahmad, M.A., Z. Kaloo, B. Ganai, H. Ganaie and S.S. Seema Singh. 2016. Phytochemical screening of meconopsis Aculeata royle an important medicinal plant of Kashmir Himalaya: A perspective. Res. J. Phytochem., 10(1): 1-9.
- Mukherjee, P.K., V. Kumar, M. Mal and P.J. Houghton. 2007. Acorus calamus.: Scientific validation of ayurvedic tradition from natural resources. *Pharm. Biol.*, 45(8): 651-666.
- Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A. Da Fonseca and J. Kent. 2000. Biodiversity hotspots for conservation priorities. *Nature*, 403(6772): 853-858.
- Negi, G. and R.S. Rawal. 2019. Himalayan biodiversity in the face of climate change. In: Tropical ecosystems: Structure, functions and challenges in the face of global change. *Springer*: pp: 263-277.
- Negi, G., P. Samal, J. Kuniyal, B. Kothyari, R. Sharma and P. Dhyani. 2012. Impact of climate change on the Western Himalayan Mountain ecosystems: An overview. *Trop. Ecol.*, 53(3): 345-356.
- Negi, V.M. and N. Chauhan. 2009. Medicinal and aromatic plants wealth of a Tribal District Kinnaur in Himachal Himalayas. *Ind. Forester*, 135(6): 838-852.
- Nepal, A., S. Jana and S. Bhutia. 2024. Review on medicinal plants of Sikkim Himalayan Region with emphasis on anticancer study. J. Appl. Pharm. Sci., 14(2): 013-026.
- Nigam, M., M. Atanassova, A.P. Mishra, R. Pezzani, H.P. Devkota, S. Plygun, B. Salehi, W.N. Setzer and J. Sharifi-Rad. 2019. Bioactive compounds and health benefits of *Artemisia* species. *Nat. Prod. Comm.*, 14(7): 1934578X19850354.
- Nwafor, I.C., K. Shale and M.C. Achilonu. 2017. Chemical composition and nutritive benefits of chicory (*Cichorium intybus*) as an ideal complementary and/or alternative livestock feed supplement. *The Sci. World J.*, 2017(1): 2356-6140.
- Pal, M., T. Mishra, A. Kumar, Baleshwar, D. Upreti and T. Rana. 2015. Chemical constituents and antimicrobial potential of essential oil from *Betula utilis* growing in high altitude of Himalaya (India). J. Essential Oil-Bearing Plants, 18(5): 1078-1082.
- Pande, P.C., L. Tiwari and H. Pande. 2006. Folk-medicine and aromatic plants of uttaranchal. *Mahendra Pal Singh Publishers.*, 1(1): 1-462.
- Pandey, A., K. Chandra Sekar, B. Joshi and R. Rawal. 2019. Threat assessment of high-value medicinal plants of cold desert areas in Johar valley, Kailash sacred landscape, India. *Plant Biosys.*, 153(1): 39-47.
- Pandey, M., U. Dhar, S. Sher Singh, S. Mrudul Vijay and T. Shubhada Ratnakar. 2011. Recurrent somatic embryogenesis and plant regeneration in *Angelica glauca* Edgew., a critically endangered medicinal plant of the Western Himalaya. *J. Hort. Sci. Biotechnol.*, 86(5): 493-498.
- Pandey, M.M., S. Rastogi and A.K.S. Rawat. 2007. Saussurea costus: Botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J. Ethnopharmacol., 110(3): 379-390.
- Pandey, V. and A. Shukla. 2015. Acclimation and tolerance strategies of rice under drought stress. *Rice Sci.*, 22(4): 147-161.
- Pant, S. and S. Samant. 2010. Ethnobotanical observations in the mornaula reserve forest of Komoun, West Himalaya, India. *Ethnobot. Leaflets*, 14(2): 193-217.

- Phondani, P.C., I.D. Bhatt, V.S. Negi, B.P. Kothyari, A. Bhatt and R.K. Maikhuri. 2016. Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J. Asia-Pacific Biodiv., 9(1): 39-46.
- Phondani, P.C., R.K. Maikhuri and K.G. Saxena. 2014. The efficacy of herbal system of medicine in the context of allopathic system in Indian Central Himalaya. J. Herbal Med., 4(3): 147-158.
- Prakash, R. 2015. Medicinal plants used by tribal communities: A study of Uttarakhand Himalayan Region. *Int. J. Human. Soc. Sci. Invent.*, 4(2): 55-61.
- Qureshi, R.A., M.A. Ghufran, S.A. Gilani, Z. Yousaf, G. Abbas and A. Batool. 2009. Indigenous medicinal plants used by local women in Southern Himalayan regions of Pakistan. *Pak. J. Bot.*, 41(1): 19-25.
- Radha, B., S. Dinesh, J. Tiwari and P. Tiwari. 2013. Diversity and availability status of ethno-medicinal plants in the lohba range of Kedarnath Forest Division (KFD), Garhwal Himalaya. *Global J. Res. Med. Plants Indig. Med.*, 2(4): 198.
- Rahman, I.U., F. Ijaz, Z. Iqbal, A. Afzal, N. Ali, M. Afzal, M.A. Khan, S. Muhammad, G. Qadir and M. Asif. 2016. A novel survey of the ethno medicinal knowledge of dental problems in Manoor valley (Northern Himalaya), Pakistan. J. Ethnopharm., 194: 877-894.
- Rahman, T.U., M.A. Zeb, W. Liaqat, M. Sajid, S. Hussain and M.I. Choudhary. 2018. Phytochemistry and pharmacology of genus *Indigofera*: A review. *Rec. Natural Prod.*, 12(1): 1-13.
- Raj, A.J., S. Biswakarma, N.A. Pala, G. Shukla, Vineeta, M. Kumar, S. Chakravarty and R.W. Bussmann. 2018. Indigenous uses of ethnomedicinal plants among forestdependent communities of Northern Bengal, India. J. Ethnobiol. Ethnomed., 14: 1-28.
- Rajasekaran, A. and S. Joginder. 2009. Ethnobotany of Indian horse chestnut (*Aesculus indica*) in Mandi district, Himachal Pradesh. *Ind. J. Trad. Know.*, 8(2): 285-286.
- Rana, C., A. Sharma and N. Kumar. 2010. Ethnopharmacology of some important medicinal plants of Nanda Devi national park, Uttarakhand, India. *Nat. Sci.*, 8(11): 9-14.
- Rana, J., K. Pradheep, O. Chaurasia, S. Sood, R. Sharma, A. Singh and R. Negi. 2012. Genetic resources of wild edible plants and their uses among tribal communities of cold arid region of India. *Gen. Resour. Crop Evol.*, 59: 135-149.
- Rana, M.S. and S. Samant. 2011. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North-Western Himalaya. *Ind. J. Traditional Knowledge.*, 10(3): 439-459.
- Rana, S.K., H.K. Rana, S. Ranjitkar, S.K. Ghimire, C.M. Gurmachhan, A.R. O'Neill and H. Sun. 2020. Climatechange threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. *Ecol. Indicat.*, 115: 106435.
- Rao, G.V., T. Mukhopadhyay, T. Annamalai, N. Radhakrishnan and M. Sahoo. 2011. Chemical constituents and biological studies of *Origanum vulgare* Linn. *Pharmacog. Res.*, 3(2): 143.
- Rather, M.A., B.A. Dar, K.A. Bhat, A.S. Shawl, M.A. Qurishi, M.Y. Dar and B.A. Ganai. 2011. Mono-sesquiterpenoid composition in the leaves and flowers of *Salvia moorcroftiana* wall Ex benth. Growing wild in Kashmir, India. J. Essential Oil Res., 23(4): 21-25.
- Rathore, S., S. Walia, R. Devi and R. Kumar. 2020. Review on *Trillium govanianum* Wall. Ex d. Don: A threatened medicinal plant from the Himalaya. *J. Herb. Med.*, 24: 100395.
- Rathore, S., Y. Raj, P. Debnath, M. Kumar and R. Kumar. 2022. Ethnopharmacology, phytochemistry, agrotechnology, and conservation of *Inula racemosa* Hook f.–a critically endangered medicinal plant of the Western Himalaya. J. *Ethnopharmacol*, 283: 114613.

- Rautela, K., Y. Bisht, A. Kumar, A.K. Jugran, I.D. Bhatt and P. Prakash. 2023. Assessment of phenological growth stages of *Malaxis acuminata* D. Don: A high value herbaceous medicinal plant. *Gen. Resour. Crop Evol.*, 1-11.
- Rawat, D.S., A.S. Bagri, M. Parveen, M. Nautiyal, P. Tiwari and J. Tiwari. 2021. Pattern of species richness and floristic spectrum along the elevation gradient: A case study from Western Himalaya, India. *Acta Ecol. Sinica.*, 41(6): 545-551.
- Rawat, D.S., P. Tiwari, S.K. Das and J. Tiwari. 2020. Tree species composition and diversity in montane forests of Garhwal Himalaya in relation to environmental and soil properties. J. Mountain Sci., 17(12): 3097-3111.
- Rawat, V.S. 2016. Medicinal plants and sustainable livelihood in Pauri District of Garhwal Himalaya, Uttarakhand, India. *Int. J. Bioassays*, 5(6): 4589-4592.
- Rezaee, M. and K. Jaimand. 2007. Chemical composition of essential oils from leaves and flowers of *Anthemis cotula* L. From Gilan Province. J. Med. Plants., 6(22): 99-106.
- Roshan, R., S. Ahmed and M.M. Hasan. 2017. Arisaema jacquemontii blume (Araceae): A review of medicinal uses, phytochemistry and pharmacology. J. Pharmacog. Phytochem., 6(6): 429-432.
- Salam, J.S., S. Joylani, N. Rebika and S. Priyadarshini. 2011. Secondary metabolites, antioxidant status and nutritive composition of two non-conventional leafy vegetables-*Stellaria media* L. and *Chenopodium album* L. *Ind. J. Agri. Biochem.*, 24(2): 136-140.
- Samant, S. and M.P. Mohinder Pal. 2003. Diversity and conservation status of medicinal plants in Uttaranchal state.
- Semwal, D., P.P. Saradhi, C. Kala and B. Sajwan. 2010. Medicinal plants used by local Vaidyas in Ukhimath block, Uttarakhand. Ind. J. Traditional Knowledge., 9(3): 480-485.
- Shad, M., H. Nawaz, T. Rehman and N. Ikram. 2013. Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of *Cichorium intybus* L.: A comparative study. J. Animal & Plant Sci., 23(4): 1060-1066.
- Shameem, N., A.N. Kamili, J.A. Parray, R. Hamid and S.A. Bandh. 2015. Antimicrobial and antioxidant activity of methanol extracts of *Arnebia benthamii* (wall ex. G. Don) Johnston-a critically endangered medicinal plant of North-Western Himalaya. J. Anal. Sci. Technol., 6: 1-8.
- Sharma, G. and A. Nautiyal. 2011. *Cinnamomum tamala*: A valuable tree from Himalayas. *Int. J. Med. Arom. Plants*, 1(1): 1-4.
- Sharma, K. and M. Bhatnagar. 2010. Asparagus racemosus (shatavari): A versatile female tonic. Health, 3(4): 5-6.
- Sharma, P.K., N. Chauhan, B. Lal, A. Husaini and J. Teixeira da Silva. 2010. Conservation of phyto-diversity of Parvati valley in Northwestern Himalayas of Himachal Pradesh-India. Medicinal and aromatic Plant science and biotechnology (medicinal plants of the Himalaya: advances and insights, special issue). *Medicinal Aromatic Plant Sci Biotechnol.*, 4(1): 47-63.
- Sharma, P.K., S.K. Thakur, S. Manuja, R. Rana, P. Kumar, S. Sharma, J. Chand, A. Singh and K.K. Katoch. 2011. Observations on traditional phytotherapy among the inhabitants of Lahaul valley through amchi system of medicine-a cold desert area of Himachal Pradesh in North-Western Himalayas, India. *Chinese Med.*, 2(03): 93.
- Sharma, V., K. Hem, D. Sharma, V.P. Singh and N.K. Singh. 2016. Ethnopharmacology, phytochemistry and pharmacology of *Inula racemosa* Hook. F.J. Nat. Prod. Resour., 2(1): 40-46.
- Sharopov, F.S., V.A. Sulaimonova and W.N. Setzer. 2012. Composition of the essential oil of *Artemisia absinthium* from Tajikistan. *Rec. Nat. Prod.*, 6(2): 127-134.

- Shinwari, Z.K. and A.A. Khan. 2003. Medicinal and other useful plants of District Swat, Pakistan. *Al-Aziz Communications.*, 97(8): 146-152.
- Shinwari, Z.K. and S.S. Gilani. 2003. Sustainable harvest of medicinal plants at *Bulashbar nullah*, Astore (Northern Pakistan). J. Ethnopharmacol., 84(2-3): 289-298.
- Siddique, M.A.A. and S.M. Jeelani. 2015. Production technology for endangered medicinal plants of Kashmir Himalayas-i. Cultivation profile of *Rheum australed*. Don. *Lifesciences Leaflets*, 63: 205-216.
- Siddiqui, M.F., M. Ahmed, M. Wahab, N. Khan, M.U. Khan, K. Nazim and S.S. Hussain. 2009. Phytosociology of *Pinus roxburghii* Sargent (chir pine) in Lesser Himalayan and Hindu Kush range of Pakistan. *Pak. J. Bot.*, 41(5): 2357-2369.
- Singh, A. and S. Samant. 2010. Conservation prioritization of habitats and forest communities in the Lahaul valley of proposed cold desert biosphere reserve, North-Western Himalaya, India. *Appl. Ecol. Environ. Res.*, 8(2): 101-117.
- Singh, G. and G. Rawat. 2011. Ethnomedicinal survey of Kedarnath wildlife sanctuary in Western Himalaya, India. *Ind. J. Fundam. Appl. Life Sci.*, 1(1): 35-46.
- Singh, N., J. Ram, A. Tewari and R. Yadav. 2015. Phenological events along the elevation gradient and effect of climate change on *Rhododendron arboreum* sm. In Kumaun Himalaya. *Curr. Sci.*, 106-110.
- Singh, S. and L. Dey. 2005. A rough-fuzzy document grading system for customized text information retrieval. *Inform. Process. Manag.*, 41(2): 195-216.
- Sofi Mubashir, S.M. and W. Shah. 2011. Phytochemical and pharmacological review profile of *Adiantum venustum*. Int. J. PharmTech. Res., 3(2): 827-830.
- Subramani, S., V.J. Vaneet Jishtu, R. Verma and K. Kapoor. 2007. Floristic composition, life-forms and biological spectrum of Renuka wildlife sanctuary, Himachal Pradesh. *Ind. Forester.*, 133(1): 79-92.
- Sufyan, M., I. Badshah, M. Ahmad, M. Zafar, S. Bahadur and N. Rashid. 2018. Identification of medicinally used flora using pollen features imaged in the scanning electron microscopy in the lower Margalla Hills Islamabad Pakistan. *Micro. Microanal.*, 24(3): 292-299.
- Suzuki, N., R.M. Rivero, V. Shulaev, E. Blumwald and R. Mittler. 2014. Abiotic and biotic stress combinations. *New Phytol.*, 203(1): 32-43.
- Tali, B.A., A.A. Khuroo, I.A. Nawchoo and A.H. Ganie. 2019. Prioritizing conservation of medicinal flora in the Himalayan biodiversity hotspot: An integrated ecological and socioeconomic approach. *Environ. Conserv.*, 46(2): 147-154.
- Tali, B.A., A.H. Ganie and I.A. Nawchoo. 2016. Conservation status of *Ajuga bracteosa* Wall ex Benth: An important medicinal plant species of Kashmir Himalaya. *Int. J. Ecol. Ecosolution*, 3(1): 1-6.
- Tewari, D., H. Pandey, A. Sah, H. Meena, A. Manchanda and P. Patni. 2012. Pharmacognostical, biochemical and elemental investigation of *Ocimum basilicum* plants available in Western Himalayas. *Int. J. Res. Pharm. Biomed. Sci.*, 3(2): 840-845.
- Thakur, M., R. Asrani, S. Thakur, P. Sharma, R. Patil, B. Lal and O. Parkash. 2016. Observations on traditional usage of ethnomedicinal plants in humans and animals of Kangra and Chamba districts of Himachal Pradesh in North-Western Himalaya, India. J. Ethnopharmacol., 191: 280-300.
- Thamizhselvam, N., S. Soumya, R. Sanjayakumar, K. Salinichandran, N. Venugopalan and N. Jaya. 2012. Antiinflammatory, analgesic and antipyretic activity of methanolic extract of *Cinnamomum tamala* (Nees) in experimental animal models. *Int. J. Bioassays*, 1(9): 26-29.
- Tiwari, J.K., R. Ballabha and P. Tiwari. 2010. Ethnopaediatrics in Garhwal Himalaya, Uttarakhand, India (Psychomedicine and Medicine). *New York Sci. J.*, 3(4): 123-126.

- Uniyal, B. and V. Shiva. 2005. Traditional knowledge on medicinal plants among rural women of the Garhwal Himalaya, Uttaranchal. *Ind. J. Traditional Knowledge.*, 4(3): 259-266.
- Uniyal, S.K., K. Singh, P. Jamwal and B. Lal, 2006. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J. Ethnobiol. Ethnomed., 2: 1-8.
- Uprety, Y., H. Asselin, E.K. Boon, S. Yadav and K.K. Shrestha. 2010. Indigenous use and bio-efficacy of medicinal plants in the Rasuwa district, Central Nepal. *J. Ethnobiol. Ethnomed.*, 6: 1-10.
- Verma, R., L. Rahman, R. Verma, C. Chanotiya, A. Chauhan, A. Yadav, A. Yadav and A. Singh. 2010. Changes in the essential oil content and composition of *Origanum vulgare* L. During annual growth from Kumaon Himalaya. *Curr. Sci.*, 98(8): 1010-1012.
- Vikram, S.R. 2014. Indigenous uses of medicinal and edible plants of Nanda devi biosphere reserve-a review based on previous studies. *Global J. Res. Med. Plants Indigen. Med.*, 3(2): 57-66.

- Wang KeTai, W.K., L.H. Liu HuiTao, Z.Y. Zhao YunKun, C.X. Chen XingGuo, H.Z. Hu ZhiDe, S.Y. Song YuCheng and M.X. Ma Xiao. 2000. Separation and determination of alantolactone and isoalantolactone in traditional Chinese herbs by capillary electrophoresis. *Elsevier. Talanta.*, 52(6): 1001-1005.
- Wang, J., B.C. Seyler, T. Ticktin, Y. Zeng and K. Ayu. 2020. An ethnobotanical survey of wild edible plants used by the yi people of liangshan prefecture, Sichuan Province, China. J. Ethnobiol. Ethnomed., 16: 1-27.
- Yang, J., S. Li, J. Su and X. Yu. 2013. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. *Automatica*, 49(7): 2287-2291.
- Zaki, M., M.S. Sofi and Z.A. Kaloo. 2011. A reproducible protocol for raising clonal plants from leaf segments excised from mature trees of *Betula utilis* a threatened tree species of Kashmir Himalayas. *Int. Multidiscip. Res. J.*, 1(5): 7-13.
- Zhao, Y.M. and Y.P. Shi. 2011. Phytochemicals and biological activities of dipsacus species. *Chem. Biodiver.*, 8(3): 414-430.
- Zou, S. and U. Kumar. 2018. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. *Int. J. Mol. Sci.*, 19(3): 833.

(Received for publication 15 November 2023)