# EVALUATION OF ARTHROSPIRA (SPIRULINA) PLATENSIS PRODUCTION TRAIT USING CPCHID OPERON

## HUI-NA ZHOU, YAN-GUANG XIE, ZHI-PING WANG<sup>\*</sup>, BIN SHAO, XIN-YING LIU, JIN-XIN YU AND ZI-YUAN CHEN

Institute of Nuclear-Agricultural Sciences, Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China

Corresponding author's e-mail: zhpwang@zju.edu.cn; Tel: +86-571-86971021; Fax: +86-571-86971421 \*\*\*

#### Abstract

Arthrospira (Spirulina) platensis is one of the most cultivated commercial microalgae. Many genotypes of A. platensis have been identified, while not all are suited for economic exploitation because of low productivity or poor vitality. The cpcHID (C-phycocyanin rod linker polypeptide H, I and D) operon encodes the phycobilisome linker peptides involved in the photosynthesis, and may directly correlate to the production trait. Here, ten strains of A. platensis with known production traits from traditional procedure were selected and characterized by cpcHID sequences. With the help of phylogenic analyses, three commercially cultivated strains with high growth yields were in evolutionarily close relationship forming a single cluster, while others with varying low growth yields formed the other cluster. Simultaneously, eight market products were also classified into the cluster with high growth yield. We thus gave the conclusion that production trait from traditional procedure is consistent with the cluster analysis of cpcHID sequence. Furthermore, the cluster-specific residues of CpcHID are revealed, and these residues may involve in the interaction with allophycocyanin or other functions. CpcD structure is predicted and modeled on the allophycocyanin-linker complex, showing the direct interaction between clusterspecific residues and chromophores. In comparison with normal tedious, time and labor-consuming procedure for evaluating the production trait, cluster analysis based on cpcHID sequences is undoubtedly a reasonable way to carry out the high throughout evaluation of this trait and discover new strains for mass production.

### Introduction

*Arthrospira*, previously called *Spirulina*, is the most widely exploited economic microalgae (Ciferri, 1983; Mosulishvili *et al.*, 2002). Because it's rich in protein contents, essential fatty acids, vitamins, minerals (Tokusoglu & Unal, 2003), and polysaccharides (Zhang *et al.*, 2010), *Arthrospira* was claimed to be an ideal food and dietary supplement in the 21<sup>st</sup> century by Food and Agriculture Organization. Recently, *Arthrospira* attracts more interests on its potential medical and biodiesel application (Khan *et al.*, 2005; Bermejo-Bescos *et al.*, 2008; Bachstetter *et al.*, 2010; Cheong *et al.*, 2010; Khola & Ghazala, 2012).

The typical morphology of *Arthrospira* is characterized by its regularly helical coiling or spirals, which have been used as important taxonomic criteria and in the rank of product quality (Lewin, 1980; Ciferri, 1983; Belay, 1997; Wang & Zhao, 2005). Many strains (genotypes) of *Arthrospira* have been identified while not all these strains are commercially exploitable due to their different productivities and qualities. Some common features have been found for the present commercial strains of *Arthrospira*, like the regular coiled helix, the blue-green color, high growth rate, and high adaptability to the shift of circumstances (Li & Wang, 2002; Muhling *et al.*, 2006). However, there was still not a high throughout method for evaluating production traits of various genotypes.

Baurain *et al.*, (2002) tried to discover the possible common phylogenic characters of the economical strains collected from market using ITS (internal transcribed spacer) analysis, while the result was amphibolous, possibly for the high conservation of ITS sequences below species level. Later, Yang *et al.*, (2006) indicated

the correlation between the phylogenic places and productivities of several A. platensis genotypes based on the analyses of their cpcHID (C-phycocyanin rod linker polypeptide H, I and D) operon. However, only limited strains and incomplete sequences were analyzed in the research, which undoubtedly attenuated the certainty of such a correlation. As a kind of ancient genes, cpcHID operon encodes the phycobilisome (PBS) rod linker peptides that are involved in the assembly and function of PBS (Pepper, 1998; Nomsawai et al., 1999; David et al., 2011). As the light harvesting machinery of cyanobacteria, any changes in PBS would affect the photosynthetic efficiency (Reuter et al., 1999) and thus affect the final productivity. The polymorphism of cpcHID may reflect the differences of productivities. Furthermore, cpcHID is more divergence among A. platensis strains compared with ITS and 16S rRNA (Scheldeman et al., 1999; Mao et al., 2001; Baurain et al., 2002; Ballot et al., 2004), which could supply more accurate information in phylogenic analysis for A. platenis genotypes.

#### Materials and Methods

**Organisms and market products:** The strains used in this study are listed in Table 1, and their morphologies are shown in Fig. 1. Regularly coiled ZJU0103, ZJU0104 and ZJU0105 were commercial strains widely cultivated in mass production. All strains were axenically and clonally cultivated in Zarrouk's medium (Zarrouk, 1966) in a thermostatic chamber with alternating 12 h illumination at 54 µmol photons  $m^{-2} \cdot s^{-1}$  and 12 h darkness. The cultivation temperature was 28°C under light and 20°C under darkness. The morphologies of filaments were observed under OLYMPUS CH-30 optical microscope. Other samples including eight market products are listed in Table 2.

| ZJU number <sup>a</sup> | Previous<br>number <sup>b</sup> | Source and obtained time      | Origin                  | The day of<br>straight filaments<br>observed | Average daily yield<br>(g·m <sup>-2</sup> ·d <sup>-1</sup> ) <sup>c</sup> | GenBank<br>accession<br>number |
|-------------------------|---------------------------------|-------------------------------|-------------------------|----------------------------------------------|---------------------------------------------------------------------------|--------------------------------|
| ZJU0101                 | Sp-1                            | Y. L. Mao, 1994               | Lake Texcoco,<br>Mexico |                                              | 5.25                                                                      | EF583825                       |
| ZJU0102                 | Sp-2                            | T. Q. Gu, 1994                | Lake Chad, Chad         | 105 <sup>th</sup>                            | 5.01                                                                      | EF583826                       |
| ZJU0103                 | Sp-3                            | Y. H. Wen, 1994               | Lake Chad, Chad         | 112 <sup>nd</sup>                            | 7.38                                                                      | EF583827                       |
| ZJU0104                 | Sp-4                            | J. L. Jiang, 1995             | Lake Chad, Chad         | -                                            | 7.12                                                                      | EF583828                       |
| ZJU0105                 | Sp-5                            | G. Y. Dong, 1995              | Unknown                 | -                                            | 6.94                                                                      | EF583830                       |
| ZJU0106                 | Sp-6                            | W. C. Du, 2002                | Unknown                 | -                                            | 4.76                                                                      | EF583829                       |
| ZJU0109/RH <sup>d</sup> | Sp-9                            | Obtained from ZJU0109/S, 2002 | Unkown                  |                                              | 2.81                                                                      | EF583833                       |
| ZJU0110                 | Sp-10                           | Q. J. Yan, 1996               | Unknown                 | 49 <sup>th</sup>                             | 4.84.                                                                     | EF583834                       |
| ZJU0111                 | Sp-11                           | W. D. Yi, 2002                | Unknown                 | 98 <sup>th</sup>                             | 6.16                                                                      | EF583841                       |
| ZJU0118                 | Sp-18                           | Jiangang Plant, 2004          | Lake Chad, Chad         | -                                            | 5.17                                                                      | EF583840                       |

Table 1. Location and growth features of A. platensis strains used in this study.

<sup>a</sup> ZJU=Culture Collection of Algae at Zhejiang University, Hangzhou, China.

<sup>b</sup> Used in our previous papers and GenBank records.

<sup>c</sup> the cultivation was conducted from April 10th of 2008 to November 10th of 2008 at Jiangang Microalgae Plant, Zhejiang, China. The average daily yield was the total dry powder mass divided by the pond area and culture days. The cultivation of ZJU0109/RH was terminated at the 91st day because its filaments were seriously shortened and straightened and very hard to harvest, while other 9 strains were cultivated for 245 days using continuous cultivation.

<sup>d</sup>Obtained from a reverse change of straight ZJU0109/S strain, which was a gift from Mr. W. C. Du (RH=revert to helical, S=straight).

| Samula      |                                                          | cpcHID analyses       |                                         |  |
|-------------|----------------------------------------------------------|-----------------------|-----------------------------------------|--|
| designation | Source                                                   | Cluster<br>assignment | Corresponding cpcHID<br>accessesion No. |  |
| MP1         | Shunchang Tianshun Spirulina Co., Ltd., China            | Cluster II            | EF583838                                |  |
| MP2         | Zhejiang Jiangshan Kangpu Biotechnology Co., Ltd., China | Cluster II            | JN792589                                |  |
| MP 3        | Yangzhou Kanghua Biotechnology Co., Ltd., China          | Cluster II            | EF583837                                |  |
| MP 4        | Hangzhou Jiangang Biotechnology Co., Ltd., China         | Cluster II            | EF583831                                |  |
| MP 5        | Guangdong By-Health Biotechnology Co., Ltd., China       | Cluster II            | EF583839                                |  |
| MP 6        | Ningbo Zhenhai Mingte Blue Algae Co., Ltd., China        | Cluster II            | JN792590                                |  |
| MP 7        | Ningbo Zhenhai Mingte Blue Algae Co., Ltd., China        | Cluster II            | EF583832                                |  |
| MP 8        | DIC Corporation, Japan                                   | Cluster II            | GQ206143                                |  |
| Strain C1   | Lake Bodou, Kanem, Chad                                  | Cluster I             | AF164139                                |  |

 Table 2. List of eight market products and strain C1 of A. platensis with the results obtained by sequences analyses of cpcHID.

MP: market products.

The condition and productivity of mass cultivation: The mass cultivation was conducted in a 300m<sup>2</sup> raceway pond covered with transparent plastic film at Jiangang Microalgae Plant, Zhejiang Province, China, with a media depth of 35 cm, and were circulated at a speed of 15m/min by means of paddle-wheels. A modified Zarrouk's medium was used in this large-scale cultivation, which contained 50g·m<sup>-3</sup> EDTA-Na<sub>2</sub>, 10 g·m<sup>-3</sup> FeSO<sub>4</sub>·7H<sub>2</sub>O, 20 g·m<sup>-3</sup> CaCl<sub>2</sub>·2H<sub>2</sub>O, 100 g·m<sup>-3</sup> MgSO<sub>4</sub>·7H<sub>2</sub>O, 1000 g·m<sup>-3</sup> NaCl, 500 g·m<sup>-3</sup> K<sub>2</sub>SO<sub>4</sub>, 200 g·m<sup>-3</sup> KCl, 1200 g·m<sup>-3</sup> NaNO<sub>3</sub>, 300 g·m<sup>-3</sup> K<sub>2</sub>HPO<sub>4</sub> and 6500 g·m<sup>-3</sup> NaHCO<sub>3</sub>. When the OD<sub>560</sub> of cultures was up to 0.9, filaments were harvested by pumping the cultures into a vibrating screen followed by filtering through a membrane of 62 µm. The filtrate was pumped back to the ponds, while the algal slurry was washed with drinking water and then applied to a spray-drier (SHEN2 GZL-100, China) to get the powder products. Harvesting was paused when the  $OD_{560}$  of cultures was down to 0.2 for a continuous cultivation, and nutrient concentration was adjusted to initial level. The productivity was shown as the average daily yield in table 1.

**PCR amplification of cpcHID operon:** The total DNAs of the ten strains listed in Table 1 were extracted separately according to the description of Li and Wang (Li & Wang, 2002), and were used for PCR. For the market products, the templates were prepared as previously described (Baurain *et al.*, 2002). PCR was performed in 25-µl reaction mixture by using forward primer PF (5'-CAATACATCTTCGCCGATTT-3') and reverse primer PR (5'-CGTATTATCGGTAGT CATC GG-3'). The PCR procedure was as follows: 94°C for 5 min, followed by 30 cycles of 94°C for 30 s, 58°C for 60 s, and 72°C for 2 min, plus a final extension at 72°C for 8 min.



Fig. 1. The morphologies of ten A. platensis strains. Scale bars, 100 µm.

**Sequence determination and analysis:** PCR products were purified from 1% agarose gel, and then were cloned into T-cloning site of pMD18-T vector (TaKaRa CO, Dalian, China) according to the manufacturer's instruction. Ligated plasmids were transformed into *Escherichia coli* TG1 competent cells, and transformants were selected on the LB/Amp<sup>+</sup> plate. Subsequently, plasmids from three recombinant colonies containing the amplified fragment were prepared by using a plasmid minipreparation kit (Qiagen CO, Beijing, China). DNA sequence was determined using an Applied Biosystems 3730 sequencer (Applied Biosystems, USA). The GenBank accession numbers of determined cpcHID sequences are listed in Table 1.

Sequences under investigation were aligned by ClustalX software (version 1.81). Phylogenetic and molecular analyses were undertaken by using the Molecular Evolutionary Genetics Analysis software (MEGA version 5.0) (http://www.megasoftware.net). Phylogenetic trees were constructed by using neighborjoining (NJ) method (Saitou & Nei, 1987). The robustness of the branching pattern was tested by bootstrap analyses through 1,000 replications.

**CpcD modeling with allophycocyanin:** Linker peptide CpcD from ZJU0103 showed 34% similarity with the core linker of allophycocyanin-linker complex  $AP \cdot L_C^{7.8}$  (pdb ID:

1B33). CpcD structure predicted using  $(PS)^2$  server (Chen *et al.*, 2006) superposed the linker chain in  $AP \cdot L_C^{7.8}$  to obtain a model of CpcD-allophycocyanin complex.

#### Results

**Morphological characteristics and product yields of** *A. platensis*: The appearances of 10 *A. platensis* strains were observed through optical microscope (Fig. 1). Strains ZJU0102 and ZJU0111 were fusiform-shaped with different helix pitch and trichome length. ZJU0106 showed the most tightly coiled trichomes, and ZJU0109/RH had the least degree of spiralization and longest filament. Other strains were in so-called regular spirals but showing various trichome lengths, helix diameters and helix pitches, except that the much more similar morphologies between ZJU0103 and ZJU0105, and between ZJU0101 and ZJU0110.

As listed in Table 1, after 245 days continuous cultivation, while 91 days for ZJU0109/RH, the ten strains could be divided into 4 classes according to their average daily yields. Commercial strains ZJU0103, ZJU0104 and ZJU0105 were in the first class with the highest daily yield of around  $7g \cdot m^{-2}$ ; the second class member of ZJU0111 showed a higher daily yield of 6.16g  $\cdot m^{-2}$ ; strain ZJU0109/RH was in the last class with the least daily yield of only 2.8g  $\cdot m^{-2}$ . Other 5 strains were

in the third class for their similar average daily yield of around  $5g \cdot m^{-2}$ . In agreement with above classification, morphological changes (straight filaments) that showed no competence to the helical trichomes were observed firstly in ZJU0109/RH and then in some strains belonging to the third class (Table 1). No shape changes were found in the first and second class members during the whole cultivation period.

**Phylogenic analysis of** *cpcHID* **sequences:** An alignment of the amplified complete *cpcHID* sequences were analyzed, and used for the construction of phylogenic tree. As shown in Fig. 2, the ten strains were mainly grouped into two clusters. Commercial strains ZJU0103, ZJU0104 and ZJU0105 were classified into one single cluster, named cluster II. The distances of other strains in cluster I were mostly consistent with above classification according to their growth yields. This indicated that some features may exist in *cpcHID* and could be used as an indicator for the productivity of *A. platensis* genotypes.



Fig. 2. Phylogenetic placements of ten *A. platensis* based on the analyses *cpcHID* sequences. Numbers around each node are confidence levels (%) generated from 1,000 bootstrap trees. The scale is in the units of the number of base differences per site.

The peptides alignment of CpcHID revealed several cluster-specific sites (Fig. 3). Here, 5 cluster-specific residues in CpcH, 6 in CpcI, and 3 in CpcD were observed to classify the strains into cluster I or cluster II. Nevertheless, more variables among the ten strains were also indicated by figure 3, which were useful to differentiate these strains.

**Cluster assignment of market products:** Eight market products of *A. platensis* named MP1-8 were collected with unknown genotypes, and their cpcHID sequences were determined. Except that the cpcHID sequences of MP2 and MP6 were new in GenBank, the cpcHID sequences of MP8, MP1, MP3, MP4, MP5 and MP7 were the same as that of NJ1999 and our laboratory strains Sp-16, Sp-15, Sp-7, Sp-17 and Sp-8 (table 2), respectively. Phylogenic analyses (Fig. 4) together with *A. platensis* strain C1 and samples in table 1 intriguingly assigned those market products, together with commercial strains in Fig. 2, into cluster II while strain C1 with known poor

vitality in cluster I. Further investigation of their CpcHID, the cluster-specific residues were also found in market products just as shown in Fig. 3. That is, cpcHID, especially some specific residues, does correlate to the productivity of *A. platensis*.

CpcD interacts with chromophores in allophycocyaninlinker complex of phycolibsome: We show the clusterspecific residues that may contribute to the various productivities between clusters. The cystal structure of allophycocyanin-linker complex (pdb 1B33), AP·L<sub>C</sub><sup>7.8</sup>, from phycobilisomes of Mastigocladus laminosus (Reuter et al., 1999) allowed us to see the exact interaction of linker and allophycocanin. The 34% similarity of linker in AP·L<sub>2</sub><sup>7</sup> (linker of M. laminosus) with CpcD of A. platensis supported a successful prediction of CpcD tertiary structure, and therefore modeled CpcD in the linker site of trimeric allophycocaynin core as shown in Fig. 5. Unlike the low sequence similarity, the predicted CpcD structure showed high structural similarity with the linker of *M. laminosus* consisting one  $\alpha$ -helix and three-stranded B-sheet in an elongated shape. Based on this model, the three cluster II specific residues lie in the surface of CpcD, while two of them, Ile27 and Gln60 are in the interface and interact directly with the allophycocaynin residues. Moreover, the two residues are in close contact with the chromophores by hydrogen bond (\deltaNH2 of Gln60 with OB of CYC) or by hydrophobic interaction (Ile27 with BLA). Obviously, Met27 and Arg60 substitutions in cluster I may interfere in their contacts with chromophores, and then may lead to some structure changes that affect energy transfer in phycobilisome.

#### Discussion

Mass cultivation is an important procedure in Arthrospira industry. First of all, productivity is the essential factor to be investigated. Traditionally, the production trait of any Arthrospira genotypes was obtained carefully examining their growth condition, hv physiological and growth characters, trichome shapes and color, productivity, etc., through the whole growth period with several repeats. We have observed and confirmed that ZJU0101, ZJU0102, ZJU0106, ZJU0110 and ZJU0118 showed not only low adaptability upon the shifts of environmental factors (such as temperature, light intensity and pH), but also high possibility of abnormal conversion of trichome structures. In addition, at the early growing stage from a clonal culture, these strains were in a yellowish-green color, and needed much more time to reach to the logarithmic growth phase. On the contrary, ZJU0103, ZJU0104 and ZJU0105, together with correspnded strains of MP1, MP3, MP4, MP5 and MP7 in Table 2, showed a high growth rate and better adaptability upon environmental shifts, and therefore are applied widely in mass cultivation. Another S. platensis strain C1 (Arthrospira sp. PCC 9438) is not applied to mass production for its very short trichomes and the high frequency of morphological structure change from helical to straight (Deshnium et al., 2000; Hongsthong et al., 2007). Considering the productivities shown in table 1 and the cluster II assignment of market products (Fig. 3), the intriguing consistency of production trait from traditional way with that from phylogenic analyses can be clearly concluded.



Fig. 3. The peptides alignment of CpcH, CpcI and CpcD for the ten *A. platensis* strains. Cluster-specific residues are shown at the bottom of alignment, and shading area showed the identical residues.



Fig. 4. Classification of A. platensis genotypes according to their cpcHID sequences.



Fig. 5. Predicted ZJU0103-CpcD structure (pink cartoon) modeled with allophycocyanin (grey tube) based on  $AP \cdot L_C^{7.8}$  crystal structure (pdb 1B33). Cluster-specific residues and chromophores (in green color) were shown in ball and stick; 127 and Q60 lay in the interface of linker and allophycocyanin, and directly contact with the chromophores of biliverdins IX alpha (BLA) and phycocyanobilin (CYC) respectively.

The close relationship in phylogeny of some strains used in mass cultivation has been vaguely indicated by 16S rRNA or ITS analyses previously (Baurain et al., 2002; Li & Wang, 2002). While the high-conserved character of 16S rRNA and ITS may limit the obtained phylogenic information of A. platensis genotypes. The cpcHID operon encodes the phycobilisome linker peptides CpcH, CpcI and CpcD, and shows more divergence among various genotypes of A. platensis (Yang et al., 2006). In this study, cpcHID were used to do cluster analyses, and cluster II members were confirmed to have high productivities in the first rank of production traits. As components of phycobilisomes, changes in the linker peptides may result in the changes of photosynthetic efficiency, and thus affect the final productivity. That is, using CpcHID to do production trait is reasonable.

The cluster-specific residues of CpcHID revealed here may relate to the key sites for the interaction with allophycocanin or other function. The tertiary structure of CpcD of ZJU0103 was predicted and modeled with allophycocanin. Based on present model, the cluster IIspecific residues of I27 and Q60 directly interact with allophycocyanin, while S36 is in random coiled region. Most importantly, I27 and Q60 are in close contact with chromophores, suggesting their possible effect in the energy transfer within phycobilisome. Linker peptides are known early involving in the modulation of the chromophores' spectral properties (Fuglistaller et al., 1987). Obviously, the consistency of productivity and cpcHID phylogeny is not just a coincidence; the inner mechanism and function of cluster specific residues are to be detected by more structural and biochemical experiments.

To evaluate production traits, phylogenic analysis is undoubtedly a high throughout way to save much more time from the traditional way, and could help discovering more strains for *Arthrospira* commercial culture facilities. Cluster II members should be in first choice when breeding candidates for mass cultivation. However, It must be pointed out that not all cluster I members are lack of economic values. For example, ZJU0111 is also applied to mass cultivation for its high  $\gamma$ -linolenic acid content.

#### Acknowledgements

The authors would like to thank all the persons who kindly provided the strains and products. This project was funded by National Natural Science Foundation of China (No. 30771669 and 10975118), "Application of Nuclear Techniques in High-efficient and Low-carbon Agriculture" from the Chinese Ministry of Agriculture (No. 201103007), and the Academician Foundation of Zhejiang Province (No. J20080388 and J20110445).

#### References

Bachstetter, A.D., J. Jernberg, A. Schlunk, J.L.Vila, C. Hudson, M.J. Cole, R.D. Shytle, J. Tan, P.R. Sanberg, C.D. Sanberg, C. Borlongan, Y. Kaneko, N. Tajiri, C. Gemma and P.C. Bickford. 2010. *Spirulina* promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. *PloS. One.*, 5(5): e10496.

- Ballot, A., P.K. Dadheech and L. Krienitz. 2004. Phylogenetic relationship of *Arthrospira*, *Phormidium*, and *Spirulina* strains from Kenyan and Indian waterbodies. *Algolog. Stud.*, 113: 37-56.
- Baurain, D., L. Renquin, S. Grubisic, P. Scheldeman, A. Belay and A. Wilmotte. 2002. Remarkable conservation of internally transcribed spacer sequences of *Arthrospira* ("Spirulina") (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from Africa. J. Phycol., 38: 383-393.
- Belay, A. 1997. Mass culture of *Spirulina* outdoors-the Earthrise farms experience. In: *Spirulina platensis (Arthrospira)*: *physiology, cell biology and biotechnology.* (Ed.): A. Vonshak, Taylor & Francis Publishers, London, pp. 131-158.
- Bermejo-Bescos, P., E. Pinero-Estrada and A.M. Villar del Fresno. 2008. Neuroprotection by *Spirulina platensis* protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. *Toxicol. In. Vitro*, 22(6): 1496-502.
- Chen, C.C., J.K. Hwang and J.M. Yang. 2006. (PS)2: protein structure prediction server. *Nucleic Acids Res.*, 34: W152-157.
- Cheong, S.H., M.Y. Kim, D.E. Sok, S.Y. Hwang, J.H. Kim, H.R. Kim, J.H. Lee, Y.B. Kim and M.R. Kim. 2010. *Spirulina* prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. *J. Nutr. Sci. Vitaminol. (Tokyo).*, 56(1): 34-40.
- Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev., 47(4): 551-578.
- David, L., A. Marx and N. Adir. 2011. High-resolution crystal structures of trimeric and rod phycocyanin. J. Mol. Biol., 405(1): 201-213.
- Deshnium, P., K. Paithoonrangsarid, A. Suphatrakul, D. Meesapyodsuk, M. Tanticharoen and S. Cheevadhanarak. 2000. Temperature-independent and dependent expression of desaturase genes in filamentous cyanobacterium *Spirulina platensis* strain C1 (Arthrospira sp. PCC 9438). *FEMS. Microbiol. Lett.*, 184(2): 207-213.
- Fuglistaller. P., M. Mimuro, F. Suter and H. Zuber. 1987. Allophycocyanin complexes of the phycobilisome from *Mastigocladus laminosus*. Influence of the linker polypeptide L<sup>8.9</sup><sub>C</sub> on the spectral properties of the phycobiliprotein subunits. *Biol. Chem. Hoppe Seyler.*, 368(4): 353-367.
- Hongsthong, A., M. Sirijuntarut, P. Prommeenate, S. Thammathorn, B. Bunnag, S. Cheevadhanarak and M. Tanticharoen. 2007. Revealing differentially expressed proteins in two morphological forms of *Spirulina platensis* by proteomic analysis. *Mol. Biotechnol.*, 36(2): 123-130.
- Khan, M., J.C. Shobha, I.K. Mohan, M.U. Naidu, C. Sundaram, S. Singh, P. Kuppusamy and V.K. Kutala. 2005. Protective effect of *Spirulina* against doxorubicin-induced cardiotoxicity. *Phytother. Res.*, 19(12): 1030-1037.
- Khola, G and B. Ghazala. 2012. Biodiesel production from algae. *Pak. J. Bot.*, 44(1): 379-381.
- Lewin, R.A. 1980. Uncoiled variants of *Spirulina platensis* (cyanophyceae: oscilltoriaceae). *Algolog. Stu.*, 26: 48-52.
- Li, J.N. and Z.P. Wang. 2002. Classification with RAPD marker in *Spirulina*. *Oceanol. Limnol. Sin.*, 33: 203-208.
- Mao, Y.X., G.P. Yang, B.H. Zhang and X.C. Zhang. 2001. Application of the sequences analysis of the 16S rRNA gene and ITS of 16S-23S rRNA to the systematic study of the genus *Arthrospira* and *Spirulina*. *High. Technol. Lett.*, 6: 12-18.
- Mosulishvili, L.M., E.I. Kirkesali, A.I. Belokobylsky, A.I. Khizanishvili, M.V. Frontasyeva, S.S. Pavlov and S.F. Gundorina. 2002. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae *Spirulina platensis. J. Pharmaceut. Biomed.*, 30(1): 87-97.

- Muhling, M., P.J. Somerfield, N. Harris, A. Belay and B.A. Whitton. 2006. Phenotypic analysis of Arthrospira (Spirulina) strains (cyanobacteria). Phycologia., 45: 148-157.
- Nomsawai, P., N.T. de Marsac, J.C. Thomas, M. Tanticharoen and S. Cheevadhanarak. 1999. Light regulation of phycobilisome structure and gene expression in *Spirulina platensis* C1 (*Arthrospira* sp. PCC9438). *Plant Cell Physiol.*, 40(12): 1194-1202.
- Pepper, A.E. 1998. Molecular evolution: old branches on the phytochrome family tree. *Curr. Biol.*, 8(4): R117-120.
- Reuter, W., G. Wiegand, R. Huber and M.E. Than. 1999. Structural analysis at 2.2Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.L<sub>C</sub><sup>7,8</sup>, from phycobilisomes of *Mastigocladus laminosus. Proc. Natl. Acad. Sci. U.S.A.*, 96(4): 1363-1368.
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.*, 4(4): 406-425.
- Scheldeman, P., D. Baurain, R. Bouhy, M. Scott, M. Muhling, B.A. Whitton, A. Belay and A. Wilmotte. 1999. Arthrospira ('Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the

internally transcribed spacer. FEMS. Microbiol. Lett., 172(2): 213-222.

- Tokusoglu, O. and M.K. Unal. 2003. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food. Sci., 68(4): 1144-1148.
- Wang, Z.P. and Y. Zhao. 2005. Morphological reversion of *Spirulina (Arthrospira) platensis* (cyanophyta): from linear to helical. J. Phycol., 40: 622-628.
- Yang, L.Y., Z.P. Wang, X.C. Cao, X.Y. Chen and B.J. Xu. 2006. cpc HID operon as a new tool for classification of and identification of *Arthrospira platensis* strains. *Acta. Microbiol. Sin.*, 46(6): 1003-1006.
- Zarrouk, G., 1966. Contrabution a l' etude d' une cyanophycee. Influence de diverse facteurs physiques et chimiques sur la croissance et la photosynthese de *Spirulina maxima* (Setch et Gardner) Geitler. Ph.D. dissertation Thesis, University of Paris, Paris.
- Zhang, P., Z. Wang, M. Xie, W. Nie and L. Huang. 2010. Detection of carbohydrates using a pre-column derivatization reagent 1-(4-isopropyl) phenyl-3-methyl-5pyrazolone by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B., 878(15-16): 1135-1144.

(Received for publication 9 June 2011)