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Abstract 

 

Technological advances laid the foundation for an emerging field in the form of nanotechnology, playing a role in every discipline 

of life, from material, chemistry to computational and life sciences. This emerging field transformed the agricultural sector by 

integrating nanobotany and nanoagronomy with artificial intelligence (AI). As AI can handle large datasets and can accomplish 

complicated tasks independently, it has the potential to transform future agricultural practices with better yield and sustainability. AI 

can incorporate nanobotany by improving the efficiency, accuracy, and versatility of nanobots to interact with plant systems. AI tools 

can make satellite imaging, monitoring, and crop data analysis more accurate than traditional methods. The integration of machine 

learning (ML) and deep learning (DL) algorithms with mobile detection algorithms could facilitate early disease detection, optimization, 

prediction of plant status, and breeding processes. The production of AI-aided nanosensors, nanobots, nanomedicines, nanocarriers, 

nanomaterials (nanoparticles, nano-fertilizers, and nano-pesticides, etc.), and their transformative roles in nanoscale imaging, phyto-

mining, nanotoxicity analysis, NPs optimization, pest management, early disease detection, genetic manipulation, precision farming, 

environmental monitoring, targeted delivery of pesticides, and biocontrol agents are briefly described in the present study. The 

challenges, ethical concerns about use of AI in nanobotany, and their possible solutions are also discussed here. This study reflects an 

integrative approach of nanotechnology, AI, and plant sciences, which will pave the way for innovation by assisting policymakers, 

scientists, and farmers to address sustainability challenges. In conclusion, AI-based nanotechnology holds promise as the future of 

sustainable agriculture. 
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Introduction 

 

In the recent era of technological revolution, 

nanotechnology has shown a promising role in the field of 

plant sciences, and other interdisciplinary fields have 

evolved like Nanobotany or nanoagronomy. Nanobotany 

includes the use and role of NPs in plant life, whereas nano-

agronomy is the use of NPs in the field of agronomy. 

Furthermore, AI is considered as the future of agriculture 

at a global level. It is a dynamic area of research at present 

where we see the combination of nanotechnology, 

computer science, data science, agriculture, and plant 

science. AI is a powerful set of techniques that has 

improved scientific research and applications in a very 

different way. This review article explains the role of the 

triangle of nanotechnology, AI, and botany shaping the 

future of agriculture. Developed countries are already 

getting benefits from this fruitful combination of 

technologies. There is a dire need for acceptance of AI and 

nanotechnology in solving botanical and agricultural 

problems particularly, in developing countries. 

This review includes the study of the impact of 

nanotechnology and AI on scientific advancements 

carefully. This topic covers the synthesis of NPs and their 

use in smart agriculture, precision agriculture, genetic 

manipulation, disease management, and weather forecast 

etc. There is a potential for AI in transforming each of the 

above fields by integrating supercomputers and nanorobots 

with them. The scope of using AI for the plant sciences and 

agriculture extends beyond a simple exploration of 

advancements in technology. AI is revolutionizing 

agriculture by optimizing current practices such as using AI-

powered drones for precision spraying and crop monitoring, 

optimizing NP synthesis, and analyzing complex biological 

data. It is also paving the way for future advancements like 

predictive models for climate-resilient farming and 

autonomous farming systems that can sustainably feed a 

growing population. It directly links the Sustainable 

Development Goals (SDGs) with the use of AI in all the 

above-mentioned fields. There is also a need for ethical 

considerations for transparency, privacy, accountability, and 

responsibility etc. Therefore, it needs proper navigation of 

all efforts and possibilities of transformations related to the 

use of AI in agriculture and nanobotany. It can help us to 

understand scientifically the sustainable and possible 

coexistence of human race and plants with all the 

environmental parameters. Therefore, the present study 

suggests the understanding of role for scientists and policy 

makers to embark on the transformative character of AI in 

agriculture and plant science. This review article, therefore, 

addresses the gap in research about integration of AI in 

nanobotany that is still unexplored in the literature. It will 

help to establish foundational understanding and research 

directions at the intersection of three cutting-edge fields: AI, 
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nanotechnology and botany, particularly in developing 

countries like Pakistan. It can serve as a source for 

researchers and students and guide policy makers on AI-

enabled sustainable technologies. 

 

Fundamentals of Nanobotany: A key perspective of 

nanobotany is the use of instruments and tools that are 

designed to work at nanoscale. In doing so, they have a 

precise interaction with the plants at the cellular and 

molecular level. These tools are specifically designed for 

plants with their specific roles in plant biology, and these 

include nano-carriers, nanosensors, and other NPs. Here is 

a brief overview of some main definitions of tools and 

technologies related to nanobotany (Nazir, 2018). 

 

Nanotechnology: A branch of science that deals with 

materials whose size is in the range of 1-100 nm in at least 

one dimension. 

 

Nanosensors: These highly sensitive tools can detect 

changes in plants and their environment at the nanoscale. 

These may be equally active in determining the nutrient 

level of plants. Some nanosensors can also detect plant 

stress level. These can be used to detect minor changes in 

the physical and chemical environment of plants and the 

resultant consequences on the plant. Nanosensors can 

detect the endogenous growth regulator levels of plants, 

pathogen and disease level, heavy metals, and gaseous 

composition of air as well (Presti et al., 2023). 
 

Nanomedicine: The use of nanotechnology and 

development of therapeutic agents of nano-range in size are 

included in this field. NPs synthesized from plant material 

are included in nanobotany and are used to develop various 

medicines as they have plant metabolites on their surface 

and often show synergistic medicinal effects. 

 

Nanocarriers: These are the NPs used for the targeted 

delivery of other molecules and substances to the specific 

locations inside the plant or plant cells for gene editing, 

nutrient status improvement, or disease treatment, etc. (Zhi 

et al., 2022). 
 

Nanoparticles (NPs): These are engineered materials that 

show a size ranging from 1 to 100 nm. These NPs may be 

organic, inorganic, or biological in nature, and their use is 

also dependent on their nature and size. These NPs can be 

used as plant nutrients (fertilizers at the nanoscale), 

agrochemicals (pesticides, etc.), and for targeted delivery 

of genes, etc. (Prasad et al., 2017). 
 

Phytomining: Extracting the metals from the soil with the 

help of plants is often termed as phytomining. An attempt 

to enhance the ability of plants to extract metals from the 

soil by using NPs can be named nano-phytomining and can 

be a useful future tool. 
 

Nanotoxicity: It is also an important term related to the 

use of nanobotany. It covers the harmful effects of NPs on 

the plants and the environment. NPs are very active in 

their actions due to their small size and higher surface to 

volume ratio. However, it may have many toxic aspects 

other than advantages. 

Historical progress in nano-botany: The idea of 

nanotechnology started from a lecture by Richard Feyman 

in 1959. But it was confined to material sciences only. It 

coincided with plant sciences in the late 90s. Positive 

impact of NPs on plants was discovered that led to the 

efficient use of resources like fertilizers and lesser impact 

on the environment. It provided the idea of nano nutrients, 

and the use of nanofertilizer was coined in the early 

2000s. Effects of various NPs including metallic, organic, 

and polymeric NPs were analyzed on plant health. Their 

toxic studies were also conducted in relation to plants 

(Liu & Lal, 2005). The concept of nano-pesticide (nano-

fungicide, and nano-insecticide, etc.) was introduced. In 

this era, a lot of work was done on the effects of NPs on 

plant growth and yield in relation to their cross talks with 

various plant growth regulators and signaling molecules 

(Yan et al., 2006).  

In 2010-2020, the term “Nanobotany” was introduced, 

when extensive studies were started on the interaction of 

plants and NPs at the cellular and molecular levels. This 

era mainly included the study of NPs’ absorption by plants, 

their translocation through the vascular system, and then 

their deposition in various plant parts. Thus, the focus was 

on targeted delivery of nutrients to plants, crop 

improvement, stress mitigation, nutrient-enriched food, 

etc. Thereafter, nanosensors emerged paving way for real-

time monitoring of plant requirements, plant health, and its 

disease response (Bhagat et al., 2023; Javad and Butt, 

2018). This suggested the potential applications of 

nanobotany in improving crop resilience and yield. Some 

of the earlier applications of nanotechnology in the field of 

plant sciences included the use of NPs for imaging the plant 

structure. It helped to study and to understand the plant 

parts at nanoscale (Zhang et al., 2023). 

Whereas era of 2020-present is considered as the era 

of integration of nanobotany and omics, where researchers 

are using genetic editing with nanoscale tools for 

modification of plants (Yan et al., 2022). 

 

Integration of AI in nanobotany: AI is playing a 

significant role in all fields of life, and its importance is 

increasing with each passing day. We can’t deny its 

importance as it is going to make a large difference in 

everyone’s life. AI is a part of every discipline of life 

including healthcare, agriculture, communication, 

navigation, transportation, in homes and lifestyles, 

entertainment, and education, etc. (Talati et al., 2024). AI 

has an astonishing capability of handling larger amounts of 

information and difficult tasks on its own. In nanobotany, 

it helps to improve the efficiency, accuracy, and versatility 

of the nanobots in interaction with plants. The interaction 

between plants and nanobots opens new horizons for 

interdisciplinary approaches, enhancing the accuracy and 

efficiency of methods and techniques in plant sciences. 

Interaction of nanobotany with AI offers a forefront of 

innovation, leaving behind the conventional scientific 

methodologies (Dong et al., 2024). AI plays a vital role in 

nanobotany, offering innovative agricultural practices 

through a synergistic integration that enhances crop 

production, protection, and sustainability (Fig. 1). 
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Fig. 1. A synergistic behavior of AI for nanobotany to increase plant production created in Biorenders.com. 
 

There are various horizons, including nanoscale 

imaging, data analysis, predictive modelling, precision 

agriculture, environmental impact assessment, multiomics 

integration, and sustainable business integration, where AI 

impact is already visible. In botany, for example, when we 

take high-resolution images of plant structures by 

nanoscale imaging. Then AI tools are used to process these 

images in an accurate way and to identify anomalies and 

patterns of these images. AI tools increase the efficiency 

and accuracy of data interpretation compared to traditional 

methods. AI models can also explain the effects of the 

environment or other stresses in plants, in less time with 

more ease and accuracy (Flores et al., 2023; Agunuru, 

2025). Such AI models are crucial for nanobotany as they 

can detect potential toxicity and ecological effects of NPs 

in advance. Thus, they can help to mitigate the probable 

negative effects of NPs on plants and soil ecosystems 

(Zhang et al., 2021). AI models can work smartly to 

enhance the impact. They decrease the cost of the project 

and increase its efficiency. AI can integrate genomics, 

metabolomics, and proteomics (Multiomics concept) for 

use in nanobotany. This gives more detail of the interaction 

of plants with NPs, thus helping to establish a more 

targeted and effective approach for the use of NPs in botany 

(Flores et al., 2023). Nanosensors also play an important 

role in nanobotany. When they are integrated with AI tools 

and models, they enable the researchers and farmers to 

monitor the plants’ nutrient requirements, irrigation needs, 

and fertilizer adjustments, etc. This leads towards precision 

agriculture and food security. This idea of sustainable 

agriculture by use of AI also gives rise to the idea of 

sustainable business models where a precise and accurate 

use of NPs according to the requirement of the system can 

generate more business and profit with lesser input 

(Jankovic & Curovic, 2023). 

 

AI-driven optimization of NPs: The 21st century can be 

named as “The century of nanotechnology”. Today the 

production of NPs has increased due to their enhanced 

applications in every field of life. Medicines, agriculture, 

optics, electronics, conservation biology, meteorology, 

criminology, cosmetics, and more are involved with NPs. 
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However, it is not an easy task to synthesize NPs with 

desired characteristics. It is a time-consuming and difficult 

task that needs a real investment of time, funds, and 

resources. Green synthesis of NPs also has its importance 

(Ghaffar et al., 2024) as it uses plants, fungi, bacteria, and 

algae as raw material which represent renewable resources. 

NPs can be synthesized with various shapes, sizes, 

surface charges, colors, appearances, surface 

morphologies, and stability depending upon their method 

of synthesis and other physical factors involved. The 

practical application of any NP is directly related to its 

characteristics as described above. If these characteristics 

of NPs are not properly controlled and understood, their 

application may not be successful. Therefore, their 

application in the field may be prohibited by the 

regulatory authorities even if they have shown promising 

effects on plant growth and yield. The investment of 

money and time is wasted for such projects. Here, AI 

plays its role by effectively predicting the characteristics 

of NPs on the targeted application with smart tools and 

modeling. These tools inform which method with which 

conditions and with which raw materials can be used to 

get the NPs of desired characteristics.  

AI tools and ML tools can efficiently tune the 

parameters of the synthesis process for NPs. AI algorithms 

can also predict the interactions of these parameters. AI can 

suggest new materials and chemicals for NP synthesis and 

can present high-throughput experimentation for an 

optimized method out of a thousand possible testing 

combinations. This can minimize waste and save time and 

resources. Real-time data acquisition system of AI can find 

the faulty step of synthesis at once and can further 

modulate the process to achieve accuracy. Even properties 

of NPs can be tailored by pattern recognition and predictive 

modeling of the NPs synthesis methods (Reineck et al., 

2019; Desai et al., 2023). Furthermore, AI-based tools can 

analyze experimental data to optimize synthesis parameters 

(temperature, pressure, and reactant concentrations) 

quickly (Mikolajczyk & Falkowski, 2022), thereby 

ensuring the production of precise NPs with effective 

interactions in plant systems. Some of the AI tools that 

have applications in nanobotany are summarized (Table 1). 

 

AI-driven control of NP characteristics for targeted 

delivery: Plants are of different types according to their 

environment including halophytes, mesophytes, xerophytes, 

and hydrophytes. They have specific characteristics, 

metabolism, and physiology depending upon the type of 

plants. They have their pattern of stomatal opening, leaf 

structure, stem morphology, and root development, etc. They 

also need a varied amount of water, nutrients, and other 

things. Plants need nutrients that are supplied in the form of 

fertilizers (Pandey, 2018). Owing to the health hazards of 

chemical fertilizers, the use of nano-fertilizers in the form of 

NPs is considered a better and economic option for farmers. 

As plants have various morphologies, the compatibility of 

NPs with plant morphologies and uptake mechanisms is 

crucial for the desired outcomes (Colipano & Cagasan, 

2022). The mode of application of NPs should determine the 

interaction between plant receptor sites and NPs. This 

interaction should be strong enough that NPs are not released 

into the environment unnecessarily (Khan et al., 2019). For 

example, the smallest size NPs can have more efficient 

access to the targeted sites in plants (Gaumet et al., 2008). 

Sometimes, individual NPs can’t perform targeted functions, 

like providing nitrogen to plants nanohybrid of urea and 

hydroxyapatite was prepared (Kottegoda et al., 2017). For 

some NPs, proper encapsulation can guarantee the 

controlled release of the NPs at targeted sites at required time 

intervals. NPs furnished with nanobarcodes and nanosensors 

can work more precisely to identify the target and ensure the 

precise delivery of nano-emulsions, i.e., also a type of 

nanoencapsulation (Periakaruppan et al., 2023; Zain et al., 

2023). This compatibility can only be achieved with the 

required characteristics of NPs including, shape, surface 

charge, and size, etc. Adaptive feedback systems can adjust 

nanoparticle characteristics dynamically, ensuring optimal 

performance in response to changing conditions. AI tools 

with real-time monitoring can enable us to understand the 

behavior of NPs outside and inside the plants and can make 

the technology more viable for large-scale agricultural use. 

Even AI modelling can predict different encapsulation for 

NPs (Grillo et al., 2021; Zhang et al., 2021; Mikolajczyk & 

Falkowski, 2022). 

Table 1. Use of AI algorithms in nanobotany. 

Sr. # AI Algorithms Main usage Reference 

1. 

Quantitative Structure-

Property/Characteristic relationship 

(QSPCR)  

Used to predict the optimized method for the synthesis of 

nanotubes of titanium oxide 

Mikolajczyk and 

Falkowski, (2022) 

2. Decision Trees 
ML tools that can be used to determine the possible physical 

characteristics of formed NPs  
Desai et al., 2023 

3. Random Forests  
ML tools that can be used to determine the possible physical 

characteristics of formed NPs  
Desai et al., 2023 

4. 
Variational Autoencoders 

(VAE)  
Are used to analyze TEM datasets 

Wen et al., 2021; 

Wang et al., 2024 

5. 
Convolutional Neural Networks 

(CNN): 

This algorithm is used to analyze electron microscopy images and 

nanoscale pattern 
Zheng et al., 2023 

6. Recurrent Neural Networks (RNN) 
This is used in molecular simulations or to analyze the time-series 

data from nanosensors 
Loukil et al., 2024 

7. 
Generative Adversarial Networks 

(GANs) 
Help generate synthetic nanoscale images 

Pronin & Volosova, 

2023 

8. Particle Swarm Optimization (PSO) 
These are used in nanoscale circuit optimization for nanophotonic 

design 
Yan et al., 2020 

9. K-Means Clustering Applied to study features of size and shape of NPs Khan et al., 2024 
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Furthermore, AI algorithms can analyze a vaster 

dataset to correlate the characteristics of NPs and their 

delivery efficiencies. Plant scientists and nano-botanists 

can anticipate the structure and function of NPs and predict 

the required modifications at the surface of NPs to make 

their delivery to the plant surface more efficiently (Grillo 

et al., 2021). AI can well predict the optimal ligands for 

NPs to improve their interaction with plants. These AI tools 

may include molecular modeling, molecular simulation, 

and data-driven ligand selection. Very unconventional 

ligands can be predicted by AI tools that may not be 

possible for the human mind. These tools can even learn 

with time and improve the NPs-ligand interactions (Di 

Filippo & Cavasotto, 2022.). 
 

Case studies and real-world applications: A significant 

work was reported by Ji et al., (2021) in which they 

prepared a nano-conjugate of pesticide and fertilizer 

(named PFAC). Their main aim was to decrease the weeds 

from fields and to increase the production of the main crop. 

The application of this PFAC material in the fields was 

monitored by NIR (Near Infrared radiation). Results 

showed that weeds suppression started just two hours after 

application of PFAC. It is a good example of combining 

nanobotany, agriculture, and AI tools. AI tools made it 

possible to get feedback in real-time.  

Another example of customized use of NPs and AI for 

optimizing the NPs’ interaction with plants was reported by 

Kottegoda et al., (2017) a nanohybrid of urea-HA was 

applied to rice fields, and a comparison was made with 

simple urea in providing nitrogen to rice plants. Real-time 

data proved that the nanohybrid of urea was more efficient. 

Varsou et al., (2019) developed a safe-by-design 

computational system for the characterization of NPs. This 

computational system is economical, robust, and user-

friendly for constructing and categorizing NPs. Li et al., 

(2024) employed an artificial neural network program to 

monitor the benefits and drawbacks of Se NPs on Oryza 

sativa. Their study detected the bioavailability and 

adaptive adjustments in nanoparticle properties to ensure 

optimal performance and responsiveness towards the plant 

environment. Deng et al. (2023) tested these models and 

successfully forecasted responses in beans, Triticum 

aestivum, and corn by applying NPs at different 

topographies. This predictive capability can aid in 

designing NPs that align with the physiological and 

biochemical features of plants, improving their overall 

effectiveness. TiO2 nanotubes can transform carbon dioxide 

(a contributor to the greenhouse effect) into harmless 

components, ensuring environmental safety (Mikolajczyk 

& Falkowski, 2022). 
 

Environmental and health considerations: AI-driven 

optimization minimizes the quantity of NPs required for 

effective delivery. This reduction not only enhances 

efficiency but also contributes in minimizing the potential 

environmental impact associated with nanoparticle 

applications in agriculture. All these points are important 

to consider as these NPs may not be compatible with the 

environment and food chain for a longer duration. These 

NPs may not be good for soil microbes, thus disturbing the 

soil biome (Tian et al., 2019; Hofmann et al., 2020). If NPs 

are sustained by plant parts, these may cause health hazards 

to humans and other consumers. Therefore, comprehensive 

programming is needed to determine the quantitative and 

qualitative attributes of NPs before they can be used in the 

field applications to increase their reliability (Tian et al., 

2019). AI and ML facilitate the integration of nanoparticle-

based solutions with existing agricultural practices. This 

includes considerations of application methods, timing, 

and dosage to maximize the benefits of nanoparticle 

delivery in plants (Mani et al., 2025).  

 

AI-Driven use of NPs in disease and pest management: 

AI is incorporated into precision farming by providing 

digital elucidations of crop-related issues to decrease 

disease risk. AI-based tools (satellites, aircraft, drones, 

nanobots) facilitate precision farming via disease detection 

at very early stages. Nanobots contain sensors and GPS 

(Global Positioning System) and GIS (Geographic 

Information System) facilitated with data collection, 

monitoring, and analysis software. These systems aid in 

risk management of diseases and pests. The sensors and 

software assist in visualizing data in the form of pictures, 

plots, and graphs. The extent of the graphical plots 

represents the intensity and severity of various 

environmental factors, soil conditions, and pest attack. 

 
AI-Enhanced early detection of plant diseases via 
nanobots: Aerial photographs of field crops by satellites 
and aircraft are quite expensive, and the quality of pictures 
can be affected by unpredictable weather conditions 
(Dawod & Dobre, 2022). The use of AI-based drones and 
nanobots (̴̴̴̴ 1--100 nm) is a feasible and economical 
approach for the early detection of plant diseases. This 
approach involves taking, monitoring, and evaluating 
photographs to detect stress and chance of disease spread 
(Radoglou et al., 2020). 

Nutrient content and soil topography vary from region 

to region. Imbalanced soil nutrient levels can induce 

abiotic stress and cause various symptoms. For example, 

nutrient deficiency of nitrogen and magnesium may 

decrease the chlorophyll content and cause yellowing of 

leaves, contributing to a decrease in crop yield. Similarly, 

plant pathogens (fungi, bacteria, viruses, insects, and 

weeds) also destroy crops. Nanobots equipped with 

thermal, multispectral, and hyperspectral sensors can 

detect soil edaphic factors (type, structure, texture, pH, salt, 

water, nutrient, and heavy metal contents), thereby 

facilitating the detection of possible risks of plant health 

and diseases. Sensors establish temporal, spatial, and 

spectral evidence and can differentiate between pest attacks 

or nutrient deficiency (Xue & Su, 2017). Sensors should 

contain high-resolution cameras for clear images (Kiobia 

et al., 2023). There are also thermal sensors which perceive 

weather conditions, including cold, warm, precipitation, 

dampness, and air flow. The spectral sensors employed by 

the NDVI (Normalized Difference Vegetation Index) 

indices can detect crop cover, health, disease and pest 

vulnerability (Dawod & Dobre, 2022). 
 

Targeted delivery of pesticides and biocontrol agents: 

Sensors in nanobots can detect environmental parameters 

(temperature, humidity, light, and pollutants), as well as soil 

water and nutrient contents. The GPS provides the exact 

location of the affected area. The GIS system is accompanied 
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by versatile software to process data in numerical form. The 

NDVI system is based on remote sensing and satellite 

imagery to determine health and plant biomass in certain 

zones (Dawod & Dobre, 2022). The NDVI provides a 

graphical representation of the vegetation cover of a 

particular region. This method aids in the calculation of the 

desired number of pesticides, fertilizers, or other biocontrol 

agents along with their targeted delivery to affected areas. 

VRA (variable rate application) is a commonly used 

technology to detect the presence of pests or plant diseases as 

well as edaphic factors by incorporating maps, and GPS, or 

sensors (Radoglou et al., 2020). Sensors detect information, 

process and analyze the information via algorithm software. 

Then they make decisions about suitable types and quantities 

of pest and disease control agents, depending upon plant and 

soil needs. VRA technology (equipped with spraying 

machinery) contributes to the target delivery of chemical and 

biocontrol agents to susceptible zones. Targeted delivery 

systems are restricted to affected regions, thereby decreasing 

the use of pesticide. Therefore, an AI-assisted targeted 

delivery system for synthetic and biocontrol agents is an eco-

friendly approach with minimal health hazards. 

AI-based data-driven strategies involve combinations 

of various technologies for optimal pest management. 

Among AI-based strategies, sensor networks involve the 

installation of sensors in agricultural fields to monitor 

environmental conditions and the presence of pests. CNN 

(Convolutional Neural Network) algorithms can process, 

analyze, and classify data to provide real-time insights, 

helping farmers make informed decisions. Customized 

versions of CNNs, including ResNet34, Signets, FSL, and 

SSD, can precisely identify and classify cotton pathogens 

(Kiobia et al., 2023). 
Satellite imagery and remote sensing detect changes in 

crop health and identify potential pest infestations based on 
vegetation indices like NDVI, SR (Simple Ratio), NLI 
(Non-Linear Index), RDVI (Renormalized Difference 
Vegetation Index), and MSR (Modified Simple Ratio). 
Satellite sensors obtain data as spectral images (depending 
upon wavelengths absorbed and reflected by crops). 
Remote sensing considers three light spectra, i.e., UV, 
visible, and NIR. AI algorithms can process large datasets 
to calculate vegetation indices quickly. Then these 
calculated vegetation indices are used to determine specific 
vegetation properties (Xue & Su, 2017), enabling early 
disease detection by pathogens and targeted interventions. 

Machine learning models utilize historical and real-

time data to forecast pest outbreaks. These models can 

consider various factors, including weather patterns, crop 

types, and pest life cycles. Therefore, they can make 

accurate predictions for vegetation status. Plant nutritional 

deficiencies and the impact of abiotic stressors can also be 

analyzed via machine learning models. The Densenet-201 

model provides the optimum results (96% perfection rate) 

concerning nutrient status in corn (Ramos et al., 2023). 

Another study used the GoogLeNet cellphone app. It is a 

suitable tool for pest identification with a 94% perfection 

rate (Yulita et al., 2023). Remote sensing combined with 

machine learning can identify pathogens and monitor 

vegetation. In this context, the 12-band model furnished 

better results than did the NDVI-based satellite imagery 

system (Lozano et al., 2023). Robotic and drone 

technologies equipped with AI algorithms and spraying 

machinery ensure the monitoring and targeted delivery of 

pest control agents (Radoglou et al., 2020). These 

technologies can cover large areas quickly and precisely to 

intervene when needed. 

Research has revealed the development and applications 

of nanosensors in precision farming (Romanovski et al., 

2023). Sensors are extensively used as smart traps and 

monitoring devices in agriculture to identify and quantify pest 

populations. Data from these sensors can guide farmers to 

apply control measures where and when needed. 

Hyperspectral and multispectral imagery, along with machine 

learning algorithms, e.g., PLSR (Partial Least Squares 

Regression) and SVR (Support Vector Regression), are used 

to quantify the compositional parameters of stored apples 

against pest attack (Khaled et al., 2023). AI, along with IoT 

(Internet of things) tools, identifies pathogens with 98% 

precision (Kiobia et al., 2023). Nanobarcodes are used to 

detect health and disease status as well as the productivity of 

vegetation. Coupling barcodes with Global Positioning 

Systems (GPS) is under investigation for the detection of 

pathogens and screening of crops (Periakaruppan et al., 2023). 

There is another study, where nanosensors are used to 

monitor the response of plants to hydrogen peroxide 

application. Nanosensors were sensitive to changes in 

foliage cells. Plants secrete some defensive metabolites, 

helping plants to avoid pests that can be detected (Johnson 

et al., 2021). In such situations, AI tools gather data from 

soil sensors, weather stations, and pest monitoring devices 

and then process the integrated data for integrated pest 

management (IPM) (Ivezic et al., 2023). One example is 

automated Decision Support Systems (DSSs), including a 

machine learning system, that robustly recommended 

specific pest management strategies (Yulita et al., 2023). 

 

Genetic manipulation and engineering: Advancements in 

biotechnology have led to various treatments for human 

diseases. One suitable option is gene therapy. Commonly 

utilized gene therapy techniques include nucleases 

(activators), zinc nucleases, and certain short sequences 

associated with protein systems known as CRISPR. However, 

the successful delivery of edited sequences to targeted cells is 

quite challenging. In this context, nanotechnology provides an 

efficient solution for effective drug delivery to target sites. 

These NPs improve gene therapy, protect target genes from 

degradation and stabilize DNA. Moreover, porous NPs, gold 

NPs, lipid-based, and polymer NPs are commonly utilized for 

gene therapy (Hu et al., 2023). 

 
AI-optimized gene delivery and editing through 

nanobots: The introduction of normal genetic material to 
diseased cells is known as gene therapy to improve their 
health. This approach is essential for genetic modification, 
although it is a difficult task in medical research. The 
techniques of gene editing can modify genomes by 
inserting, deleting, or replacing a DNA sequence at the 
position of interest. Gene editing can precisely alter the 
DNA sequences targeted in the living cells (Khalil 2020). 
The most advanced types of gene editing are CRISPR/Cas-
associated nuclease (CRISPR/Cas9), Transcription 
activator-like effector nucleases, and zinc finger nucleases. 
These can be employed to address mutations that are 
disease-causing, can knock out genes, and can insert new 
genes, thus helping cells fight against disease, or get rid of 
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it. Integration of AI with gene editing techniques like 
CRISPR/Cas9 can revolutionize healthcare. For example, 
AI models can identify the cancer subtypes, and Gene 
editing can disrupt those oncogenes. AI models can also be 
used to design guide ribonucleic acid (gRNAs) for 
CRISPR/Cas systems. AI tools not only design gRNA but 
also predict the effects of gene editing on the function of 
the gene and the resultant cell phenotype. Moreover, as the 
understanding of the genetic process evolves, the model 
can be updated with more continuous feedback loops (Dixit 
et al., 2024). In plants, this combination of AI and gene 
editing tools can produce better crops with desired traits in 
less time. For example, in tomato, AI models have 
optimized and predicted mutations in fruit ripening genes, 
leading to improved shelf life and taste (Liu et al., 2024). 
Similarly in rice, salt tolerance genes have been predicted 
by AI models. Thus, guiding the gene editing to improve 
rice yield in saline soils (Sheng et al., 2023). 

 

Ethical considerations in genetic nanobotany enhanced by 

AI: Although NPs play many beneficial roles in medicine, 

agriculture, and other fields, but there are certain limitations. 

The efficacy of NPs mainly depends on engineering 

methodologies and NP formation. In agroecosystems, NP 

bioconjugation, design, and surface variation are also 

important factors. All these properties of NPs are essential for 

determining their behavior in genetic nanotechnology. There 

are still many problems faced in this regard. As an example, 

regardless of the current developments in the bioconjugation 

of NPs, better techniques are required to attain reasonable 

reproducibility, robust surface coatings, and functionalization 

and bioconjugation techniques due to the complex surface 

chemistry of NPs. Furthermore, the precise gene editing tool 

in crops, CRISPR-Cas9 has the potential to improve 

nutritional quality, yield, and stress tolerance. Nevertheless, it 

has several drawbacks and moral dilemmas. In theory, off-

target effects from CRISPR could result in unexpected 

mutations that alter other characteristics or impair plant 

function. Inconsistent phenotypes can also arise from 

mosaicism, in which all plant cells are not altered uniformly. 

Regenerating entire plants from modified cells is frequently 

ineffective, and delivering CRISPR components into plant 

cells is still difficult, particularly in complex or resistant crops 

like wheat and maize.  

The ethical classification of CRISPR-edited crops as 

genetically modified organisms (GMOs) is a topic of 

continuous discussion because it affects both public and 

regulatory acceptance. Concern is increased by the possible 

ecological hazards, such as decreased biodiversity or the 

unintentional flow of genes to wild relatives. Furthermore, 

smallholder farmers' access to CRISPR technology may be 

restricted by intellectual property rights, leading to 

disparities in agricultural innovation. The sustainable use 

of CRISPR in crop improvement depends on careful 

evaluation and responsible use because the long-term 

effects on ecosystems and food systems are still unknown 

(Ahmad et al., 2021). 

 

Advancements in precision agriculture through genetic 

nanobotany applications: Traditional methods of genetic 

engineering have many drawbacks in agriculture, such as 

ineffectiveness, damage to the plant cell wall, and 

nonsignificant gene expression. Various techniques, such 

as microprojection, Agrobacterium-mediated 

transformation, and vectors, are typical methods for gene 

delivery. Furthermore, these conventional techniques of 

genetic engineering cause problems after integration into 

the host cell. These may include a narrow range of hosts, 

fertility problems in plants, and post-modification 

regeneration (Demirer et al., 2017; Nandy et al., 2020). 

Additionally, they are not versatile for utilization. 

However, NPs have remarkable properties in precision 

agriculture because of their versatility, small size, easy-to-

use nature, and high success rate. The NPs are bound with 

genomes and transferred to the host cells with minimal loss 

or problems in the plants. NPs also act as genetic carriers 

by crossing barriers such as the cell wall owing to their 

small size. NPs as nanocarriers effectively protect DNA 

from nucleases. Additionally, it efficiently transfers genetic 

material to the nuclease without disturbing the cell. For 

example, silica and gold NPs actively transfer genetic 

material inside plant cells (Torney et al., 2007). Moreover, 

titanium NPs are also taken up by plant cells, and genetic 

material is transferred to the plants. 

Modern techniques involving visualization, cellular 

differentiation, and gene delivery are utilized for NP 

applications. Due to the visualization factors 

(fluorescence) of the NPs, the genes delivered to the plant 

cell can be detected. Furthermore, many inorganic NPs act 

as synthetic vectors that offer various advantages over 

conventional lipid-based vehicles, including tunable size 

and surface characteristics, multifunctional abilities, and 

the ability to translate the physical characteristics of the 

metal core to the delivery vector (Arsianti et al., 2010). 
 

Precision farming and environmental monitoring: 

Currently, we find ourselves at the initial phase of a 

burgeoning agricultural revolution marked by data-

intensive methodologies (Jonathan et al., 2023). This 

revolution employs machinery at every stage of the 

agricultural process, encompassing diagnosis, decision-

making, and execution. Human involvement is relegated 

primarily to monitoring and maintenance only. In addition 

to the evolutionary changes brought about by past 

industrial revolutions in agriculture, the ongoing fourth 

industrial revolution is playing a pivotal role, giving rise to 

what is now termed Agriculture 4.0. This emerging 

discipline is distinguished by data-centric management, the 

integration of new tool-based production methods, an 

emphasis on sustainability and professionalization, and a 

concerted effort to reduce the environmental impact of 

farming through the incorporation of modern smart 

technologies (Walter et al., 2017). These technologies 

include robot technology, drones, big data, AI, computer 

vision, 5G, cloud computing, the IoT, and blockchain 

technology (Javaid et al., 2022), collectively contributing 

to more autonomous and intelligent agricultural production 

systems (Shaikh et al., 2022). Consequently, new trends, 

such as precision agriculture, are evolving, introducing 

enhanced capabilities to smart farming practices. 

Version 3.0 and 4.0 of agriculture are the two phases 

of agricultural evolution, each having its specific 

technology, practices, data, and innovations. These two 

phases can be differentiated from the mentioned (Table 2). 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.663849/full#B53
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.663849/full#B175
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Table 2. Comparison of Agriculture revolution version 3.0 and 4.0. 

Feature 
Agriculture 

References 
3.0 4.0 

Time period 
Late 20th to early 21st century, also 

known as precision agriculture 

Mid 2010 to present also called as digital 

agriculture or smart agriculture 

Rahmann et al., 2017; Liu et 

al., 2020; Silva et al., 2020; 

Araújo et al., 2021; 

Aggarwal & Verma, 2022 

Data techniques 

Limited data 

Mainly depend upon local 

information and machines 

Extensive data 

Cloud based, integrated from many sources, 

and real time data 

Key technologies GIS, VRT, GPS, mechanization Big data, robotics, blockchain, IOT, AI 

Automation level 

(AL) and Decision 

making (DM) 

AL is partial 

DM is based on experience 

AL is high 

DM is AI-driven, predictive 

Farm management Site specific Fully integrated 

Internet involvement Minimal Critical 
 

Human involvement Main Factor Minimal 

 

Big data: Precision agriculture relies on extensive data 

and information, akin to the datasets used by major 

industries for predicting customer behavior. In agriculture, 

big data analytics, which employs tools such as data 

mining, AI, and predictive analytics, plays a pivotal role 

in decoding data-intensive processes for informed 

decision-making. These analytics operate on vast datasets, 

utilizing technologies such as machine learning, cloud 

computing, image processing, and GIS to identify patterns 

and trends. Such insights assist farmers in navigating risks 

and challenges. The integration of data in agricultural 

production enhances traceability and elevates product 

quality, meeting the rising consumer demand for 

ecologically mindful products. However, challenges 

persist, including data updating, device security, accuracy, 

availability, and encryption. Addressing these issues is 

crucial, as invalid data can lead to costly and disruptive 

decisions for farmers (Bhat & Huang, 2021). 

But in the case of developing countries like Pakistan, 

there are many limitations regarding the use of Big Data. 

One of the main reasons is the low literacy levels in digital 

data. Small-level farmers don’t have the finance and 

literacy abilities to effectively use data-driven insights. 

They also don’t have access to digital infrastructure due to 

the higher cost of precision agriculture tools and services. 

In the real world, there are many institutional issues in 

making farming policies. These include inadequate policy 

support, weak extension services, and limited public-

private collaborations. It is crucial to address these 

constraints for equitable technological advancements in 

agriculture across the globe (Kamilaris et al., 2017; Wolfert 

et al., 2017; Soto et al., 2019). 

 

Machine vision technology: Precise and accurate data 

are fundamental to the success of precision agriculture. 

For example, a recent shift towards more reliable data 

sources, such as image analysis, compared with labor-

intensive methods (Jang et al., 2023). Machine vision 

(MV), also known as agro-vision or the 'eyes' of robots, 

uses pixel images to provide nondestructive, robust, and 

rapid monitoring of cultivation processes. MV systems 

empower machines with vision and judgment capabilities 

in image processing and data extraction. While MV 

technologies have been successful in various 

applications, such as crop species identification, stress 

detection, seed quality assessment, and weed and disease 

detection, but they are still in the prototype stage. 

Emerging deep learning (DL) techniques are now being 

integrated with machine learning (ML) technologies to 

develop intelligent robots capable of multispectral 

imagery analysis and real-time field variable rate 

applications (Punithavathi et al., 2023). Even commercial 

smartphones are becoming valuable tools for monitoring 

crop health and stress via MV systems, leveraging their 

widespread accessibility among the human population. 

But it also faces many challenges in its application in 

developing countries. These challenges include higher 

initial investment costs (for imaging software and 

hardware), lack of local technical expertise, lack of high-

quality data, limited access to high-speed internet, and lack 

of cloud computing infrastructure, etc. Without considering 

these barriers, it is impossible to accept and apply 

agriculture 4.0 (Kamilaris & Prenafetaboldu, 2018; Zhang 

& Kovacs, 2018; Shahhosseini et al., 2020). 

 

Internet of things (IOT): The Internet of Things (IoT) is 

a network of interconnected items and technologies, 

representing a crucial advancement in precision agriculture 

and smart farming. In agriculture, IoT architecture, 

including agricultural sensors with ICT (Information and 

Communication Technology), and UAVs (Unmanned 

Aerial Vehicles) facilitate data collection for precision 

agriculture. With advancements in communication 

technologies and wireless networks (5G, LoRaWAN, NB-

IoT, Sigfox, ZigBee, and Wi-Fi), the IoT's application has 

expanded to diverse fields, enabling real-time remote 

control, high-throughput phenotyping, and better coverage, 

bandwidth, connection density, and end-to-end latency 

(Shin et al., 2022). When integrated with cloud computing, 

the IoT contributes to smart farming across livestock 

monitoring, smart greenhouses, fishery management, and 

weather tracking. 

Precision agriculture benefits from various IoT 

sensors for collecting data on temperature, humidity, light 

intensity, and other factors, which are uploaded to cloud 

information support systems for management. The IoT also 

enhances ground and underground cognition through 

agricultural sensor nodes, autonomous farm vehicles, and 

mobile crowd sensing. 

In developing countries, there is a lack of Govt 

policies, experts, and digital infrastructure that hinders the 

conversion of IOT solutions to the local contexts. 
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Therefore, it ends in performance in diverse agro-climatic 

conditions (Ayaz et al., 2019; Boursianis et al., 2022). 

Despite these challenges, the IoT continues to play a 

pivotal role in revolutionizing agricultural operations, 

extending to areas such as cattle monitoring and weed 

detection through machine vision. Edge computing further 

facilitates real-time data transmission in IoT precision 

agriculture, reducing the data package size and leveraging 

smart technologies for improved convergence speed and 

task completion rates. Pioneering companies such as Cisco 

and Huawei contribute to shaping the landscape of edge 

computing within the IoT (Karunathilake et al., 2023). 

 

Artificial intelligence (AI), Machine learning (ML), and 

Deep learning (DL): AI plays a pivotal role in robotics and 

autonomous systems (RASs) and has seen significant 

development in the Internet of Things (IoT), contributing 

to continuous data streams in agriculture. Employing 

mining techniques, AI transforms agricultural data into 

meaningful information crucial for decision-making, 

especially in pest identification, disease detection, yield 

prediction, and fertilization plans. The potential of AI 

extends to reducing food wastage; improving production 

hygiene; and monitoring machines in various stages of 

agriculture, including the supply chain, production 

patterns, and soil, crops, and water management, as well as 

disease and pest control, to overcome challenges in 

conventional farming (Saranya et al., 2023). 

Machine learning (ML) and deep learning (DL) are 

sub-concepts of AI, with ML focusing on learning systems 

and algorithms for understanding data-intensive farming 

processes. DL, with its layers and nonlinear functions, 

addresses limitations in the practical implementation of 

robots, mobile terminals, and intelligent devices in modern 

agriculture. Machine learning algorithms integrated into 

mobile detection algorithms have improved detection 

methods, overcoming challenges in technology adaptation. 

These advancements have wide-ranging applications, 

including accurate fruit and pest detection, optimization, 

and prediction of complex conditions in plant tissue 

cultures and breeding processes. Despite challenges in 

processing speed and efficient information visualization 

systems for farmers dealing with big data, continuous 

research on big data, the IoT, ML, and DL holds great 

potential in providing accurate predictions for agriculture 

and identifying new opportunities (Alfred et al., 2021).  

AI applications in smart farming include soil 

management, crop management, disease management, 

weed control, and mobile expert systems for disease 

diagnosis and soil health analysis. The integration of AI 

with precision agriculture has formalized this approach, 

making it more scientifically grounded for optimal 

agricultural outputs. However, addressing experience gaps 

between AI specialists and farmers, ensuring accessibility, 

and addressing privacy protection issues with large datasets 

are essential for the further development of AI in 

agriculture (Liu et al., 2020). 

 

Guidance systems: Guidance systems leverage GPS 

technology to offer farmers real-time information on 

equipment and herd-grazing locations, facilitating 

optimized field operations such as planting, harvesting, 

and herding. Overcoming challenges such as limited 

satellites and poor signal strength, the introduction of the 

GNSS (Global Navigation Satellite System) has replaced 

labor-intensive farm operations with more efficient 

methods such as VRA (Variable Rate Application). 

GNSSs are pivotal for optimizing the effectiveness and 

efficiency of agricultural machinery, contributing to the 

emergence of commercialized agricultural machinery 

services. The trend of GNSS-enabled devices in fully 

automated steering of traction saves time, labor costs, and 

money, whereas precision agricultural robots and rovers 

rely on high-resolution navigation solutions. Studies 

integrating DL propagation models in GNSS with inertial 

navigation datasets have enhanced precision agriculture, 

exemplified by successful tests of electric seeders with 

optical fiber detection technology. The development of 

software-based farm management solutions for GIS 

encourages automation in data collection, analysis, 

supervision, storage, decision-making, and overall farm 

management (Du et al., 2023). 

But inconsistent satellite signal coverage, high-cost 

maintenance, lack of skilled operators, and weaker Govt 

supports are the main reasons for poor or nil adaptations of 

Guidance systems by farmers for precision agriculture 

(Mulla, 2013; Jat et al., 2016). 
 

Blockchain technology: Blockchain originally employed 

in cryptocurrency, is a decentralized and distributed 

database that maintains an ever-growing list of ordered 

records or blocks. This technology enhances data 

transparency, immutability, and reliability, fostering 

mutual trust in the supply chain. Introduced to precision 

agriculture, blockchain facilitates the integration of digital 

technologies, addressing challenges in smart farming, such 

as insufficient and insecure data-sharing infrastructure.  

It proves valuable in the "IoT applied Greenhouse 

Monitoring System," enabling remote monitoring and 

control of farm equipment. The nature of Blockchain is 

decentralized, anonymous, and secure systems that can 

provide security and privacy to address the issues of IOT. 

It’s the start of using Blockchain technology in agriculture, 

but it shows a promising future in providing a reliable, 

faster, and secure platform for monitoring agricultural 

fields. When we use it in the food supply chain, it becomes 

crucial for food safety concerns and fragmented 

information in the supply. Its programming can be useful 

in agricultural processes like energy consumption, 

irrigational water sharing, robot coalitions, autonomous 

UAVs, and labor integration (Kamilaris et al., 2021). 

 

Robotics and self-sustained autonomous systems 

(RASs): In natural farming practices, there are different 

sources of variation that make them quite uncertain. These 

variations and uncertainties can be well handled by the 

RASs, which are equipped with various sensors, actuators, 

and machine learning algorithms. RASs can promote 

autonomous farming which is an integration of robotics, 

drones, sensors, and remote sensing. These all facilitate 

planting, watering, spraying, harvesting, plucking, and 

weeding, etc. Thus, overall cost and labor is reduced (Liu 

et al., 2020; Monterio & Santos, 2022). 
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Further improvements in RAS systems can make it 

more efficient, accurate, autonomous, and precise in a 

dynamic agricultural environment. Present key uses of 

RASs in agriculture include 3D food printing, autonomous 

farming, automated husbandry, aerial monitoring, plant 

phenotyping, leaf peeling, selective spraying, and fruit 

counting, etc. Other than these, the use of auto-steered 

agricultural vehicles also uses RAS as these vehicles 

perform various field applications including planting, 

chemical applications, harvesting, tilling, and equipment 

positions. While doing so, these vehicles must avoid 

overlaps and skips (Liu et al., 2020; Hundal et al., 2023). 

This is a new system, but there are many limitations 

with its application in agriculture 4.0. These issues include 

scalability. Infrastructure and connectivity requirements, 

privacy concerns, integration challenges, and data 

immutability (Casino et al., 2019; Tripoli & Scmidhuber, 

2018; Duan et al., 2021). 
 

Artificial satellites, Unmanned aerial vehicles (UAVs), 

and Unmanned ground vehicles (UGVs): Artificial 

satellites, including American Landsat satellites, the 

European Sentinel-2 System, RapidEye constellation 

satellites, the GeoEye-1 system, and WorldView-3, 

contribute to remote sensing by generating multispectral 

data accessible from a distance. The deployment of 

intelligent remote-sensing satellites ensures 

comprehensive coverage for collecting agricultural 

information (Berger et al., 2023). Recent advancements in 

ubiquitous and affordable technologies such as drones, 

crews, and aircraft have allowed closer and more frequent 

ground-level image capture, enhancing detail and 

functionality (Fragassa et al., 2023). Unmanned ground 

vehicles (UGVs) play a role in acquiring high-resolution 

data for weed identification, selective pesticide spraying, 

soil analysis, and crop scouting. Scoring robots, including 

the Oz robot for mechanical weeding; the GUSS 

autonomous sprayer for spraying; the RowBot system for 

fertilization, mapping, and seeding; and VineRobots for 

vineyard management, achieve specific targets (Berger et 

al., 2023). Information derived from satellite, UAV, and 

UGV imagery is crucial in precision agriculture. They 

support vegetation patch identification, weed recognition, 

pest attack detection, environmental stress observation, 

and accurate classification via variable rate technology 

(VRT). In various agricultural disciplines, such as 

aquaculture, agroforestry, and forestry, imagery data plays 

a significant role, covering large areas for information 

gathering and reproducibility. Data from satellites, UAVs, 

and UGVs are complemented by detailed ground survey 

data processed with machine learning (ML) and deep 

learning (DL) algorithms to provide usable and 

meaningful information. 

Deforestation is monitored by remote sensing 

satellites and drones, where they can accurately and 

precisely classify plant types and species, thus surpassing 

other UAV and LiDAR data. Densities of forests and 

distribution of various tree types can be studied by using 

UAV data (Sentinel-2 NDV1 and RGB images). To 

monitor the large farmlands, use of drones, and other 

automated aircraft is increasing day by day as it is 

costeffective and quite helpful for providing precise 

information using multispectral cameras, hyperspectral 

sensors, and other advanced technologies (Ma et al., 2021; 

Tomaszewski & Kolakowski, 2023). 

 

Data collection and analysis: In the field of nanobotany, 

dynamic synergy exists with data collection and AI tools. 

This has become a very significant relationship with the 

passing days due to the increased research and increased 

data. AI tools can increase data credibility in several 

ways, including: 

 

A) Handling large and complex data sets 

B) Development of predictive models 

C) Optimization of experimental conditions 

D) Automated image analysis 

E) Enhancing precision in the synthesis and 

characterization of NPs 

F) Accelerating research through AI-driven simulations 

G) Integration of multiscale data 

 

Data collected by nanobots from plant systems are 

usually vast and complex datasets. It includes various 

studies, like the use of gold NPs for sensing arsenic 

accumulation in plant leaves, giving real-time data of plant 

responses. This dataset may include absorption, 

translocation, and storage of arsenic in plant tissues at 

different timings with different temperatures and soil 

conditions (Ulhassan et al., 2022). This approach can 

change how we understand plant biology and open new 

ways to explore and to study plants using nanobots. 

 

Challenges and ethical considerations for use of AI in 

NanoBotany: After looking into the details of positive 

impacts and uses of AI tools and algorithms, this 

fascinating world leads us to frontiers of promising 

results in plant sciences, nanobotany, and agriculture. 

This convergence of AI tools and nanobotany seems to be 

really promising to resolve the issue of food security and 

environmental concerns in the future. But this 

convergence has issues and challenges. Integration of AI 

tools into every system encompasses technical, ethical, 

and regulatory dimensions. This review article critically 

investigates both aspects of the picture, i.e., advantages 

and disadvantages (Fig. 2), and we can take advantage of 

these synergies only if we consider both aspects in 

designing and using AI techniques. Public acceptance of 

these AI tools is another problem related to the complex 

interaction of AI in life (Jha et al., 2019).  

Main ethical concerns regarding use of nanobots 

could be invasive surveillance. Thus, the privacy of 

individuals is compromised. AI-enabled nanobots can 

gather detailed information at nanoscale, thus raising 

concerns about unauthorized access to personal data 

(Schulte & Salamanca-Buentello, 2022). There may be 

some unintended results of nanobots usage, so how much 

autonomy should be granted to AI tools? It is a basic 

question of the scenario. Therefore, Human control and 

oversight are critical for its crucial use. Then there are 

environmental issues and concerns related to the life 

cycle, age, and sustainability of nanobots. There are 

ethical concerns in minimizing the environmental impact 

of AI and using sustainable approaches for AI-based 
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technologies. Addressing these ethical challenges is 

imperative to ensure the responsible development and 

deployment of AI-enhanced nanobots in various fields 

(Munoko et al., 2020; Brendel et al., 2021). Researchers 

and ethicists continue to explore and address these ethical 

concerns as the fields of nanotechnology and AI advance 

(Schicktanz et al., 2023). When such new technologies 

are introduced in society, there are several ethical, legal, 

and societal concerns. Therefore, there is a dire need to 

balance the advantages and concerns/limitations related 

to the use of AI tools in nanobotany and nanoagronomy. 

It’s the responsibility of the scientific community, policy 

makers, and the regulatory bodies to have a check and 

balance system for AI tools, including a regulatory 

framework, ethical deployment, etc. (Adefemi et al., 

2023; Cheng et al., 2021) to address the challenges faced 

due to the use of AI (Table 3). 

 

Limitations of AI in nanobotany: AI in combination 

with nanobotany can revolutionize agriculture. It enables 

the complex and intelligent design of the NPs, offers 

predictive modelling and decision making in plant 

systems based on databases. But several limitations still 

exist, one of the main challenges is the lack of large and 

high-quality datasets. Such data sets are the basic 

requirement of AI to make accurate predictions. In 

nanobotany, NP-plant interaction experimental data is 

still limited and inconsistent, reducing model reliability. 

Responses of plant systems are quite complex, and they 

variably respond to the applied NPs, making it difficult 

for AI models to predict accurately. Many AI models act 

as black boxes for nanobotany, having multiple roles but 

lacking main explanations. 

Additionally, integrating multidisciplinary data from 

plant physiology, genetics, biochemistry, and 

nanotechnology is also a computational and technical 

hurdle, making a wide gap between AI and real-world 

validation. It especially happens when lab-based models 

are shifted to field models. Various ethical issues also 

arise while using AI in controlling and manipulating plant 

systems at the intersection of AI, nanotechnology, and 

plant biology. It limits the progress and implementation 

of these emerging fields. 

 

 
 

Fig. 2. Issues related to the use of AI in Agriculture 4.0 related to Nanobotany. 
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Table 2. Addressing the AI challenges in the field of Nanobotany and Nano agronomy. 

Addressing the concerns 

1) Regulatory frameworks 

2) Privacy safeguards in data collection 

Botanists, nanotechnologists, and AI experts: teams that include botanists, 

nanotechnologists, computer scientists, and AI specialists to bring together expertise in 

plant biology, nanotechnology, and AI 

Educational programs for policymakers, industry professionals, and other stakeholders 

should be developed to enhance their understanding of the interdisciplinary nature of nano-

botany and its potential impact (Kusters et al., 2020) 

Privacy-preserving technologies such as differential privacy or homomorphic encryption. 

Establishing clear guidelines for data storage, access, and sharing, along with obtaining informed 

consent from stakeholders, will contribute to building trust and mitigating privacy risks 

Secure communication protocols 

The implementation of encrypted communication protocols protects information from 

unauthorized access and potential cyber threats. Employing state-of-the-art encryption 

algorithms and regularly updating security protocols will fortify the integrity of 

communication channels, assuring stakeholders that the data exchange in nanobotanies 

remains confidential and protected against external interference (Cheng et al., 2021). 

Ethical data usage and transparency 
Rules and policies about how data will be obtained, utilized, shared, and retained. Regular 

auditing and accountability standards can enhance the transparency of AI systems in nanobotany 

1) Environmental impact assessment 

2) Energy-efficient designs  

Evaluating the potential ecological consequences of deploying nanobots in plant systems 

ensures that any adverse effects on soil health, nontarget organisms, or broader ecosystems 

are identified and mitigated 

Good governess and sustainability 

Facilitate partnerships between academic researchers, industry players in nanotechnology 

and AI, and government agencies to combine resources and expertise 

Sustained funding models that support long-term interdisciplinary research in nanobotany, 

are advocated, recognizing that breakthroughs may require time and continuity 

Stakeholder engagement and education 

Engaging with all stakeholders, including the public, farmers, policymakers, and environmental 

organizations, is critical for addressing both privacy and environmental concerns. It is the 

responsibility of policymakers and environmental organizations, along with local governments, 

to provide educational resources to other stakeholders explaining the benefits, risks, and 

safeguards of AI in agriculture. Involving all stakeholders in the decision-making process and 

considering their perspectives in the development of regulations and guidelines enhances the 

overall acceptance of AI-driven nanobot applications 

To organize workshops and collaborative platforms that facilitate discussions and idea 

exchange among people from different disciplines, promoting a deeper understanding of 

each field's contributions to nanobotany 

To develop interdisciplinary educational programs that provide training in both 

nanotechnology and AI applications in botany, fostering a new generation of botanists with 

a holistic skill set 

Adherence to ethical standards 

Establishing and adhering to ethical standards in the research, development, and 

deployment of AI-driven nanobots is fundamental. Ethical considerations should extend 

beyond data privacy to encompass broader issues such as biodiversity preservation, 

ecosystem health, and equitable access to benefits. Regular ethical reviews involving 

interdisciplinary experts and external ethics committees can guide researchers and 

developers in navigating complex ethical dilemmas (Habbal et al., 2024) 

Joint research facilities for easy access  
Shared research facilities where botanists and nanotechnologists can work side by side 

should be established, enabling the seamless integration of nanobots into plant studies. 

 

Conclusion and Future prospects 

 

AI is inevitable in our lives now. It has a 

transformative role for the future of nanobotany. AI is 

going to revolutionize agricultural techniques and 

practices, and the concept of a global village in terms of 

botanical data will be accomplished. The collaborative 

approaches and interdisciplinary research outlined 

provide a roadmap for navigating complex challenges, 

ensuring the sustainable and responsible integration of 

nanobots and AI into our botanical pursuits. In this 

interdisciplinary work, the convergence of 

nanotechnology, AI, and plant sciences heralds a new era 

of scientific exploration and innovation with far-reaching 

implications for the future of our planet. Ethical issues 

and other concerns related to the use of AI in nanobotany 

can be addressed for future use by policymakers, 

scientists, and farmers. Conclusively, the ethical 

considerations in advancing nanobotany underscore the 

need for a conscientious balance between innovation and 

responsible governance, emphasizing transparency, 

stakeholder engagement, and adherence to ethical 

standards to ensure the ethical and sustainable evolution 

of this transformative field. In conclusion, AI will be a 

future catalyst for nano-botany, collectively ensuring 

food safety, environmental stability, crop tolerance to 

environmental stresses, and enhanced production of 

commercial plant metabolites in a controlled way. Key 

trends of this synergistic field will be precision in plant 

monitoring and growth, Smart nano elicitation for 

enhanced crop yields, AI-enhanced gene editing and plant 

breeding, Environmental monitoring and sustainability, 

nano pesticide and smart delivery systems, climate 

resilience, nanobiosnesors for plant research, automation 

in agriculture, and AI-guided nanotoxicology in plants, 

microbes and soil systems. 
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