ASSESSMENT OF MORPHOLOGICAL ATTRIBUTES OF DATE PALM ACCESSIONS OF DIVERSE AGRO-ECOLOGICAL ORIGIN

M. SALMAN HAIDER¹, IQRAR A. KHAN¹, M.J. JASKANI¹, SUMMAR A. NAQVI*¹, MANSOOR HAMEED², MUHAMMAD AZAM¹, ASIF A. KHAN³ AND JEAN C. PINTAUD⁴

¹Pomology Laboratory, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan; ²Taxonomy Laboratory, Department of Botany, University of Agriculture, Faisalabad, Pakistan; ³Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan; ⁴IRD, DIADE-DYNADIV, 911 AV. Agropolis, BP 64501, 34394 Montpellier Cedex 5, France. ^{*}Corresponding author: summarnaqvi@hotmail.com

Abstract

Sixteen Pakistani date palm cultivars from diverse origins were characterized morphologically to assess the similarity level, the overall point of polymorphism and important agronomic traits existing in the germplasm present in Pakistan. Forty two qualitative and quantitative features were explored and subjected to multivariate analyses. The results brought out important differences in phenotypic characters in all date palm cultivars. Principal component analysis (PCA) indicated that trunk length and diameter, total number of leaves, rachis length, leaflets length and width, number of leaflets per side, number of pinnae planes, length and grouping of spines were highly divergent. Similarly cluster analyses (CA) also revealed phenotypic diversity among date palm cultivars and, some close association or heterogeneity was also observed within cultivars of the same origin.

Key words: Date palm, Morphology, Multivariate analysis, PCA, CA.

Introduction

The date palm (Phoenix dactylifera L.) is an angiosperm, monocotyledonous and dioecious (2n=36) plant, engaged in the social and economic importance of the oasis ecosystem of Balochistan, Khyber Pakhtunkhwa (KPK), Irrigated plains and Suleman mountain pediments of Punjab; and plains and semi-desert like zones of Sindh, Pakistan (Markhand et al., 2010; Haider et al., 2013). Date industry is well adapted throughout the Pakistan with annual production of 70 thousand tons (Anon., 2012), contributing 10.3% of the total world production. Aseel, Dhakki, Begum Jungi and Koharba are among the most important native date palm cultivars and numerous other local cultivars are grown in different agro-ecological zones of Pakistan (Igbal et al., 2012). Farmers have denominated the cultivars on the basis of shape and color of the fruits or the presence of specific location (Ahmed et al., 2011). Along with this, the date palm is selected for cultivation on the basis of better fruit quality and post-harvest life. Each cultivar is obtained from the elite successor individual offspring or seed-based selection. Centered on the botanic interpretation, there are about 244 cultivars in Morocco, 250 in Tunisia, 370 in Iraq, 400 in Iran (Zaid & de Wet, 2002), 400 in Sudan (Osman, 1984), 325 in Pakistan (Botes & Zaid, 2002; Jamil et al., 2010) and along with surplus varieties in new date palm emergent states. About 5000 different date palm cultivars are known to present worldwide (Jaradat & Zaid, 2004).

The date palm develops a cylindrical, unbranched and large stem (10-20 m tall) marked with leaf scars, and generally produces basal suckers. The adult date palm has a crown of up to 100-125 green leaves with ca. 150 pinnae, and having acanthophylls on the petiole. Leaves, pinnae and acanthophylls vary in length depending on cultivars (Chao & Krueger, 2007). Only female trees yield fruits and fifty female trees can be pollinated manually by one male tree. The average period of date palm life may extend to over 100 years (Hashempour, 1999). Date fruit is a singleseeded oblong berry with fleshy mesocarp and membranous endocarp (Mansour, 2005).

The characterization of germplasm is of great importance for cultivar identification, conservation, utilization and advancement in fruit crops (Al-Moshileh et al., 2004; Mehmood et al., 2013). This characterization needs a generous set of phenotypic records that are sometimes problematic to measure as a result of sensitivity to the environmental influences (Rao, 2004) or vary with the progressive stages of the plant development. This important crop is threatened by genetic erosion, conversion of agricultural land, pest and diseases. Many studies have highlighted this concern, and used either molecular markers (Zehdi et al., 2005, 2012) or phenotypic data (Hammadi et al., 2009; Ahmed et al., 2011) to classify dissimilar date palm cultivars. The vegetative parameters are informative for description, phenotypic diversity and phylogenic relationship among date palm ecotypes.

In this study 16 different cultivars were selected from diverse ecological origins of Pakistan. The aim of the research was to describe the phenotypic diversity of Pakistani date palm cultivars, and assess similarity relationship for date breeding programs.

Material and methods

Plant material and measurements: There were 16 cultivars included in this study, coming from various origins and grown in diverse ecological conditions in Pakistan (Table 1). This study is based on the description of forty two (42) vegetative traits of the date palm, out of which 27 were measured traits (M1-M27) and 15 were visually observed traits (V1-V15) as described in Table 2. These characters have already been reported as a standard descriptor to characterize date palm (IPGRI, 2005; Rizk & Sharabasy, 2006, 2007). All measurements were performed in triplicate using measuring tape and different geometrical tools (protractor) to measure the angles.

Serial No.	Cultivars	Origin
1.	Khadrawy I	Iraq
2.	Koharba	Pakistan
3.	Hillawi I	Iraq
4.	Deglet Nour	Algeria
5.	Angoor	Pakistan
6.	Champa Kali	Pakistan
7.	Hillawi II	Iraq
8.	Shamran II	Iraq
9.	Shamran I	Iraq
10.	Khadrawy II	Iraq
11.	Neelam	Pakistan
12.	Zaidi	Iraq
13.	Aseel	Pakistan
14.	Karblain	Iraq
15.	Danda	Pakistan
16.	Peela Dora	Pakistan

Table 1. Name and origin of date palm cultivars

Data analysis: The measured data were analyzed through principal component analysis (PCA) to identify the correlated quantities and dissimilar sets of uncorrelated variables using MiniTab (Ver. 6). The results are presented in the diagram putting the calculations against the components along with the high positive and negative loadings of the traits. The correlation between examined variables was evaluated by Pearson's correlation coefficient (Snedecor and Cochran, 1968). The cluster analysis was performed using IBM SPSS (Ver. 20), aimed on unweighted pair-group method with arithmetic averages (UPGMA) and Euclidean distances as similarity measures were applied to analyze the interactions between cultivars.

Results

Mean values of the measured parameters (M1-M27) are given in Table 4, while the visual observation parameters (V1-V15) are given in Table 5. The data depicted great variability between cultivars for all studied parameters.

Principal component analysis (PCA): Table 3 sums up the results of PCA between 16 date palm cultivars. The principal component of first three axes accounted for 45.83, 24.09 and 10.64%, respectively, among all date palm cultivars based on the forty two (42) vegetative traits. The results revealed that petiole length (M10), total number of leaves estimated (M5) and leaf sheath length (M8) had high positive loadings, whereas the angle between pinnae planes (M26), number of pinnae left side (M19) and number of pinnae right side (M18) had high negative loadings in the PC1 axes. In the PC2 axes, mean number of acanthophyll per side (M14), height of the basal root cone (M1) and leaf sheath width at top (M7) had high positive loadings while length of longest acanthophyll (M17), total numbers of leaves estimated (M5) and length of smallest acanthophyll (M15) had high negative loadings. The contribution of the most important variables revealed that the apical pinnae length (M24), median pinnae length (M22) and median pinnae width (M23) had high positive loadings, whereas rachis length point of beginning of lateral torsion (M13), mean

numbers of acanthophyll per side (M14) and trunk perimeter (M3) had high negative loadings in the PC3 axes. The Figs. 1 & 2 represents the cultivars on the plane (1-2) and (1-3) axes showed significant diversity between Deglet Nour and Shamran II cultivars in the first principal component. Deglet Nour is characterized by the large trunk size and leaf sheath length; whereas, Shamran II has a larger length of acanthophyll and angle between pinnae planes (upper third). In the second axis, the Zaidi cultivar had greater height of the basal root cone, large number of pinnae on both sides (left and right) and higher angle between pinnae planes (lower third) as compared to Peela Dora and Hillawi II characterized with large apical pinnae length and angle between pinnae planes (lower third).

Correlation matrix: The correlation matrix between explored characters presented in Table 6. Leaf sheath width at top (M7) correlated positively with the trunk height (M2). Petiole length (M10) correlated positively to number of leaves (M5) and leaf sheath length (M8). Rachis length spiny part (M12) correlated positively with the petiole length (M10) and total rachis length (M11). Mean number of acanthophyll (M14) was positively correlated with height of the basal root cone (M1), whereas, length of the smallest acanthophyll (M15) was positively correlated to number of leaves (M5). Number of pinnae right side (M18) was negatively correlated to the leaf sheath length (M8). Number of pinnae left side (M19) and right side (M18) correlated positively, but negatively with petiole length (M10). Apical pinnae length (M24) had negative correlation with number of pinnae right side (M18). Apical pinnae width (M25) correlated positively with petiole length (M10); whereas, highly negative correlation with number of pinnae right side (M18) and number of pinnae left side (M19) was observed. Angle between pinnae planes lower third correlated negatively with petiole length (M10), total rachis length (M11) and rachis length (spiny part), (M12).

Cluster analysis (CA): The dendrogram represented that sixteen (16) morphologically explored date palm cultivars assembled into two large phenotypically correlated clusters (Fig. 3). The dissimilarity distance ranged 20-78. The first main cluster contained only Zaidi cultivar that was entirely different from all other selected cultivars. The second main cluster had two sub clusters. The first sub cluster enclosed four cultivars (Deglet Nour, Hillawi II, Champa Kali and Angoor), while, the second sub cluster confined the rest of the eleven cultivars (Neelum, Koharba, Aseel, Hillawi I, Danda, Karblain, Khadrawy I, Khadrawy II, Shamran I, Peela Dora and Shamran II). In this final sub cluster group Khadrawy I was closely related with Khadrawy II and Shamran II. Based on the dendrogram, the cultivars of the same denominations like Khadrawy I, Khadrawy II, Shamran I and Shamran II were placed in the same group, thus showing close homogeneity. In contrast Hillawi-I and Hillawi-II were heterogenous within the cultivars of the same denominations. Cluster analysis also depicted that Zaidi and Deglet Nour cultivars were distantly correlated with other selected cultivars of diverse origins. This dendrogram included cultivars of different origin like Deglet Nour (Algeria), Karblain (Iraq) and Aseel (Pakistan).

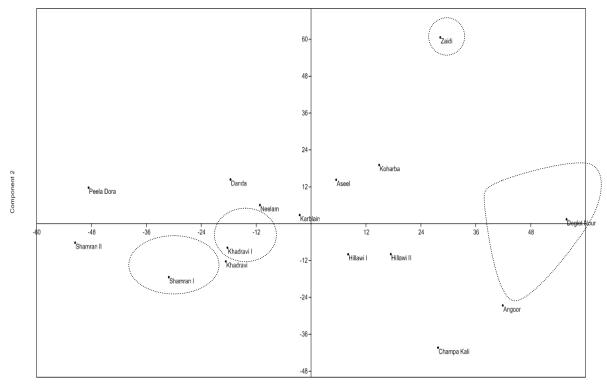

Characters	Unit	Code
Height of basal root cone	cm	M1
Trunk height (from ground to lowest green leaf)	cm	M2
Trunk perimeter (not including leaf sheaths)	cm	M3
Number of basal suckers		M4
Number of leaves (estimate)		M5
Leaf sheath width at base	cm	M6
Leave sheath width at top	cm	M7
Leaf sheath length	cm	M8
Petiole width at top	cm	M9
Petiole length	cm	M10
Rachis length (total)	cm	M11
Rachis length (spiny part)	cm	M12
Rachis length (point of beginning of lateral torsion)	cm	M13
Mean number of acanthophyll per side		M14
Length of smallest acanthophyll	cm	M15
Length of median acanthophylls (4 measures)	cm	M16
Length of longest acanthophyll	cm	M17
Number of pinnae (right side)		M18
Number of pinnae (left side)		M19
Basal pinnae length	cm	M20
Basal pinnae width	cm	M2
Median pinnae length	cm	M22
Median pinnae width	cm	M23
Apical pinnae length	cm	M24
Apical pinnae width	cm	M25
Angle between pinnae planes(lower third)		M26
Angle between pinnae planes(upper third)		M27
Crown shape (spherical, hemispherical, erect)		V1
Crown density (very dense, dense, open)		V2
Leaf lateral torsion (none, moderate, strong)		V3
Leaf bases (persistent/ caducous)		V4
Fiber density and solidity (thin, medium, thick)		V5
Petiole color (green, yellowish green)		V6
Grouping of acanthophylls (single, double, three, four)		V7
Transition spine/pinnae (sharp/progressive)		V8
Color of pinnae (light green, green dark green)		V9
Aspect of pinnae (soft, rigid, spiny, stiff, bending)		V10
Wax cover of pinnae (none, thin, medium, thick)		V11
Grouping pattern of pinnae (Alternate, opposite), (lower third of leaf)		V12
Number of pinnae planes on each side of rachis (1, 2, 3 plane), (lower third of leaf, one side)		V13
Grouping pattern of pinnae (Alternate, opposite), (upper third of leaf)		V14
Number of pinnae planes on each side of rachis (1, 2, 3 plane),		V15

Table 2. Character used for date palm cultivars identification.

Table 3. Eigenvalues, variation proportion and eigenvectors linkage with first three axes of the PCA in 16 date
palm cultivars (Table 3 for parameter labels).

	paini cultivais (Table 5 loi	parameter labels).	
Axe	1	2	3
Eigenvalue variation	6.75	4.37	4.01
Variance proportion			
Individual %	45.83	24.09	10.64
Cumulative %	45.83	69.92	80.56
Eigenvectors [*]	M10 (0.91)	M14 (0.67)	M24 (0.78)
	M5 (0.77)	M1 (0.63)	M22 (0.52)
	M8 (0.70)	M7 (0.58)	M23 (0.51)
	M26 (-0.72)	M17 (-0.53)	M13 (-0.80)
	M19 (-0.66)	M5 (-0.47)	M4 (-0.60)

*Only parameters with high loadings in three principal components were shown.

Component 1

Fig. 1. Graphic represented the date palm cultivars in relation to date palm 1-2 axes of PCA.

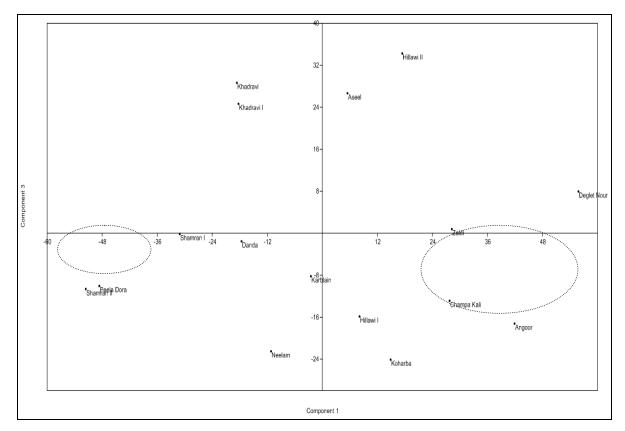


Fig. 2. Graphic represented the date palm cultivars in relation to date palm 1-3 axes of PCA.

							L	L	L	L	L	L														
Cultivars N	MI M2	2 M3		M4 M5	(5 M6	6 M7	7 M8	M9	0 M10	MII	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24 N	M25	M26	M27
Khadrawy I 27	27.5 195	5 165		0 39	9 10	5	32.5	3.75	5 120	345	87.5	82.5	13	2.5	6.25	8.75	95	96	9	-	47.5	с С	26.25	2.25	30	20
Koharba	0 332.5			0 35	5 8	6.5	5 14.25	5 3.75	5 83.25	5 327.5	72.5	57.5	٢	1.25	17.5	8.75	97	93	46.75	0.75	49.5	с С	20.25	_	65	15
Hillawi I	0 305	5 170		2 27	7 9.5	5 8.5	5 37.5	3	110	327.5	09	86	٢	0.75	7.5	14.25	85	86	37.5	-	37.25	3.25	23	2.5	34	61
Deglet Nour 6	65 392.5	5 147.5		0 37	7 11	8.5	5 45	3.75	5 132.5	5 382.5	92.5	57.5	19	2.5	11.25	15.5	86	85	52.5	1.75	58.25	ŝ	64	2.25	30	20
Angoor	0 362.5	.5 192.5	5	0 47	7 10	5.75	5 32.5	3.5	5 115	405	86.25	97.5	12	2.25	6.25	14.75	89	87	49.25	1.25	48.75	æ	25	1.75	30	20
Champa Kali	0 312.5	5 245	-	4 45	5 8.75	5 5.5	5 27.5	3.25	5 126.25	5 412.5	96.25	97.5	6	2.25	8	12	89	86	42.5	1.5	43.75	3.75	23.25	1.75	30	15
Hillawi II	0 272.5	5 180		0 34	4 11.25	25 6.25	5 12.5	3.75	5 102.5	5 402.5	5 97.5	86.25	Ξ	1.25	8.75	12	108	110	57.75	1.5	51.25	4	19.75	1.5	20	15
Shamran II	0 172.5	5 175		0 32	2 12.25	25 5.25	5 21.25	5 2.5	5 82.5	282.5	52.5	55	6	2.25	12	23.75	86	84	55	1.5	48.75	3.25	25.5	1.5	45	35
Shamran I	0 200	0 175		0 35	5 8.75	5 4.75	5 22.5	5 4.75	5 76.25	5 350	56.25	42.5	6	e	8.75	16.5	16	93	43.5	0.75	47.5	3.75	23.75	1.5	30	33
Khadrawy II 2	25 207.5	172.5		0 37	7 11.25	25 5	37.5	3.75	5 102.5	5 347.5	52.5	45	13	3.75	7.5	13.75	16	93	36.25	-	52.5	3.5	26.25	1.75	30	20
Neelam	0 267.5	177.5	-	0 41	1 8.75	5 5.5	5 27.5	3.5	5 97.5	312.5	09	63.75	10	С	6.5	15	94	96	49.5	1.5	45.25	3.25	32.5	1.5	09	23
Zaidi 41	42.5 367.5	1.5 145.75		0 22	2 7.5	5.5	5 18.75	5 3.75	5 65	327.5	42.5	58	14	0.5	7.25	10	116	117	29.75	-	46.5	3	20.5 (0.75	70	25
Aseel	0 277.5	1.5 132.5	5	2 32	2 13.75	75 5	36.25	5 4	97.5	317.5	67.5	83.75	01	1.25	5.75	8.75	102	104	38	1.5	41	3.5	19.75	1.5	30	15
Karblain 4	40 277.5	.5 180		2 43	3 12.25	25 5.5	5 32.5	5.4.5	5 98	337.5	5 62.5	88	9	3.75	10	14.5	98	101	42.25	0.5	40.5	2.25	18.25	_	45	40
Danda 3	35 240	0 160		0 30	0 8.75	5 5	15.5	6	78.5	302.5	55	77.5	15	1.25	7.25	13.75	112	114	46.25	1.25	46.25	3.5	20	_	45	20
Peela Dora	0 185	5 182.5		0 28	8 6.25	5 5	14.75	5 2.25	5 76.5	315	65.75	53	10	7	6	=	90	93	44.5	1.5	49.5	2.75	36.25	5	65	99
							Tab	le 5. V	Table 5. Visuals observation parameters of 16 date palm cultivars (see table 2)	servatio	n paran	ieters of	16 date	e palm	cultivar	s (see t	able 2).									
Cultivars		۲۱ ۲	[V2	V3		V4		V5	V6		77	^	N8	V9		V10	[VII VII	V12	5	V13		V14	^	VI5
Khadrawy I		HS*		D*	×.		p*	Σ	Med*	YG*		S**	SH	SHP*	÷0		Stiff		None	ALT*	*_	2	l°	OPT*		_
Koharba		HS≉	-	D*	M*	×	\mathbf{P}^*	Ż	None	ď		S**	SH	SHP*	ů,		Stiff	Τ	Thin	OPT^*	*	7	0	OPT*		5
Hillawi I		HS*	Ŭ	*0	M*	*	\mathbf{p}^*	Ż	None	γG^*		$S^{\#\#}$	SH	SHP*	ō,		Stiff	Γ	Thin	OPT^*	*.]	С	0	OPT*		ŝ
Deglet Nour		HS*	-	D*	M*	<i>.</i>	\mathbf{p}^*	Ż	None	ő	S	S&D*	SH	SHP*	<u>6</u> *		Stiff	Τ	Thin	OPT^*	*1	5	Υ	ALT*	. *	0
Angoor		HS≉	-	D*	M*	*	p*	Σ	Med*	γG*		S **	SH	SHP*	LG*		Stiff	Ţ	Thin	ALT^*	*1	2	V	ALT*		5
Champa Kali		HS≉	-	D*	S^*		P*	Ż	None	ΥG*		S **	SH	SHP*	rG*		Stiff	Τ	Thin	ALT*	*1	7	0	OPT*		5
Hillawi II		HS^{*}	-	D*	M*	<i>,</i> #.	\mathbf{p}^*	Σ	Med*	G*		S^{**}	SH	SHP*	G*		Stiff	Γ	Thin	ALT^*	ľ.*	7	0	OPT^*		5
Shamran II		HS≉	-	D*	M*	*	\mathbf{p}^*	Σ	Med*	ð	S	S&D*	SH	SHP*	<u>6</u> *		Stiff	Γ	Thin	OPT^*	*.]	с	0	OPT*		_
Shamran I		HS*	1	D*	M*	<i>.</i>	\mathbf{p}^*	Σ	Med*	γG*		S**	SH	SHP*	C*		Stiff	Ţ	Thin	ALT*	*.]	ŝ	0	OPT*		_
Khadrawy II		HS^*	Τ	D*	M*	<i>3</i> 4.	\mathbf{p}^*	Ż	None	*0		S**	SH	SHP*	*0		Stiff	Z	None	OPT^*	*1	7	A	ALT*		_
Neelam		HS*	-	D*	M*	<i>3</i> 4	\mathbf{p}^*	Ż	None	°*		S **	SH	SHP*	G*		Stiff	Z	None	OPT^*	*]	5	0	OPT*		5
Zaidi		HS^{*}	Ŭ	*0	M*	<i>,</i> #.	\mathbf{p}^*	Ż	None	γG^*		S**	SH	SHP*	G*		Stiff	Γ	Thin	OPT^*	*	с	0	OPT*		5
Aseel		HS^{*}	1	D*	\mathbf{S}^*	r	\mathbf{p}^*	Ż	None	γG^*		S**	SH	SHP*	°5		Stiff	Ţ	Thin	OPT^*	*	3	0	OPT^*		3
Karblain		HS*	>	VD *	× M	*	\mathbf{p}^*	Ż	None	γG^*		S**	SH	SHP*	*0		Stiff	Z	None	OPT^*	*1	6	0	OPT*		5
Danda		HS^*	Г	D*	ž	*	\mathbf{p}^*	Ż	None	ð		S**	SH	SHP*	G*		Stiff	Z	None	OPT^*	*]	7	0	OPT^*		5
Doolo Doro		HS*	Ц	D *	* W	*	Þ#	Ž	None	γG^*	Š	S&D*	SHP*	*di	°,		Stiff	Z	None	ALT^*	*1	0	V	ALT*		2

M M												Correlations	Cor	Correlations	2		·		,								
181 102 103 104 105 10		IW	M2	M3	M4	MS	M6	M7	M8	6M	0110	TIM	M12	M13	M14	MI5	<u> </u>	MI7	M18	61M		<u> </u>	<u> </u>			10	M26
100 1111 111 111 111 <th>M2</th> <th>.318</th> <th></th>	M2	.318																									
10 10 10 10 10 11 23 23 10 12 23 24 10 13 24 20 24 10 13 24 20 24 10 13 24 24 24 10 23 24 24 24 24 10 23 24 24 24 24 24 10 24 24 24 24 24 24 10 24 24 24 24 24 24 10 24 24 24 24 24 24 10 24 24 24 24 24 24 10 24 24 24 24 24 24 11 24 24 24 24 24 24 12 24 24 24 24 24 <	M3	406	073																								
101 512 237 247 <th>M4</th> <th>174</th> <th>.192</th> <th>.486</th> <th></th>	M4	174	.192	.486																							
10 05 -10 20 20 16 67 -10 21 21 26 13 20 21 10 210 20 21 21 21 22 210 20 21 21 21 23 210 210 21 21 21 23 24 25 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	M5	081	.121	.572*	.257																						
47 67 13<	M6	.104	055	247	.203	.261																					
34) 36 36 31 32	M7	.476	.627**		193	.221	.102																				
10 210 310 310 311	M8	.347	.268	133	.304	.362	.513*	671.																			
149 318 300 656 [*] 301 708 [*] 863 103 316 306 50 30	6 M	.249	.222	209	.045	.312	.314	.147	.266																		
103 305 <th>0110</th> <th>.149</th> <th>.333</th> <th>.318</th> <th>.390</th> <th>.636**</th> <th></th> <th>.401</th> <th>.708**</th> <th></th>	0110	.149	.333	.318	.390	.636**		.401	.708**																		
(1) (2) (3) <th>IIIM</th> <th>.045</th> <th>.475</th> <th>.505</th> <th>.255</th> <th>.563</th> <th>.036</th> <th>.421</th> <th>.207</th> <th>.298</th> <th>.651**</th> <th></th>	IIIM	.045	.475	.505	.255	.563	.036	.421	.207	.298	.651**																
(-13)356396414364-001178-004525'450542'-(50)-316-416-106-108-47-26-03222416-178-(13)-314301-0363'236-36-032324-06-138-001(13)-314301-03630'236-18-18-011-18-18-18(14)140-046-09490-506-18-18-18-10-18-18(14)-14911427403030'218-16-010-200-100-100(15)-149-146-190-180-216-190-100-100-100-100(16)-149-146-190-210-010-220-100-200-100-100-100(16)-149-146-190-210-010-210-100-100-100-100-100(11)-100-101-100-101-101-101-101-101-101-101-101(11)-101-101-101-101-101-101-101-101-101-101-101(11)-101-101-101-101-101-101-101-101-101-101-101(11)-101-101-101-101-101-101	M12	053	.320	.394	.232	.559*	.131	$.526^{\circ}$.163	.057	.762**																
057" 21 -46 -106 -108 -47 226 -03 221 10 -108 -49 216 -49 216 -49 216 -49 216 -49 216 -49 216 248 248 249 200 120 -101 -106 -090 480 -306 -103 <th>M13</th> <th>133</th> <th>.326</th> <th>.356</th> <th>.594°</th> <th>.414</th> <th>.264</th> <th>071</th> <th>.178</th> <th>004</th> <th>.525</th> <th>.459</th> <th>.542*</th> <th></th>	M13	133	.326	.356	.594°	.414	.264	071	.178	004	.525	.459	.542*														
139 -137 01 053 036 363 036 363 036 363 036 363 <th>M14</th> <th>.673**</th> <th>.251</th> <th>363</th> <th>440</th> <th>106</th> <th>018</th> <th>.487</th> <th>.226</th> <th>043</th> <th>.222</th> <th>.224</th> <th>.166</th> <th>178</th> <th></th>	M14	.673**	.251	363	440	106	018	.487	.226	043	.222	.224	.166	178													
004 120 -01 -104 -00 480 -300 -300 -138 -138 -518	M15	.139	374	301	033	.653**		.014	.376	.302	.256	.085	.001	223	060												
-0.12 -2.36 1.44 1.14 2.74 0.13 -0.38 -1.83 -2.53 -2.43 0.04 4.00 1.30 261 1.134 384 173 406 086 037 2.18 494 116 220 1.00 208 439 980" 271 0.29 416 086 056 517 166 280 439 980" 175 0.07 1.03 085 129 .344 .506 .286 .437 .206 .533 .233 .233 .233 .233 .233 .237 .237 .237 .339 .337 .339 .332 .332 .332 .332 .333 .233<	9116	.004	.120	021	164	046	-099	.480	306	025	180	138	.045	368	248	017											
261 134 -384 -105 -606 -503 [*] 218 -404 -116 -220 100 -430 -430 [*] 271 029 -419 -187 -433 -062 -511 [*] -166 -280 066 -198 -439 980 [*] -175 007 103 -385 670 ^{**} 283 -129 344 560 [*] 224 247 056 193 -239 230 -233 -232 -241 -417 30 -359 452 -111 -022 239 519 [*] 230 120 317 033 329 366 366 370 237 329 452 -106 -036 -112 474 217 037 329 452 369 371 392 371 392 371 392 371 392 371 392 371 392 371 393 374 387 106 -039 </th <th>M17</th> <th>042</th> <th>256</th> <th>.164</th> <th>149</th> <th>.114</th> <th>.274</th> <th>.013</th> <th>760.</th> <th>213</th> <th>038</th> <th>183</th> <th>255</th> <th>243</th> <th>044</th> <th>.409</th> <th>.130</th> <th></th>	M17	042	256	.164	149	.114	.274	.013	760.	213	038	183	255	243	044	.409	.130										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M18	.261	.134	384	173	406		069		.218	494	116	220	.100	.209			457									
175.007.103.085.570".283.120.314.560".224.245.065.124.497.205.160.233.232.232111022.259.085.519".230.120.317.033.329.366.297.084.286.401.317.302.359.452196069134.504".206.112.475.146.195.068.321.232.241.417.102.466.201106009131.017.186.316.434.521".099.392.008.141.317.237.037.637.369.371101106009311.080234.302.032.185.401.452.389.414.417.102.466.201101101108134231234232.185.140.316.2417.102.466.201101101108134234231.232.231.232.241.201.231.232.231101101108134132134132134177165177.240.291.232101101108134134134134134141.1177.169.241.211.256.293 </th <th>61M</th> <th>.271</th> <th>.029</th> <th>419</th> <th></th> <th>433</th> <th>062</th> <th>152</th> <th>456</th> <th>.236</th> <th>511</th> <th>166</th> <th>280</th> <th>.066</th> <th>.198</th> <th>403</th> <th></th> <th></th> <th>.980</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	61M	.271	.029	419		433	062	152	456	.236	511	166	280	.066	.198	403			.980								
-111 -022 239 519° 230 112 317 033 329 566 297 084 286 401 -317 530 452 452 452 196 -069 -134 -504° 012 412 -146 195 -068 302 208 427 257 257 025 064 067 -099 271 126 088 -187 017 186 316 429 521° 098 141 -326 351 232 041 411 102 466 201 201 -009 -311 080 -234 521° 098 141 -326 351 236 361 372 208 2414 -117 102 466 201 201 -009 -311 080 -234 420 301 -343 295 023 185 -401 455 310 015 206 -541° -177 349 296 201° 209 -176 -108 -118 -118 -118 -118 -117° -656° -083 224 280° 209 -175 -286 -681° -596° -539° -140 -117° -177 -177 -177 -177 -177 -181 -181 -181 100 -116 -118 -118 -118 -118 -118 -118 -118	M20	175	.007	.103	085	.670**		129	.344	.560*	.224	.245	.065	.150	124	.497	205	.160	233	232							
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M21	-111	022	.259	.085	.519*	.230	.120	.317	.033	.329	.366	.297	.084	.286	.401	317	.302	370	-359	.452						
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M22	.196	069	134	504		.112	.475	146	.195	068	.302	.208	483	.427	.257	.237	.025	.064		039	.277					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M23	.126	.088	187	.017	.186	.316	.434	.521*	660'	392	.008	.141	326	.351	.282	680.	.223	414	417	.102	.466	.201				
099099 .146 .118 .135 .063 .037 .562°286 .668° .252 .428 .119 .146 .121242 .074717°656°021 .222083 .324 .582° .039 .050175259405601°048481296561°596°539°403155216 .335140 .267 .240374447151256 .098489023 .477 .071179206 .287240293456397381223 .300 .090 .257197095263 .018 .151302 .346006	M24	.201	016		-311	.080	234	.420	.301	343	.295	.023	.185	401	.455	.310	.015		547*	497	177	.349		529°			
.039 .050175259405601 [*] 048481296661 ^{**} 596 [*] 539 [*] 403155216 .335140 .267 .240374447151256 .098489489023477 .071179206287240263397357381223 .300 .090 .257197095263 .018 .151302 .346006	M25	-099	-099		.118	.135	.063	.037	.562	286	.668**		.428	.119	.146		242			656"*	021				582°		
023477 .071179206287240260293456397381223 .300 .090 .257197095263 .018 .151302 .346006	M26	.039	.050	175		405	601		481	296			539*	403	155	216		140	.267							.489	
	M27	023	477		179		287	240	260	293	456	397	357	381	223	300	060.	.257		095	263	.018					.437

**Correlation is significant at the 0.01 level *Correlation is significant at the 0.05 level

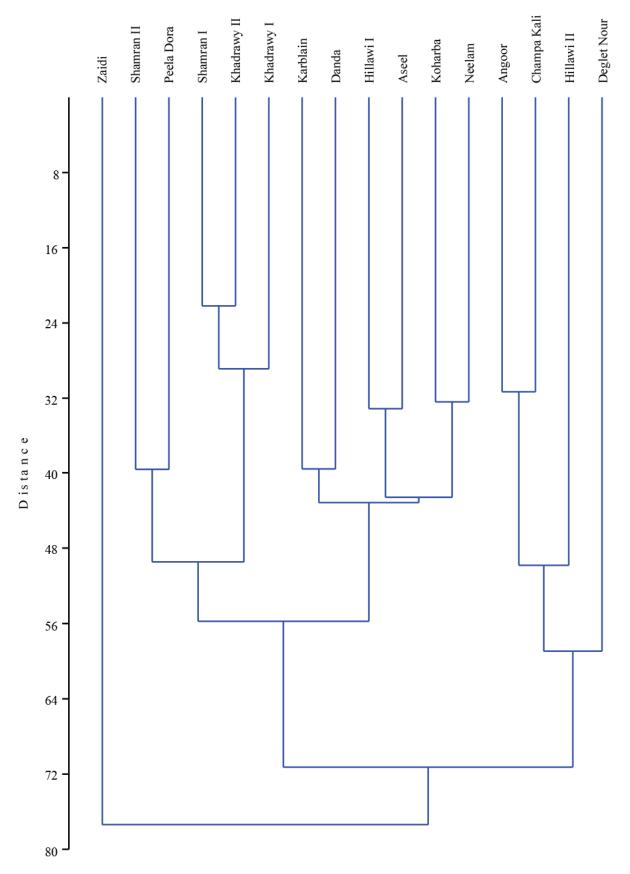


Fig. 3. Dendrogram of hierarchical clustering of date palm cultivars based on 68 vegetative and reproductive attributes.

Discussion

The overall forty two (42) quantitative and qualitative traits were explored and recorded to determine the phenotypic diversity in sixteen (16) Pakistani date palm cultivars. Morphological traits such as leaves, number of leaflets, length and grouping of spines, spathe, fruit and spideces possess quantitative markers mainly used for identification, description, differentiation and characterization of date palm cultivars (Salem et al., 2008; Eissa et al., 2009; Hammadi et al., 2009). This study revealed the broad range of variability in measured (M1-M27) and visual (V1-V15) parameters (Tables 4 & 5). In visual parameters Karblain cultivar showed the more dense structure as compared to other cultivars. Similar findings also have been reported in previous publications on characterization of date palm. A similar study on twenty six (26) Moroccan date palm accessions by using twenty six (26) vegetative parameters depicted higher range of phenotypic polymorphism (Elhoumaizi et al., 2002). The studied parameters were of great importance for the cultivar identification, but also selection can be made for quality assurance and resistance against diseases and stress because most of the characters are sensitive to environmental conditions.

Principal component analysis was used for traits identification and data depicted that measured (M1-M27) characters like plant height, leaf length, number and grouping of leaflets, leaflet length and width and number and grouping of spines, spine length possessed a greater proportion of the observed variability. Whereas, Pearson's coefficient correlation depicted that there was high positive and negative correlation between all recorded parameters. The presented correlation among examined parameters proposed that date palm tree architecture is well agreed. Ahmed *et al.* (2011) studied phenotypic diversity in twenty one (21) date palm cultivars by the use of PCA analysis. The results showed great variations in 30 selected vegetative traits and were similar to these results.

The cluster analysis publicized the typical continuous phenotypic variations that differentiated the indigenous date palm cultivars and above mentioned clustering of dendrogram strongly supported this statement. To be sure, clustering of the cultivars did not ensure the source-ofcollection base which suggested that there was a vast interchange of planting material from one ecology to another. Similar study on morphology of date palm (Salem et al., 2008; Hammadi et al., 2009; Ahmed et al., 2011; Taain, 2013), fig (Saddoud et al., 2008), ber (Razi et al., 2013) and olives and pomegranate accessions (Ouazzani et al., 1995; Nafees et al., 2015) has been previously stated. It is worth noting that two separate cultivars (Khadrawy I and Khadrawy II, Shamran I and Shamran II) were phenotypically almost the same and closely associated with each other, but Zaidi and Deglet Nour cultivars were distantly related to other studied cultivars (Fig. 3).

This type of description can not properly delineate the cultivar documentation problem. Indeed, numerous diverse accessions might possess the same aspect in spite of their diverse genome. Advances in the development of more effective markers (microsatellite) may provide a precise genotypic differentiation and overcome this problem (Zehdi *et al.*, 2005, 2012). Indeed, a precise description of the phenotypic and genetic diversity of the Pakistani gene pool requires a combination of biochemical, morphological and molecular markers.

Conclusions

In the scenario of the present subject, we have reasoned that the quantitative and qualitative traits possessed a useful approach to assess the phenotypic diversity in date palm accessions. The results revealed considerable diversity within date palm cultivars. Although, accurate characterization of cultivars need a huge set of morphological as well as biochemical and molecular (isozymes) markers.

Acknowledgements

I would like to acknowledge ICDD (International Center for Development and Decent Work) for providing financial assistance and support.

References

- Ahmed, M., Z.E.O. Bouna, F.M.M. Lemine, T.K.O. Djeh, T. Mokhtar and A.O.M. Salem. 2011. Use of multivariate analysis to assess phenotypic diversity of date palm (*Phoenix dactylifera* L.) cultivars. *Sci. Hortic.*, 127(3): 367-371.
- Al-Moshileh, A. M., M.I. Motawei, A. Al-Wasel and T. Abdel-Latif. 2004. Identification of some date palm (*Phoenix dactylifera* L.) cultivars in Saudi Arabia using RAPD fingerprints. Agric. Mar. Sci., 9: 1-3.
- Anonymous. 2012. Food and Agriculture Organization (FAO). Retrieved 15th March 2014 from <u>http://faostat.fao.org/site/567/default.aspx#ancor</u>.
- Botes, A. and A. Zaid. 2002. Date Production Support Program. FAO plant production and protection paper 156, Rev. 1. FAO United Nations, Rome, Italy.
- Chao, C.T. and R.R. Krueger. 2007. The date palm (*Phoenix dactylifera* L.): overview of biology, uses and cultivation. *Hort. Sci.*, 42: 1077-1082.
- Eissa, E.A., A.B. Abd El-Razek, S.F. El-Sharabasy and R.M. Rizk. 2009. Morphological and molecular genetic characterization of soft date palm (*Phoenix dactylifera* L.) cultivars in Egypt. Egypt. J. Genet. Cytol., 38: 269-284.
- Elhoumaizi, M.A., M. Saaidi, A. Oihabi and C. Cilas. 2002. Phenotypic diversity of date palm cultivars (*Phoenix dactylifera* L.) from Morocco. *Genet. Resour. Crop Evol.*, 49: 483-490.
- Haider, M.S., I.A. Khan, S.A. Naqvi, M.J. Jaskani and R.W. Khan. 2013. Fruit developmental stages effects on biochemical attributes in date palm. *Pak. J. Agri. Sci.*, 50: 577-583.
- Hammadi, H., R. Mokhtar, E. Mokhtar and F. Ali. 2009. New approach for the morphological identification of date palm (*Phoenix dactylifera* L.) cultivars from Tunisia. *Pak. J. Bot.*, 41(6): 2771-2681.

- Hashempour, M. 1999. Dates Treasure, Volume 1: Generalities. Tehran, Iran: Nashr-e-Amozeshe-Keshavarzi (in Farsi).
- IPGRI. 2005. Descripteurs du palmier dattier (*Phoenix dactylifera* L.). IPGRI, Rome; FEM, Washington, DC; PNUD, Washington, DC; INRAA, Algiers; INRAM, Rabat; INRAT, Tunis.
- Iqbal, M., U.U. Rahman, M. Niamatullah, S.M. Khan and A. Akhtar. 2012. Periodic growth and development of fruits of different date cultivars grown under the agro-climatic conditions of D. I. Khan. *Pak. J. Sci.*, 64(3): 259-264.
- Jamil, M.S., R. Nadeem, M.A. Hanif, M.A. Ali and K. Akhter. 2010. Proximate composition and mineral profile of eight different date (*Phoenix dactylifera* L.) varieties from Pakistan. *Afr. J. Biotechnol.*, 9(22): 3252-3259.
- Jaradat, A. A. and A. Zaid. 2004. Quality traits of date palm (*Phoenix dactylifera* L.) fruits in a center of origin and center of diversity. *Food Agric. Environ.*, 2(1): 208-217.
- Mansour, H.M. 2005. Morphological and genetic characterization of some common *Phoenix dactlifera* L. cultivars in Ismailia region. M.Sc. Thesis Botany Deptt. Faculty of Science, Suez Canal University.
- Markhand, G.S. and A.A. Abul-Soad. 2010. Fruit characterization of Pakistani dates. *Pak. J. Bot.*, 42(6): 3715-3722.
- Mehmood, A., M.J. Jaskani, S. Ahmad and R. Ahmad. 2013. Evaluation of genetic diversity in open pollinated guava by iPBS primers. *Pak. J. Agri. Sci.*, 50: 591-597.
- Nafees, M., M.J. Jaskani, S. Ahmed and F.S. Awan. 2015. Morpho-molecular characterization and phylogenetic relationship in pomegranate germplasm of Pakistan. *Pak. J. Agri. Sci.*, 52:97-106.
- Osman, A.M.A. 1984. The performance of date palms in the Sudan. *Acta Hort.*, 143: 231-237.
- Ouazanni, N., R. Lumaret and P. Villemur. 1995. Apport du polymorphisme alloenzymatique a l' identifiation varietale de l' Olivier (*Olea europa* L.). Agron., 15: 31-37.

- Rao, N.K. 2004. Plant genetic resources: advancing conservation and use through biotechnology. *Afr. J. Biotech.*, 3(2): 136-145.
- Razi, M.F., R. Anwar, S.M.A Basra, M.M. Khan and I.A. Khan. 2013. Morphological characterization of leaves and fruit of jujube (*Ziziphus mauritiana* Lamk.) germplasm in Faisalabad, Pakistan. *Pak. J. Agri. Sci.*, 50: 211-216.
- Rizk, R.M. and S.F. El-Sharabasy. 2006 A descriptor for date palm (*Phoenix dactylifera* L.) characterization and evaluation in gene banks. *Am. Euras. J. Agric. Environ. Sci.*, 1(2): 133-145.
- Rizk, R.M. and S.F. El-Sharabasy. 2007. Descriptor for date palm (*Phoenix dactylifera* L.) characterization and evaluation in gene banks. *Plant Genet. Res.*, 150: 42-44.
- Saddoud, O., G. Baraket, K. Chattia, M. Trifi, M. Marrakchi, A. Salhi-Hannachi and M. Mars. 2008. Morphological variability of fig (*Ficus carica L.*) cultivars. *Int. J. Fruit Sci.*, 8(1-2): 35-51.
- Salem, A.O.M., S. Yarhouma, S. Zehdi, M. Marrakchi and M. Trifi. 2008. Morphological variability of Mauritanian datepalm (*Phoenix dactylifera* L.) cultivars as revealed by vegetative traits. *Acta. Bot. Croat.*, 67(1): 81-90.
- Taain, D.A. 2013. Study on physico-chemical and physiological characteristics of date palm fruits (*Phoenix dactylifera* L.) cv. Um-aldehin. *Pak. J. Agri. Sci.*, 50:1-5.
- Zaid, A. and P.F. de Wet. 2002. Botanical and systematic description of the date palm. FAO Plant Prod. Prot., 156: 1-28.
- Zehdi, S., E. Cherif, S. Rhouma, S. Santoni, A.S. Hannachi and J.C. Pintaud. 2012. Molecular polymorphism and genetic relationships in date palm (*Phoenix dactylifera* L.): The utility of nuclear microsatellite markers. *Sci. Hortic.*, 148: 255-263.
- Zehdi, S., M. Trifi, N. Billote, M. Marrakchi and J.C. Pintaud. 2005. Genetic diversity of Tunisian date palms (*Phoenix dactylifera* L.) revealed by nuclear microsatellite polymorphism. *Hereditas*, 141(3): 278-287.

(Received for publication 30 April 2014)