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Abstract

Technological advances laid the foundation for an emerging field in the form of nanotechnology, playing a role in every discipline
of life, from material, chemistry to computational and life sciences. This emerging field transformed the agricultural sector by
integrating nanobotany and nanoagronomy with artificial intelligence (AI). As Al can handle large datasets and can accomplish
complicated tasks independently, it has the potential to transform future agricultural practices with better yield and sustainability. AL
can incorporate nanobotany by improving the efficiency, accuracy, and versatility of nanobots to interact with plant systems. Al tools
can make satellite imaging, monitoring, and crop data analysis more accurate than traditional methods. The integration of machine
learning (ML) and deep learning (DL) algorithms with mobile detection algorithms could facilitate early disease detection, optimization,
prediction of plant status, and breeding processes. The production of Al-aided nanosensors, nanobots, nanomedicines, nanocarriers,
nanomaterials (nanoparticles, nano-fertilizers, and nano-pesticides, etc.), and their transformative roles in nanoscale imaging, phyto-
mining, nanotoxicity analysis, NPs optimization, pest management, early disease detection, genetic manipulation, precision farming,
environmental monitoring, targeted delivery of pesticides, and biocontrol agents are briefly described in the present study. The
challenges, ethical concerns about use of Al in nanobotany, and their possible solutions are also discussed here. This study reflects an
integrative approach of nanotechnology, Al, and plant sciences, which will pave the way for innovation by assisting policymakers,
scientists, and farmers to address sustainability challenges. In conclusion, Al-based nanotechnology holds promise as the future of

sustainable agriculture.
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Introduction

In the recent era of technological revolution,
nanotechnology has shown a promising role in the field of
plant sciences, and other interdisciplinary fields have
evolved like Nanobotany or nanoagronomy. Nanobotany
includes the use and role of NPs in plant life, whereas nano-
agronomy is the use of NPs in the field of agronomy.
Furthermore, Al is considered as the future of agriculture
at a global level. It is a dynamic area of research at present
where we see the combination of nanotechnology,
computer science, data science, agriculture, and plant
science. Al is a powerful set of techniques that has
improved scientific research and applications in a very
different way. This review article explains the role of the
triangle of nanotechnology, Al, and botany shaping the
future of agriculture. Developed countries are already
getting benefits from this fruitful combination of
technologies. There is a dire need for acceptance of Al and
nanotechnology in solving botanical and agricultural
problems particularly, in developing countries.

This review includes the study of the impact of
nanotechnology and Al on scientific advancements
carefully. This topic covers the synthesis of NPs and their
use in smart agriculture, precision agriculture, genetic
manipulation, disease management, and weather forecast
etc. There is a potential for Al in transforming each of the

Received: 13-05-2025 I Revised: 21-07-2025

above fields by integrating supercomputers and nanorobots
with them. The scope of using Al for the plant sciences and
agriculture extends beyond a simple exploration of
advancements in technology. Al is revolutionizing
agriculture by optimizing current practices such as using Al-
powered drones for precision spraying and crop monitoring,
optimizing NP synthesis, and analyzing complex biological
data. It is also paving the way for future advancements like
predictive models for climate-resilient farming and
autonomous farming systems that can sustainably feed a
growing population. It directly links the Sustainable
Development Goals (SDGs) with the use of Al in all the
above-mentioned fields. There is also a need for ethical
considerations for transparency, privacy, accountability, and
responsibility etc. Therefore, it needs proper navigation of
all efforts and possibilities of transformations related to the
use of Al in agriculture and nanobotany. It can help us to
understand scientifically the sustainable and possible
coexistence of human race and plants with all the
environmental parameters. Therefore, the present study
suggests the understanding of role for scientists and policy
makers to embark on the transformative character of Al in
agriculture and plant science. This review article, therefore,
addresses the gap in research about integration of Al in
nanobotany that is still unexplored in the literature. It will
help to establish foundational understanding and research
directions at the intersection of three cutting-edge fields: Al,
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nanotechnology and botany, particularly in developing
countries like Pakistan. It can serve as a source for
researchers and students and guide policy makers on Al-
enabled sustainable technologies.

Fundamentals of Nanobotany: A key perspective of
nanobotany is the use of instruments and tools that are
designed to work at nanoscale. In doing so, they have a
precise interaction with the plants at the cellular and
molecular level. These tools are specifically designed for
plants with their specific roles in plant biology, and these
include nano-carriers, nanosensors, and other NPs. Here is
a brief overview of some main definitions of tools and
technologies related to nanobotany (Nazir, 2018).

Nanotechnology: A branch of science that deals with
materials whose size is in the range of 1-100 nm in at least
one dimension.

Nanosensors: These highly sensitive tools can detect
changes in plants and their environment at the nanoscale.
These may be equally active in determining the nutrient
level of plants. Some nanosensors can also detect plant
stress level. These can be used to detect minor changes in
the physical and chemical environment of plants and the
resultant consequences on the plant. Nanosensors can
detect the endogenous growth regulator levels of plants,
pathogen and disease level, heavy metals, and gaseous
composition of air as well (Presti ef al., 2023).

Nanomedicine: The wuse of nanotechnology and
development of therapeutic agents of nano-range in size are
included in this field. NPs synthesized from plant material
are included in nanobotany and are used to develop various
medicines as they have plant metabolites on their surface
and often show synergistic medicinal effects.

Nanocarriers: These are the NPs used for the targeted
delivery of other molecules and substances to the specific
locations inside the plant or plant cells for gene editing,
nutrient status improvement, or disease treatment, etc. (Zhi
etal., 2022).

Nanoparticles (NPs): These are engineered materials that
show a size ranging from 1 to 100 nm. These NPs may be
organic, inorganic, or biological in nature, and their use is
also dependent on their nature and size. These NPs can be
used as plant nutrients (fertilizers at the nanoscale),
agrochemicals (pesticides, etc.), and for targeted delivery
of genes, etc. (Prasad et al., 2017).

Phytomining: Extracting the metals from the soil with the
help of plants is often termed as phytomining. An attempt
to enhance the ability of plants to extract metals from the
soil by using NPs can be named nano-phytomining and can
be a useful future tool.

Nanotoxicity: It is also an important term related to the
use of nanobotany. It covers the harmful effects of NPs on
the plants and the environment. NPs are very active in
their actions due to their small size and higher surface to
volume ratio. However, it may have many toxic aspects
other than advantages.
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Historical progress in nano-botany: The idea of
nanotechnology started from a lecture by Richard Feyman
in 1959. But it was confined to material sciences only. It
coincided with plant sciences in the late 90s. Positive
impact of NPs on plants was discovered that led to the
efficient use of resources like fertilizers and lesser impact
on the environment. It provided the idea of nano nutrients,
and the use of nanofertilizer was coined in the early
2000s. Effects of various NPs including metallic, organic,
and polymeric NPs were analyzed on plant health. Their
toxic studies were also conducted in relation to plants
(Liu & Lal, 2005). The concept of nano-pesticide (nano-
fungicide, and nano-insecticide, etc.) was introduced. In
this era, a lot of work was done on the effects of NPs on
plant growth and yield in relation to their cross talks with
various plant growth regulators and signaling molecules
(Yan et al., 2006).

In 2010-2020, the term “Nanobotany” was introduced,
when extensive studies were started on the interaction of
plants and NPs at the cellular and molecular levels. This
era mainly included the study of NPs’ absorption by plants,
their translocation through the vascular system, and then
their deposition in various plant parts. Thus, the focus was
on targeted delivery of nutrients to plants, crop
improvement, stress mitigation, nutrient-enriched food,
etc. Thereafter, nanosensors emerged paving way for real-
time monitoring of plant requirements, plant health, and its
disease response (Bhagat et al., 2023; Javad and Butt,
2018). This suggested the potential applications of
nanobotany in improving crop resilience and yield. Some
of the earlier applications of nanotechnology in the field of
plant sciences included the use of NPs for imaging the plant
structure. It helped to study and to understand the plant
parts at nanoscale (Zhang ef al., 2023).

Whereas era of 2020-present is considered as the era
of integration of nanobotany and omics, where researchers
are using genetic editing with nanoscale tools for
modification of plants (Yan et al., 2022).

Integration of AI in nanobotany: Al is playing a
significant role in all fields of life, and its importance is
increasing with each passing day. We can’t deny its
importance as it is going to make a large difference in
everyone’s life. Al is a part of every discipline of life
including  healthcare, agriculture, communication,
navigation, transportation, in homes and lifestyles,
entertainment, and education, etc. (Talati ef al., 2024). Al
has an astonishing capability of handling larger amounts of
information and difficult tasks on its own. In nanobotany,
it helps to improve the efficiency, accuracy, and versatility
of the nanobots in interaction with plants. The interaction
between plants and nanobots opens new horizons for
interdisciplinary approaches, enhancing the accuracy and
efficiency of methods and techniques in plant sciences.
Interaction of nanobotany with Al offers a forefront of
innovation, leaving behind the conventional scientific
methodologies (Dong ef al., 2024). Al plays a vital role in
nanobotany, offering innovative agricultural practices
through a synergistic integration that enhances crop
production, protection, and sustainability (Fig. 1).
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Fig. 1. A synergistic behavior of Al for nanobotany to increase plant production created in Biorenders.com.

There are various horizons, including nanoscale
imaging, data analysis, predictive modelling, precision
agriculture, environmental impact assessment, multiomics
integration, and sustainable business integration, where Al
impact is already visible. In botany, for example, when we
take high-resolution images of plant structures by
nanoscale imaging. Then Al tools are used to process these
images in an accurate way and to identify anomalies and
patterns of these images. Al tools increase the efficiency
and accuracy of data interpretation compared to traditional
methods. Al models can also explain the effects of the
environment or other stresses in plants, in less time with
more ease and accuracy (Flores et al., 2023; Agunuru,
2025). Such Al models are crucial for nanobotany as they
can detect potential toxicity and ecological effects of NPs
in advance. Thus, they can help to mitigate the probable
negative effects of NPs on plants and soil ecosystems
(Zhang et al., 2021). Al models can work smartly to
enhance the impact. They decrease the cost of the project
and increase its efficiency. Al can integrate genomics,
metabolomics, and proteomics (Multiomics concept) for

use in nanobotany. This gives more detail of the interaction
of plants with NPs, thus helping to establish a more
targeted and effective approach for the use of NPs in botany
(Flores et al., 2023). Nanosensors also play an important
role in nanobotany. When they are integrated with Al tools
and models, they enable the researchers and farmers to
monitor the plants’ nutrient requirements, irrigation needs,
and fertilizer adjustments, etc. This leads towards precision
agriculture and food security. This idea of sustainable
agriculture by use of Al also gives rise to the idea of
sustainable business models where a precise and accurate
use of NPs according to the requirement of the system can
generate more business and profit with lesser input
(Jankovic & Curovic, 2023).

Al-driven optimization of NPs: The 21% century can be
named as “The century of nanotechnology”. Today the
production of NPs has increased due to their enhanced
applications in every field of life. Medicines, agriculture,
optics, electronics, conservation biology, meteorology,
criminology, cosmetics, and more are involved with NPs.



However, it is not an easy task to synthesize NPs with
desired characteristics. It is a time-consuming and difficult
task that needs a real investment of time, funds, and
resources. Green synthesis of NPs also has its importance
(Ghaffar et al., 2024) as it uses plants, fungi, bacteria, and
algae as raw material which represent renewable resources.

NPs can be synthesized with various shapes, sizes,
surface  charges, colors, appearances, surface
morphologies, and stability depending upon their method
of synthesis and other physical factors involved. The
practical application of any NP is directly related to its
characteristics as described above. If these characteristics
of NPs are not properly controlled and understood, their
application may not be successful. Therefore, their
application in the field may be prohibited by the
regulatory authorities even if they have shown promising
effects on plant growth and yield. The investment of
money and time is wasted for such projects. Here, Al
plays its role by effectively predicting the characteristics
of NPs on the targeted application with smart tools and
modeling. These tools inform which method with which
conditions and with which raw materials can be used to
get the NPs of desired characteristics.

Al tools and ML tools can efficiently tune the
parameters of the synthesis process for NPs. Al algorithms
can also predict the interactions of these parameters. Al can
suggest new materials and chemicals for NP synthesis and
can present high-throughput experimentation for an
optimized method out of a thousand possible testing
combinations. This can minimize waste and save time and
resources. Real-time data acquisition system of Al can find
the faulty step of synthesis at once and can further
modulate the process to achieve accuracy. Even properties
of NPs can be tailored by pattern recognition and predictive
modeling of the NPs synthesis methods (Reineck et al.,
2019; Desai et al., 2023). Furthermore, Al-based tools can
analyze experimental data to optimize synthesis parameters
(temperature, pressure, and reactant concentrations)
quickly (Mikolajczyk & Falkowski, 2022), thereby
ensuring the production of precise NPs with effective
interactions in plant systems. Some of the Al tools that
have applications in nanobotany are summarized (Table 1).
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Al-driven control of NP characteristics for targeted
delivery: Plants are of different types according to their
environment including halophytes, mesophytes, xerophytes,
and hydrophytes. They have specific characteristics,
metabolism, and physiology depending upon the type of
plants. They have their pattern of stomatal opening, leaf
structure, stem morphology, and root development, etc. They
also need a varied amount of water, nutrients, and other
things. Plants need nutrients that are supplied in the form of
fertilizers (Pandey, 2018). Owing to the health hazards of
chemical fertilizers, the use of nano-fertilizers in the form of
NPs is considered a better and economic option for farmers.
As plants have various morphologies, the compatibility of
NPs with plant morphologies and uptake mechanisms is
crucial for the desired outcomes (Colipano & Cagasan,
2022). The mode of application of NPs should determine the
interaction between plant receptor sites and NPs. This
interaction should be strong enough that NPs are not released
into the environment unnecessarily (Khan et al., 2019). For
example, the smallest size NPs can have more efficient
access to the targeted sites in plants (Gaumet et al., 2008).
Sometimes, individual NPs can’t perform targeted functions,
like providing nitrogen to plants nanohybrid of urea and
hydroxyapatite was prepared (Kottegoda et al., 2017). For
some NPs, proper encapsulation can guarantee the
controlled release of the NPs at targeted sites at required time
intervals. NPs furnished with nanobarcodes and nanosensors
can work more precisely to identify the target and ensure the
precise delivery of nano-emulsions, i.e., also a type of
nanoencapsulation (Periakaruppan et al., 2023; Zain et al.,
2023). This compatibility can only be achieved with the
required characteristics of NPs including, shape, surface
charge, and size, etc. Adaptive feedback systems can adjust
nanoparticle characteristics dynamically, ensuring optimal
performance in response to changing conditions. Al tools
with real-time monitoring can enable us to understand the
behavior of NPs outside and inside the plants and can make
the technology more viable for large-scale agricultural use.
Even Al modelling can predict different encapsulation for
NPs (Grillo et al., 2021; Zhang et al., 2021; Mikolajczyk &
Falkowski, 2022).

Table 1. Use of Al algorithms in nanobotany.

Sr. # IAI Algorithms |

Main usage Reference

Quantitative Structure-
1. Property/Characteristic relationship
(QSPCR)

2. Decision Trees

3. Random Forests

Variational Autoencoders

4. Are used to analyze TEM datasets

(VAE)

Convolutional Neural Networks
(CNN): nanoscale pattern
6. Recurrent Neural Networks (RNN)

Generative Adversarial Networks

7. Help generate synthetic nanoscale images

(GANs)

8. Particle Swarm Optimization (PSO) design

9. K-Means Clustering

Used to predict the optimized method for the synthesis of
nanotubes of titanium oxide

ML tools that can be used to determine the possible physical
characteristics of formed NPs

ML tools that can be used to determine the possible physical
characteristics of formed NPs

This algorithm is used to analyze electron microscopy images and
This is used in molecular simulations or to analyze the time-series
data from nanosensors

These are used in nanoscale circuit optimization for nanophotonic

Applied to study features of size and shape of NPs

Mikolajczyk and
Falkowski, (2022)

Desali et al., 2023

Desali et al., 2023

Wen et al., 2021;
Wang et al., 2024

Zheng et al., 2023

Loukil et al., 2024

Pronin & Volosova,
2023

Yan et al., 2020
Khan et al., 2024
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Furthermore, Al algorithms can analyze a vaster
dataset to correlate the characteristics of NPs and their
delivery efficiencies. Plant scientists and nano-botanists
can anticipate the structure and function of NPs and predict
the required modifications at the surface of NPs to make
their delivery to the plant surface more efficiently (Grillo
et al., 2021). Al can well predict the optimal ligands for
NPs to improve their interaction with plants. These Al tools
may include molecular modeling, molecular simulation,
and data-driven ligand selection. Very unconventional
ligands can be predicted by Al tools that may not be
possible for the human mind. These tools can even learn
with time and improve the NPs-ligand interactions (Di
Filippo & Cavasotto, 2022.).

Case studies and real-world applications: A significant
work was reported by Ji et al., (2021) in which they
prepared a nano-conjugate of pesticide and fertilizer
(named PFAC). Their main aim was to decrease the weeds
from fields and to increase the production of the main crop.
The application of this PFAC material in the fields was
monitored by NIR (Near Infrared radiation). Results
showed that weeds suppression started just two hours after
application of PFAC. It is a good example of combining
nanobotany, agriculture, and Al tools. Al tools made it
possible to get feedback in real-time.

Another example of customized use of NPs and Al for
optimizing the NPs’ interaction with plants was reported by
Kottegoda et al., (2017) a nanohybrid of urea-HA was
applied to rice fields, and a comparison was made with
simple urea in providing nitrogen to rice plants. Real-time
data proved that the nanohybrid of urea was more efficient.
Varsou et al, (2019) developed a safe-by-design
computational system for the characterization of NPs. This
computational system is economical, robust, and user-
friendly for constructing and categorizing NPs. Li et al.,
(2024) employed an artificial neural network program to
monitor the benefits and drawbacks of Se NPs on Oryza
sativa. Their study detected the bioavailability and
adaptive adjustments in nanoparticle properties to ensure
optimal performance and responsiveness towards the plant
environment. Deng et al. (2023) tested these models and
successfully forecasted responses in beans, Triticum
aestivum, and corn by applying NPs at different
topographies. This predictive capability can aid in
designing NPs that align with the physiological and
biochemical features of plants, improving their overall
effectiveness. TiO, nanotubes can transform carbon dioxide
(a contributor to the greenhouse effect) into harmless
components, ensuring environmental safety (Mikolajczyk
& Falkowski, 2022).

Environmental and health considerations: Al-driven
optimization minimizes the quantity of NPs required for
effective delivery. This reduction not only enhances
efficiency but also contributes in minimizing the potential
environmental impact associated with nanoparticle
applications in agriculture. All these points are important
to consider as these NPs may not be compatible with the
environment and food chain for a longer duration. These
NPs may not be good for soil microbes, thus disturbing the
soil biome (Tian et al., 2019; Hofmann et al., 2020). If NPs
are sustained by plant parts, these may cause health hazards

to humans and other consumers. Therefore, comprehensive
programming is needed to determine the quantitative and
qualitative attributes of NPs before they can be used in the
field applications to increase their reliability (Tian et al.,
2019). Al and ML facilitate the integration of nanoparticle-
based solutions with existing agricultural practices. This
includes considerations of application methods, timing,
and dosage to maximize the benefits of nanoparticle
delivery in plants (Mani et al., 2025).

Al-Driven use of NPs in disease and pest management:
Al is incorporated into precision farming by providing
digital elucidations of crop-related issues to decrease
disease risk. Al-based tools (satellites, aircraft, drones,
nanobots) facilitate precision farming via disease detection
at very early stages. Nanobots contain sensors and GPS
(Global Positioning System) and GIS (Geographic
Information System) facilitated with data collection,
monitoring, and analysis software. These systems aid in
risk management of diseases and pests. The sensors and
software assist in visualizing data in the form of pictures,
plots, and graphs. The extent of the graphical plots
represents the intensity and severity of various
environmental factors, soil conditions, and pest attack.

Al-Enhanced early detection of plant diseases via
nanobots: Aerial photographs of field crops by satellites
and aircraft are quite expensive, and the quality of pictures
can be affected by unpredictable weather conditions
(Dawod & Dobre, 2022). The use of Al-based drones and
nanobots ¢ 1--100 nm) is a feasible and economical
approach for the early detection of plant diseases. This
approach involves taking, monitoring, and evaluating
photographs to detect stress and chance of disease spread
(Radoglou ef al., 2020).

Nutrient content and soil topography vary from region
to region. Imbalanced soil nutrient levels can induce
abiotic stress and cause various symptoms. For example,
nutrient deficiency of nitrogen and magnesium may
decrease the chlorophyll content and cause yellowing of
leaves, contributing to a decrease in crop yield. Similarly,
plant pathogens (fungi, bacteria, viruses, insects, and
weeds) also destroy crops. Nanobots equipped with
thermal, multispectral, and hyperspectral sensors can
detect soil edaphic factors (type, structure, texture, pH, salt,
water, nutrient, and heavy metal contents), thereby
facilitating the detection of possible risks of plant health
and diseases. Sensors establish temporal, spatial, and
spectral evidence and can differentiate between pest attacks
or nutrient deficiency (Xue & Su, 2017). Sensors should
contain high-resolution cameras for clear images (Kiobia
etal.,2023). There are also thermal sensors which perceive
weather conditions, including cold, warm, precipitation,
dampness, and air flow. The spectral sensors employed by
the NDVI (Normalized Difference Vegetation Index)
indices can detect crop cover, health, disease and pest
vulnerability (Dawod & Dobre, 2022).

Targeted delivery of pesticides and biocontrol agents:
Sensors in nanobots can detect environmental parameters
(temperature, humidity, light, and pollutants), as well as soil
water and nutrient contents. The GPS provides the exact
location of the affected area. The GIS system is accompanied



by versatile software to process data in numerical form. The
NDVI system is based on remote sensing and satellite
imagery to determine health and plant biomass in certain
zones (Dawod & Dobre, 2022). The NDVI provides a
graphical representation of the vegetation cover of a
particular region. This method aids in the calculation of the
desired number of pesticides, fertilizers, or other biocontrol
agents along with their targeted delivery to affected areas.
VRA (variable rate application) is a commonly used
technology to detect the presence of pests or plant diseases as
well as edaphic factors by incorporating maps, and GPS, or
sensors (Radoglou et al., 2020). Sensors detect information,
process and analyze the information via algorithm software.
Then they make decisions about suitable types and quantities
of pest and disease control agents, depending upon plant and
soil needs. VRA technology (equipped with spraying
machinery) contributes to the target delivery of chemical and
biocontrol agents to susceptible zones. Targeted delivery
systems are restricted to affected regions, thereby decreasing
the use of pesticide. Therefore, an Al-assisted targeted
delivery system for synthetic and biocontrol agents is an eco-
friendly approach with minimal health hazards.

Al-based data-driven strategies involve combinations
of various technologies for optimal pest management.
Among Al-based strategies, sensor networks involve the
installation of sensors in agricultural fields to monitor
environmental conditions and the presence of pests. CNN
(Convolutional Neural Network) algorithms can process,
analyze, and classify data to provide real-time insights,
helping farmers make informed decisions. Customized
versions of CNNs, including ResNet34, Signets, FSL, and
SSD, can precisely identify and classify cotton pathogens
(Kiobia et al., 2023).

Satellite imagery and remote sensing detect changes in
crop health and identify potential pest infestations based on
vegetation indices like NDVI, SR (Simple Ratio), NLI
(Non-Linear Index), RDVI (Renormalized Difference
Vegetation Index), and MSR (Modified Simple Ratio).
Satellite sensors obtain data as spectral images (depending
upon wavelengths absorbed and reflected by crops).
Remote sensing considers three light spectra, i.e., UV,
visible, and NIR. AT algorithms can process large datasets
to calculate vegetation indices quickly. Then these
calculated vegetation indices are used to determine specific
vegetation properties (Xue & Su, 2017), enabling early
disease detection by pathogens and targeted interventions.

Machine learning models utilize historical and real-
time data to forecast pest outbreaks. These models can
consider various factors, including weather patterns, crop
types, and pest life cycles. Therefore, they can make
accurate predictions for vegetation status. Plant nutritional
deficiencies and the impact of abiotic stressors can also be
analyzed via machine learning models. The Densenet-201
model provides the optimum results (96% perfection rate)
concerning nutrient status in corn (Ramos et al., 2023).
Another study used the GooglLeNet cellphone app. It is a
suitable tool for pest identification with a 94% perfection
rate (Yulita et al., 2023). Remote sensing combined with
machine learning can identify pathogens and monitor
vegetation. In this context, the 12-band model furnished
better results than did the NDVI-based satellite imagery
system (Lozano et al., 2023). Robotic and drone
technologies equipped with Al algorithms and spraying
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machinery ensure the monitoring and targeted delivery of
pest control agents (Radoglou et al., 2020). These
technologies can cover large areas quickly and precisely to
intervene when needed.

Research has revealed the development and applications
of nanosensors in precision farming (Romanovski et al.,
2023). Sensors are extensively used as smart traps and
monitoring devices in agriculture to identify and quantify pest
populations. Data from these sensors can guide farmers to
apply control measures where and when needed.
Hyperspectral and multispectral imagery, along with machine
learning algorithms, e.g., PLSR (Partial Least Squares
Regression) and SVR (Support Vector Regression), are used
to quantify the compositional parameters of stored apples
against pest attack (Khaled et al., 2023). AL, along with IoT
(Internet of things) tools, identifies pathogens with 98%
precision (Kiobia et al., 2023). Nanobarcodes are used to
detect health and disease status as well as the productivity of
vegetation. Coupling barcodes with Global Positioning
Systems (GPS) is under investigation for the detection of
pathogens and screening of crops (Periakaruppan et al., 2023).

There is another study, where nanosensors are used to
monitor the response of plants to hydrogen peroxide
application. Nanosensors were sensitive to changes in
foliage cells. Plants secrete some defensive metabolites,
helping plants to avoid pests that can be detected (Johnson
et al., 2021). In such situations, Al tools gather data from
soil sensors, weather stations, and pest monitoring devices
and then process the integrated data for integrated pest
management (IPM) (Ivezic ef al., 2023). One example is
automated Decision Support Systems (DSSs), including a
machine learning system, that robustly recommended
specific pest management strategies (Yulita et al., 2023).

Genetic manipulation and engineering: Advancements in
biotechnology have led to various treatments for human
diseases. One suitable option is gene therapy. Commonly
utilized gene therapy techniques include nucleases
(activators), zinc nucleases, and certain short sequences
associated with protein systems known as CRISPR. However,
the successful delivery of edited sequences to targeted cells is
quite challenging. In this context, nanotechnology provides an
efficient solution for effective drug delivery to target sites.
These NPs improve gene therapy, protect target genes from
degradation and stabilize DNA. Moreover, porous NPs, gold
NPs, lipid-based, and polymer NPs are commonly utilized for
gene therapy (Hu et al., 2023).

Al-optimized gene delivery and editing through
nanobots: The introduction of normal genetic material to
diseased cells is known as gene therapy to improve their
health. This approach is essential for genetic modification,
although it is a difficult task in medical research. The
techniques of gene editing can modify genomes by
inserting, deleting, or replacing a DNA sequence at the
position of interest. Gene editing can precisely alter the
DNA sequences targeted in the living cells (Khalil 2020).
The most advanced types of gene editing are CRISPR/Cas-
associated nuclease (CRISPR/Cas9), Transcription
activator-like effector nucleases, and zinc finger nucleases.
These can be employed to address mutations that are
disease-causing, can knock out genes, and can insert new
genes, thus helping cells fight against disease, or get rid of
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it. Integration of Al with gene editing techniques like
CRISPR/Cas9 can revolutionize healthcare. For example,
Al models can identify the cancer subtypes, and Gene
editing can disrupt those oncogenes. Al models can also be
used to design guide ribonucleic acid (gRNAs) for
CRISPR/Cas systems. Al tools not only design gRNA but
also predict the effects of gene editing on the function of
the gene and the resultant cell phenotype. Moreover, as the
understanding of the genetic process evolves, the model
can be updated with more continuous feedback loops (Dixit
et al., 2024). In plants, this combination of Al and gene
editing tools can produce better crops with desired traits in
less time. For example, in tomato, Al models have
optimized and predicted mutations in fruit ripening genes,
leading to improved shelf life and taste (Liu et al., 2024).
Similarly in rice, salt tolerance genes have been predicted
by AI models. Thus, guiding the gene editing to improve
rice yield in saline soils (Sheng ef al., 2023).

Ethical considerations in genetic nanobotany enhanced by
AI: Although NPs play many beneficial roles in medicine,
agriculture, and other fields, but there are certain limitations.
The efficacy of NPs mainly depends on engineering
methodologies and NP formation. In agroecosystems, NP
bioconjugation, design, and surface variation are also
important factors. All these properties of NPs are essential for
determining their behavior in genetic nanotechnology. There
are still many problems faced in this regard. As an example,
regardless of the current developments in the bioconjugation
of NPs, better techniques are required to attain reasonable
reproducibility, robust surface coatings, and functionalization
and bioconjugation techniques due to the complex surface
chemistry of NPs. Furthermore, the precise gene editing tool
in crops, CRISPR-Cas9 has the potential to improve
nutritional quality, yield, and stress tolerance. Nevertheless, it
has several drawbacks and moral dilemmas. In theory, off-
target effects from CRISPR could result in unexpected
mutations that alter other characteristics or impair plant
function. Inconsistent phenotypes can also arise from
mosaicism, in which all plant cells are not altered uniformly.
Regenerating entire plants from modified cells is frequently
ineffective, and delivering CRISPR components into plant
cells is still difficult, particularly in complex or resistant crops
like wheat and maize.

The ethical classification of CRISPR-edited crops as
genetically modified organisms (GMOs) is a topic of
continuous discussion because it affects both public and
regulatory acceptance. Concern is increased by the possible
ecological hazards, such as decreased biodiversity or the
unintentional flow of genes to wild relatives. Furthermore,
smallholder farmers' access to CRISPR technology may be
restricted by intellectual property rights, leading to
disparities in agricultural innovation. The sustainable use
of CRISPR in crop improvement depends on careful
evaluation and responsible use because the long-term
effects on ecosystems and food systems are still unknown
(Ahmad et al., 2021).

Advancements in precision agriculture through genetic
nanobotany applications: Traditional methods of genetic
engineering have many drawbacks in agriculture, such as
ineffectiveness, damage to the plant cell wall, and

nonsignificant gene expression. Various techniques, such
as microprojection, Agrobacterium-mediated
transformation, and vectors, are typical methods for gene
delivery. Furthermore, these conventional techniques of
genetic engineering cause problems after integration into
the host cell. These may include a narrow range of hosts,
fertility problems in plants, and post-modification
regeneration (Demirer et al., 2017; Nandy et al., 2020).
Additionally, they are not versatile for utilization.
However, NPs have remarkable properties in precision
agriculture because of their versatility, small size, easy-to-
use nature, and high success rate. The NPs are bound with
genomes and transferred to the host cells with minimal loss
or problems in the plants. NPs also act as genetic carriers
by crossing barriers such as the cell wall owing to their
small size. NPs as nanocarriers effectively protect DNA
from nucleases. Additionally, it efficiently transfers genetic
material to the nuclease without disturbing the cell. For
example, silica and gold NPs actively transfer genetic
material inside plant cells (Torney et al., 2007). Moreover,
titanium NPs are also taken up by plant cells, and genetic
material is transferred to the plants.

Modern techniques involving visualization, cellular
differentiation, and gene delivery are utilized for NP
applications. Due to the visualization factors
(fluorescence) of the NPs, the genes delivered to the plant
cell can be detected. Furthermore, many inorganic NPs act
as synthetic vectors that offer various advantages over
conventional lipid-based vehicles, including tunable size
and surface characteristics, multifunctional abilities, and
the ability to translate the physical characteristics of the
metal core to the delivery vector (Arsianti et al., 2010).

Precision farming and environmental monitoring:
Currently, we find ourselves at the initial phase of a
burgeoning agricultural revolution marked by data-
intensive methodologies (Jonathan et al., 2023). This
revolution employs machinery at every stage of the
agricultural process, encompassing diagnosis, decision-
making, and execution. Human involvement is relegated
primarily to monitoring and maintenance only. In addition
to the evolutionary changes brought about by past
industrial revolutions in agriculture, the ongoing fourth
industrial revolution is playing a pivotal role, giving rise to
what is now termed Agriculture 4.0. This emerging
discipline is distinguished by data-centric management, the
integration of new tool-based production methods, an
emphasis on sustainability and professionalization, and a
concerted effort to reduce the environmental impact of
farming through the incorporation of modern smart
technologies (Walter et al., 2017). These technologies
include robot technology, drones, big data, Al, computer
vision, 5G, cloud computing, the IoT, and blockchain
technology (Javaid et al., 2022), collectively contributing
to more autonomous and intelligent agricultural production
systems (Shaikh et al., 2022). Consequently, new trends,
such as precision agriculture, are evolving, introducing
enhanced capabilities to smart farming practices.

Version 3.0 and 4.0 of agriculture are the two phases
of agricultural evolution, each having its specific
technology, practices, data, and innovations. These two
phases can be differentiated from the mentioned (Table 2).
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Table 2. Comparison of Agriculture revolution version 3.0 and 4.0.

Agriculture

Feature
3.0

References
4.0

Late 20 to early 21* century, also
known as precision agriculture
Limited data
Mainly depend upon local
information and machines

GIS, VRT, GPS, mechanization

Time period

Data techniques

Key technologies

Automation level
(AL) and Decision
making (DM)

Farm management
Internet involvement

AL is partial
DM is based on experience

Site specific
Minimal

Human involvement Main Factor

Cloud based, integrated from many sources,

Big data, robotics, blockchain, IOT, Al

Mid 2010 to present also called as digital
agriculture or smart agriculture

Extensive data

Rahmann et al., 2017; Liu et
al., 2020; Silva et al., 2020;
Araujo et al., 2021;
Aggarwal & Verma, 2022

and real time data

AL is high

DM is Al-driven, predictive

Fully integrated
Critical
Minimal

Big data: Precision agriculture relies on extensive data
and information, akin to the datasets used by major
industries for predicting customer behavior. In agriculture,
big data analytics, which employs tools such as data
mining, Al, and predictive analytics, plays a pivotal role
in decoding data-intensive processes for informed
decision-making. These analytics operate on vast datasets,
utilizing technologies such as machine learning, cloud
computing, image processing, and GIS to identify patterns
and trends. Such insights assist farmers in navigating risks
and challenges. The integration of data in agricultural
production enhances traceability and elevates product
quality, meeting the rising consumer demand for
ecologically mindful products. However, challenges
persist, including data updating, device security, accuracy,
availability, and encryption. Addressing these issues is
crucial, as invalid data can lead to costly and disruptive
decisions for farmers (Bhat & Huang, 2021).

But in the case of developing countries like Pakistan,
there are many limitations regarding the use of Big Data.
One of the main reasons is the low literacy levels in digital
data. Small-level farmers don’t have the finance and
literacy abilities to effectively use data-driven insights.
They also don’t have access to digital infrastructure due to
the higher cost of precision agriculture tools and services.
In the real world, there are many institutional issues in
making farming policies. These include inadequate policy
support, weak extension services, and limited public-
private collaborations. It is crucial to address these
constraints for equitable technological advancements in
agriculture across the globe (Kamilaris et al., 2017; Wolfert
etal.,2017; Soto et al., 2019).

Machine vision technology: Precise and accurate data
are fundamental to the success of precision agriculture.
For example, a recent shift towards more reliable data
sources, such as image analysis, compared with labor-
intensive methods (Jang et al., 2023). Machine vision
(MV), also known as agro-vision or the 'eyes' of robots,
uses pixel images to provide nondestructive, robust, and
rapid monitoring of cultivation processes. MV systems
empower machines with vision and judgment capabilities
in image processing and data extraction. While MV
technologies have been successful in various
applications, such as crop species identification, stress
detection, seed quality assessment, and weed and disease

detection, but they are still in the prototype stage.
Emerging deep learning (DL) techniques are now being
integrated with machine learning (ML) technologies to
develop intelligent robots capable of multispectral
imagery analysis and real-time field variable rate
applications (Punithavathi et al., 2023). Even commercial
smartphones are becoming valuable tools for monitoring
crop health and stress via MV systems, leveraging their
widespread accessibility among the human population.

But it also faces many challenges in its application in
developing countries. These challenges include higher
initial investment costs (for imaging software and
hardware), lack of local technical expertise, lack of high-
quality data, limited access to high-speed internet, and lack
of cloud computing infrastructure, etc. Without considering
these barriers, it is impossible to accept and apply
agriculture 4.0 (Kamilaris & Prenafetaboldu, 2018; Zhang
& Kovacs, 2018; Shahhosseini et al., 2020).

Internet of things (IOT): The Internet of Things (IoT) is
a network of interconnected items and technologies,
representing a crucial advancement in precision agriculture
and smart farming. In agriculture, IoT architecture,
including agricultural sensors with ICT (Information and
Communication Technology), and UAVs (Unmanned
Aerial Vehicles) facilitate data collection for precision
agriculture. With advancements in communication
technologies and wireless networks (5G, LoRaWAN, NB-
10T, Sigfox, ZigBee, and Wi-Fi), the IoT's application has
expanded to diverse fields, enabling real-time remote
control, high-throughput phenotyping, and better coverage,
bandwidth, connection density, and end-to-end latency
(Shin et al., 2022). When integrated with cloud computing,
the IoT contributes to smart farming across livestock
monitoring, smart greenhouses, fishery management, and
weather tracking.

Precision agriculture benefits from various IoT
sensors for collecting data on temperature, humidity, light
intensity, and other factors, which are uploaded to cloud
information support systems for management. The IoT also
enhances ground and underground cognition through
agricultural sensor nodes, autonomous farm vehicles, and
mobile crowd sensing.

In developing countries, there is a lack of Govt
policies, experts, and digital infrastructure that hinders the
conversion of IOT solutions to the local contexts.
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Therefore, it ends in performance in diverse agro-climatic
conditions (Ayaz et al., 2019; Boursianis et al., 2022).
Despite these challenges, the IoT continues to play a
pivotal role in revolutionizing agricultural operations,
extending to areas such as cattle monitoring and weed
detection through machine vision. Edge computing further
facilitates real-time data transmission in IoT precision
agriculture, reducing the data package size and leveraging
smart technologies for improved convergence speed and
task completion rates. Pioneering companies such as Cisco
and Huawei contribute to shaping the landscape of edge
computing within the [oT (Karunathilake ef al., 2023).

Artificial intelligence (AI), Machine learning (ML), and
Deep learning (DL): Al plays a pivotal role in robotics and
autonomous systems (RASs) and has seen significant
development in the Internet of Things (IoT), contributing
to continuous data streams in agriculture. Employing
mining techniques, Al transforms agricultural data into
meaningful information crucial for decision-making,
especially in pest identification, disease detection, yield
prediction, and fertilization plans. The potential of Al
extends to reducing food wastage; improving production
hygiene; and monitoring machines in various stages of
agriculture, including the supply chain, production
patterns, and soil, crops, and water management, as well as
disease and pest control, to overcome challenges in
conventional farming (Saranya et al., 2023).

Machine learning (ML) and deep learning (DL) are
sub-concepts of Al, with ML focusing on learning systems
and algorithms for understanding data-intensive farming
processes. DL, with its layers and nonlinear functions,
addresses limitations in the practical implementation of
robots, mobile terminals, and intelligent devices in modern
agriculture. Machine learning algorithms integrated into
mobile detection algorithms have improved detection
methods, overcoming challenges in technology adaptation.
These advancements have wide-ranging applications,
including accurate fruit and pest detection, optimization,
and prediction of complex conditions in plant tissue
cultures and breeding processes. Despite challenges in
processing speed and efficient information visualization
systems for farmers dealing with big data, continuous
research on big data, the IoT, ML, and DL holds great
potential in providing accurate predictions for agriculture
and identifying new opportunities (Alfred et al., 2021).

Al applications in smart farming include soil
management, crop management, disease management,
weed control, and mobile expert systems for disease
diagnosis and soil health analysis. The integration of Al
with precision agriculture has formalized this approach,
making it more scientifically grounded for optimal
agricultural outputs. However, addressing experience gaps
between Al specialists and farmers, ensuring accessibility,
and addressing privacy protection issues with large datasets
are essential for the further development of Al in
agriculture (Liu et al., 2020).

Guidance systems: Guidance systems leverage GPS
technology to offer farmers real-time information on
equipment and herd-grazing locations, facilitating
optimized field operations such as planting, harvesting,

and herding. Overcoming challenges such as limited
satellites and poor signal strength, the introduction of the
GNSS (Global Navigation Satellite System) has replaced
labor-intensive farm operations with more efficient
methods such as VRA (Variable Rate Application).
GNSSs are pivotal for optimizing the effectiveness and
efficiency of agricultural machinery, contributing to the
emergence of commercialized agricultural machinery
services. The trend of GNSS-enabled devices in fully
automated steering of traction saves time, labor costs, and
money, whereas precision agricultural robots and rovers
rely on high-resolution navigation solutions. Studies
integrating DL propagation models in GNSS with inertial
navigation datasets have enhanced precision agriculture,
exemplified by successful tests of electric seeders with
optical fiber detection technology. The development of
software-based farm management solutions for GIS
encourages automation in data collection, analysis,
supervision, storage, decision-making, and overall farm
management (Du ef al., 2023).

But inconsistent satellite signal coverage, high-cost
maintenance, lack of skilled operators, and weaker Govt
supports are the main reasons for poor or nil adaptations of
Guidance systems by farmers for precision agriculture
(Mulla, 2013; Jat et al., 2016).

Blockchain technology: Blockchain originally employed
in cryptocurrency, is a decentralized and distributed
database that maintains an ever-growing list of ordered
records or blocks. This technology enhances data
transparency, immutability, and reliability, fostering
mutual trust in the supply chain. Introduced to precision
agriculture, blockchain facilitates the integration of digital
technologies, addressing challenges in smart farming, such
as insufficient and insecure data-sharing infrastructure.

It proves valuable in the "IoT applied Greenhouse
Monitoring System," enabling remote monitoring and
control of farm equipment. The nature of Blockchain is
decentralized, anonymous, and secure systems that can
provide security and privacy to address the issues of IOT.
It’s the start of using Blockchain technology in agriculture,
but it shows a promising future in providing a reliable,
faster, and secure platform for monitoring agricultural
fields. When we use it in the food supply chain, it becomes
crucial for food safety concerns and fragmented
information in the supply. Its programming can be useful
in agricultural processes like energy consumption,
irrigational water sharing, robot coalitions, autonomous
UAVs, and labor integration (Kamilaris et al., 2021).

Robotics and self-sustained autonomous systems
(RASs): In natural farming practices, there are different
sources of variation that make them quite uncertain. These
variations and uncertainties can be well handled by the
RASSs, which are equipped with various sensors, actuators,
and machine learning algorithms. RASs can promote
autonomous farming which is an integration of robotics,
drones, sensors, and remote sensing. These all facilitate
planting, watering, spraying, harvesting, plucking, and
weeding, etc. Thus, overall cost and labor is reduced (Liu
et al., 2020; Monterio & Santos, 2022).
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Further improvements in RAS systems can make it
more efficient, accurate, autonomous, and precise in a
dynamic agricultural environment. Present key uses of
RAS:s in agriculture include 3D food printing, autonomous
farming, automated husbandry, aerial monitoring, plant
phenotyping, leaf peeling, selective spraying, and fruit
counting, etc. Other than these, the use of auto-steered
agricultural vehicles also uses RAS as these vehicles
perform various field applications including planting,
chemical applications, harvesting, tilling, and equipment
positions. While doing so, these vehicles must avoid
overlaps and skips (Liu ef al., 2020; Hundal et al., 2023).

This is a new system, but there are many limitations
with its application in agriculture 4.0. These issues include
scalability. Infrastructure and connectivity requirements,
privacy concerns, integration challenges, and data
immutability (Casino et al., 2019; Tripoli & Scmidhuber,
2018; Duan et al., 2021).

Artificial satellites, Unmanned aerial vehicles (UAVs),
and Unmanned ground vehicles (UGVs): Artificial
satellites, including American Landsat satellites, the
European Sentinel-2 System, RapidEye -constellation
satellites, the GeoEye-1 system, and WorldView-3,
contribute to remote sensing by generating multispectral
data accessible from a distance. The deployment of
intelligent remote-sensing satellites ensures
comprehensive coverage for collecting agricultural
information (Berger ef al., 2023). Recent advancements in
ubiquitous and affordable technologies such as drones,
crews, and aircraft have allowed closer and more frequent
ground-level image capture, enhancing detail and
functionality (Fragassa et al., 2023). Unmanned ground
vehicles (UGVs) play a role in acquiring high-resolution
data for weed identification, selective pesticide spraying,
soil analysis, and crop scouting. Scoring robots, including
the Oz robot for mechanical weeding; the GUSS
autonomous sprayer for spraying; the RowBot system for
fertilization, mapping, and seeding; and VineRobots for
vineyard management, achieve specific targets (Berger et
al., 2023). Information derived from satellite, UAV, and
UGV imagery is crucial in precision agriculture. They
support vegetation patch identification, weed recognition,
pest attack detection, environmental stress observation,
and accurate classification via variable rate technology
(VRT). In various agricultural disciplines, such as
aquaculture, agroforestry, and forestry, imagery data plays
a significant role, covering large areas for information
gathering and reproducibility. Data from satellites, UAVs,
and UGVs are complemented by detailed ground survey
data processed with machine learning (ML) and deep
learning (DL) algorithms to provide usable and
meaningful information.

Deforestation is monitored by remote sensing
satellites and drones, where they can accurately and
precisely classify plant types and species, thus surpassing
other UAV and LiDAR data. Densities of forests and
distribution of various tree types can be studied by using
UAV data (Sentinel-2 NDV1 and RGB images). To
monitor the large farmlands, use of drones, and other
automated aircraft is increasing day by day as it is
costeffective and quite helpful for providing precise

SUMERA JAVAD ET AL.,

information using multispectral cameras, hyperspectral
sensors, and other advanced technologies (Ma et al., 2021;
Tomaszewski & Kolakowski, 2023).

Data collection and analysis: In the field of nanobotany,
dynamic synergy exists with data collection and Al tools.
This has become a very significant relationship with the
passing days due to the increased research and increased
data. Al tools can increase data credibility in several
ways, including:

A) Handling large and complex data sets

B) Development of predictive models

C) Optimization of experimental conditions

D) Automated image analysis

E) Enhancing precision in the
characterization of NPs

F) Accelerating research through Al-driven simulations

G) Integration of multiscale data

synthesis  and

Data collected by nanobots from plant systems are
usually vast and complex datasets. It includes various
studies, like the use of gold NPs for sensing arsenic
accumulation in plant leaves, giving real-time data of plant
responses. This dataset may include absorption,
translocation, and storage of arsenic in plant tissues at
different timings with different temperatures and soil
conditions (Ulhassan et al, 2022). This approach can
change how we understand plant biology and open new
ways to explore and to study plants using nanobots.

Challenges and ethical considerations for use of Al in
NanoBotany: After looking into the details of positive
impacts and uses of Al tools and algorithms, this
fascinating world leads us to frontiers of promising
results in plant sciences, nanobotany, and agriculture.
This convergence of Al tools and nanobotany seems to be
really promising to resolve the issue of food security and
environmental concerns in the future. But this
convergence has issues and challenges. Integration of Al
tools into every system encompasses technical, ethical,
and regulatory dimensions. This review article critically
investigates both aspects of the picture, i.e., advantages
and disadvantages (Fig. 2), and we can take advantage of
these synergies only if we consider both aspects in
designing and using Al techniques. Public acceptance of
these Al tools is another problem related to the complex
interaction of Al in life (Jha ef al., 2019).

Main ethical concerns regarding use of nanobots
could be invasive surveillance. Thus, the privacy of
individuals is compromised. Al-enabled nanobots can
gather detailed information at nanoscale, thus raising
concerns about unauthorized access to personal data
(Schulte & Salamanca-Buentello, 2022). There may be
some unintended results of nanobots usage, so how much
autonomy should be granted to Al tools? It is a basic
question of the scenario. Therefore, Human control and
oversight are critical for its crucial use. Then there are
environmental issues and concerns related to the life
cycle, age, and sustainability of nanobots. There are
ethical concerns in minimizing the environmental impact
of Al and using sustainable approaches for Al-based
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technologies. Addressing these ethical challenges is
imperative to ensure the responsible development and
deployment of Al-enhanced nanobots in various fields
(Munoko et al., 2020; Brendel et al., 2021). Researchers
and ethicists continue to explore and address these ethical
concerns as the fields of nanotechnology and Al advance
(Schicktanz et al., 2023). When such new technologies
are introduced in society, there are several ethical, legal,
and societal concerns. Therefore, there is a dire need to
balance the advantages and concerns/limitations related
to the use of Al tools in nanobotany and nanoagronomy.
It’s the responsibility of the scientific community, policy
makers, and the regulatory bodies to have a check and
balance system for Al tools, including a regulatory
framework, ethical deployment, etc. (Adefemi et al.,
2023; Cheng et al., 2021) to address the challenges faced
due to the use of Al (Table 3).

Limitations of AI in nanobotany: Al in combination
with nanobotany can revolutionize agriculture. It enables
the complex and intelligent design of the NPs, offers
predictive modelling and decision making in plant
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systems based on databases. But several limitations still
exist, one of the main challenges is the lack of large and
high-quality datasets. Such data sets are the basic
requirement of Al to make accurate predictions. In
nanobotany, NP-plant interaction experimental data is
still limited and inconsistent, reducing model reliability.
Responses of plant systems are quite complex, and they
variably respond to the applied NPs, making it difficult
for Al models to predict accurately. Many Al models act
as black boxes for nanobotany, having multiple roles but
lacking main explanations.

Additionally, integrating multidisciplinary data from
plant  physiology, genetics, biochemistry, and
nanotechnology is also a computational and technical
hurdle, making a wide gap between Al and real-world
validation. It especially happens when lab-based models
are shifted to field models. Various ethical issues also
arise while using Al in controlling and manipulating plant
systems at the intersection of Al, nanotechnology, and
plant biology. It limits the progress and implementation
of these emerging fields.

Unintended Public
safety Access Control
consequences acceptance
concerns y
Standardizatio Resources
‘ and funding
Autonomy+—— | Environmental
Impact
Privacy ! Sustainability
concerns
Health and Dual Use & Equity and Education &
safety Poliers Access skill gap

Created in BioRender.com bio

Fig. 2. Issues related to the use of Al in Agriculture 4.0 related to Nanobotany.
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Table 2. Addressing the Al challenges in the field of Nanobotany and Nano agronomy.

Addressing the concerns
Botanists, nanotechnologists, and Al experts: teams that include botanists,
nanotechnologists, computer scientists, and Al specialists to bring together expertise in
plant biology, nanotechnology, and Al
Educational programs for policymakers, industry professionals, and other stakeholders
should be developed to enhance their understanding of the interdisciplinary nature of nano-
botany and its potential impact (Kusters ef al., 2020)
Privacy-preserving technologies such as differential privacy or homomorphic encryption.
Establishing clear guidelines for data storage, access, and sharing, along with obtaining informed
consent from stakeholders, will contribute to building trust and mitigating privacy risks

1) Regulatory frameworks
2) Privacy safeguards in data collection

The implementation of encrypted communication protocols protects information from
unauthorized access and potential cyber threats. Employing state-of-the-art encryption
algorithms and regularly updating security protocols will fortify the integrity of
communication channels, assuring stakeholders that the data exchange in nanobotanies
remains confidential and protected against external interference (Cheng et al., 2021).

Rules and policies about how data will be obtained, utilized, shared, and retained. Regular
auditing and accountability standards can enhance the transparency of Al systems in nanobotany

Secure communication protocols

Ethical data usage and transparency

Evaluating the potential ecological consequences of deploying nanobots in plant systems
ensures that any adverse effects on soil health, nontarget organisms, or broader ecosystems
are identified and mitigated

1) Environmental impact assessment
2) Energy-efficient designs

Facilitate partnerships between academic researchers, industry players in nanotechnology
and Al, and government agencies to combine resources and expertise

Sustained funding models that support long-term interdisciplinary research in nanobotany,
are advocated, recognizing that breakthroughs may require time and continuity

Good governess and sustainability

Engaging with all stakeholders, including the public, farmers, policymakers, and environmental
organizations, is critical for addressing both privacy and environmental concerns. It is the
responsibility of policymakers and environmental organizations, along with local governments,
to provide educational resources to other stakeholders explaining the benefits, risks, and
safeguards of Al in agriculture. Involving all stakeholders in the decision-making process and
considering their perspectives in the development of regulations and guidelines enhances the
overall acceptance of Al-driven nanobot applications

To organize workshops and collaborative platforms that facilitate discussions and idea
exchange among people from different disciplines, promoting a deeper understanding of
each field's contributions to nanobotany

To develop interdisciplinary educational programs that provide training in both
nanotechnology and Al applications in botany, fostering a new generation of botanists with
a holistic skill set

Stakeholder engagement and education

Establishing and adhering to ethical standards in the research, development, and
deployment of Al-driven nanobots is fundamental. Ethical considerations should extend
beyond data privacy to encompass broader issues such as biodiversity preservation,
ecosystem health, and equitable access to benefits. Regular ethical reviews involving
interdisciplinary experts and external ethics committees can guide researchers and
developers in navigating complex ethical dilemmas (Habbal et al., 2024)

Adherence to ethical standards

Shared research facilities where botanists and nanotechnologists can work side by side

i h facilities f¢ . . . . . .
Joint research facilities for easy access should be established, enabling the seamless integration of nanobots into plant studies.

Conclusion and Future prospects considerations in advancing nanobotany underscore the
need for a conscientious balance between innovation and
responsible governance, emphasizing transparency,
stakeholder engagement, and adherence to ethical

standards to ensure the ethical and sustainable evolution

Al is inevitable in our lives now. It has a
transformative role for the future of nanobotany. Al is
going to revolutionize agricultural techniques and

practices, and the concept of a global village in terms of
botanical data will be accomplished. The collaborative
approaches and interdisciplinary research outlined
provide a roadmap for navigating complex challenges,
ensuring the sustainable and responsible integration of
nanobots and Al into our botanical pursuits. In this
interdisciplinary ~ work, the  convergence  of
nanotechnology, Al, and plant sciences heralds a new era
of scientific exploration and innovation with far-reaching
implications for the future of our planet. Ethical issues
and other concerns related to the use of Al in nanobotany
can be addressed for future use by policymakers,
scientists, and farmers. Conclusively, the ethical

of this transformative field. In conclusion, AI will be a
future catalyst for nano-botany, collectively ensuring
food safety, environmental stability, crop tolerance to
environmental stresses, and enhanced production of
commercial plant metabolites in a controlled way. Key
trends of this synergistic field will be precision in plant
monitoring and growth, Smart nano elicitation for
enhanced crop yields, Al-enhanced gene editing and plant
breeding, Environmental monitoring and sustainability,
nano pesticide and smart delivery systems, climate
resilience, nanobiosnesors for plant research, automation
in agriculture, and Al-guided nanotoxicology in plants,
microbes and soil systems.
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