ANALYSIS OF THE A GENOME GENETIC DIVERSITY AMONG BRASSICA NAPUS, B. RAPA AND B. JUNCEA ACCESSIONS USING SPECIFIC SIMPLE SEQUENCE REPEAT MARKERS

HONGYUN TIAN^{1,†}, JINQIANG YAN^{1,†}, SIRAJ AHMED CHANNA^{1,2,†}, RUIJIE ZHANG¹, YUAN GUO¹AND SHENGWU HU¹*

 ¹State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
 ²Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam 70060, Sindh, Pakistan †Hongyun Tian, Jingqiang Yan, and Siraj Ahmed Channa contributed equally to this work
 *Corresponding author's e-mail address; swhu83251@nwsuaf.edu.cn, Ph: +862987082604

Abstract

This investigation was aimed at evaluating the genetic diversity of 127 accessions among *Brassica napus*, *B. rapa*, and *B. juncea* by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly *B. napus* accessions and the most of *B. juncea* accessions formed Group II, Group III included nearly all of the *B. rapa* accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of *B. napus*, *B. rapa*, and *B. juncea* accessions. *B. napus*, *B. rapa*, and *B. juncea* have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for *B. napus*, in future rapeseed breeding program.

Key words: Genetic diversity; Simple sequence repeat; A genome; Brassica cultivars.

Introduction

Brassica rapa (AA, 2n = 20), B. nigra (BB, 2n = 16) and B. oleracea (CC, 2n = 18) are three Brassicadiploid species, then B. napus (AACC, 2n = 38), B. Juncea (AABB, 2n = 36), and B. carinata (BBCC, 2n = 34) were obtained from spontaneous interspecific crosses among these three diploids, and all these six Brassica species form the U's triangle (U N, 1935).

B. napus, B. rapa, and B. juncea are three important Brassica cultivars in China and they all have the A genome. B. rapa and B. juncea were cultivated in China for centuries which have established diversity (Liu, 2000). B. *napus* was the youngest among the three species, and may have 500 years cultivation history (Downey & Robbelen, 1989; Gomez-Campo & Prakash, 1999). B. napus was first introduced to China from the 1930s to 1940sfrom Europe and Japan, separately (Liu, 2000). After decades of development, B. napus became the most important oil crop in China (Wang, 2010). Chinese rapeseed breeders developed most of the rapeseed cultivars through pedigree breeding method and interspecific hybridization between the introducing foreign B. napus accessions and the indigenous B. rapa varieties (Liu, 2000). The introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed (Qian et al., 2006).

Accumulated evidence has shown that each of the three basic *Brassica* genomes (A, B, and C) has undergone profound changes in different species (Nishio, 2000; Pires *et al.*, 2004), and has led to the concept of the "subgenome" (Li *et al.*, 2004). Significant intersubgenomicheterosis was observed in hybrids between traditional *B. napus* and the new type *B. napus* (Qian *et al.*, 2005; Li *et al.*, 2006; Xiao *et al.*, 2010; Zou *et al.*, 2010). The later were produced by the partial introgression of subgenomic components from different species such as *B. rapa* (Qian *et al.*, 2005) and *B. carinata* (Li *et al.*, 2006) into *B. napus*. Lu *et al.* (2006)

utilized the yellow-seeded *B. juncea* as the gene donor to cross with the double-low *B. napus* cultivar and developed novel yellow-seeded *B. napus* lines with high oil content and double-low or low erucic quality.

The A genome of both B. juncea and B. napus was derived from B. rapa, however, few studies were conducted to evaluate the A genome diversity of these three species. Though the A genome of *B. rapa* and *B. napus* are mostly functionally conserved, some genomic rearrangements have occurred in the A genome between the two species, which indicate that genetic diversity of the A genome existed between B. napus and B. Rapa (Suwabe et al., 2008; Jiang et al., 2011). Availability of simple sequence repeat (SSR) primers specific for the A genome linkage groups in Brassica (Xu et al., 2010; Bus et al., 2011), made it possible to detect genetic diversity among B. napus, B. rapa, and B. juncea accessions for this genome. In this study, 127 Brassica accessions which corresponding to B. napus, B. juncea, and B. rapa were evaluated by the A genome specific SSR molecular markers, in order to analyze genetic diversity of the A genome from three species and provide useful information in the future rapeseed breeding programs.

Materials and Methods

Plant materials: The plant materials used in the present study included 127 elite accessions, of which 68 accessions were *B. napus*, 46 accessions were *B. rapa*, and 13 accessions were *B. juncea*. Thirty-four of the 68 *B. napus* accessions were from China, 10 from Canada, seven from Czech Republic, five from the United States, three from Germany, two each from Japan, Sweden, Australia, and Poland, and one from France (Table 1). All of these accessions were planted in the experimental station of Northwest A&F University at Yangling, Shaanxi, PR China on 18 Sept. 2013.

Code	Accession name	Origin	Type	Spacies type
1	Washall	Australia	Ling	
1	Wesherry 1	Australia	Line	D. napus P. napus
2	westery-1	Australia	Line	Б. napus В нария
3	AC EXCEL	Canada	Line	В. napus
4	Defender A	Canada	Line	B. napus
2	Defender B	Canada	Line	B. napus
6	E0 Excel	Canada	Line	B. napus
7	Heateol	Canada	Line	B. napus
8	Holly	Canada	Line	B. napus
9	RF04	Canada	Line	B. napus
10	Tribute	Canada	Line	B. napus
11	Belinda	Canada	OP	B. napus
12	Celebra	Canada	Op	B. napus
13	161	China	Line	B. napus
14	220	China	Line	B napus
15	220	China	Line	B. napus
15	6206	China	Line	B. napus
10	8200 82080	China	Line	D. napus P. napus
17	82089	China	Line	D. napus D. mapus
18	8C	China	Line	B. napus
19	C105	China	Line	B. napus
20	C3	China	Line	B. napus
21	D89	China	Line	B. napus
22	Danza C1	China	Line	B. napus
23	Pol A	China	Line	B. napus
24	Pol B	China	Line	B. napus
25	Y6	China	Line	B. napus
26	Y7	China	Line	B. napus
27	Ganza 1F	China	Line	B. napus
28	Huavehui	China	Line	B napus
29	Linvou no 7	China	Line	B. napus
30	Mianhui no 1	China	Line	B. napus
31	Oin 7E	China	Line	B napus
22	Qiii /1 [*] Qinyou no 2	China	Line	D. napus P. napus
52	Qinyou no.5	China	Line	Б. napus
33	Shaan ZA	China	Line	В. napus
34	Shaan 2B	China	Line	B. napus
35	Shaan 2C	China	Line	B. napus
36	Zhongshuang no.10	China	Op	B. napus
37	Zhongshuang no.2	China	Op	B. napus
38	Zhongshuang no.4	China	Op	B. napus
39	Zhongshuang no.5	China	Op	B. napus
40	Zhongshuang no.6	China	Op	B. napus
41	Zhongshuang no.7	China	Op	B. napus
42	Zhongshuang no.9	China	On	B. napus
43	Zhongyou 821-1	China	On	B. napus
44	Zhongyou 821-2	China	On	B napus
45	Chuanyou no 18	China	On	B. napus
46	Chuanyou no 20	China	Op	B. napus
40	Cando	Czech	Op	B napus
47	Catania	Czech	Op	D. napus D. mapus
48		Czech	Op	В. napus
49	Ozima repka odila	Czech	Line	B. napus
50	Ozima repka oaza	Czech	Line	B. napus
51	SP-116	Czech	Line	B. napus
52	Baros	Czech	Op	B. napus
53	Lisolde	Czech	Op	B. napus
54	Tapidor	France	Op	B. napus
55	Expander	Germany	Ōp	B. napus
56	Rwsiu	Germany	Ōp	B. napus
57	Sollux	Germany	Op	B. napus
58	Nonglin no.36	Japan	Op	B. napus
59	Nonglin no.41	Japan	Op	B. napus
60	Bronowski	Poland	Line	B. napus
61	Libra	Poland	Op	B. napus
62	Casino	Sweden	Op	B. napus
63	WW1291	Sweden	Line	B. napus

Table 1. Brassica accessions used in the present investigation.

Code	Accession name	Origin	Туре	Species type
64	KS3073	USA	Line	B. napus
65	KS3077	USA	Line	B. napus
66	KS3132	USA	Line	B. napus
67	KS3248	USA	Line	B. napus
68	Plainsman	USA	Line	B. napus
69	Parkland	Canada	Op	B. rapa
70	Yayou no.1	China	Op	B. rapa
71	Tobin-1	Canada	Op	B. rapa
72	Tobin-2	Canada	Op	B. rapa
73	Youcai D1	China	Op	B. rapa
74	Chinese Cabbage Hybrid	China	Hybrid	B. rapa
75	Shanghaiqing (Yufeng)	China	Op	B. rapa
76	Baiye Tacai	China	Op	B. rapa
77	Huainan Huangxincai	China	Op	B. rapa
78	Shanghaiqing (Yongan)	China	Op	B. rapa
79	Heiyou Baicai	China	Op	B. rapa
80	Xialv Mingxing	China	Op	B. rapa
81	Rekang 50	China	Op	B. rapa
82	Shanghai Jimaocai	China	Op	B. rapa
83	Siji Xiaobaicai	China	Op	B. rapa
84	Yuanzhong Heiyoucai	China	Op	B. rapa
85	Tianyou no.2	China	Op	B. rapa
86	Tianyou no.8	China	Op	B. rapa
87	Haoyou no.11	China	Op	B. rapa
88	703	China	Op	B. rapa
89	200	China	Op	B. rapa
90	257	China	Op	B. rapa
91	Longyou no.6	China	Op	B. rapa
92	Longyou no.9	China	Op	B. rapa
93	Longyou no.8	China	Op	B. rapa
94	Binxian Yimen Youcai	China	Op	B. rapa
95	Binxian Beiji Youcai	China	Op	B. rapa
96	Binxian Xinmin Youcai	China	Op	B. rapa
97	Longquan Heiyoucai	China	Op	B. rapa
98	Jingning Heizi	China	Op	B. rapa
99	Baiyu	China	Op	B. rapa
100	Huangze Youcai	China	Op	B. rapa
101	Baishui Youcai	China	Op	B. rapa
102	Fenyang Youcai	China	Op	B. rapa
103	Linqi Youcai Vinitan avian Vauaai	China	Op	B. rapa B. napa
104	Anijiangxian Toucai Vongshou Uusininglinghang	China	Op	Б. гара В пара
105	Linvou	China	Op	D. rupu B. rapa
100	Linyou Linyou Tongshuwan	China	Op	D. rupu B. rapa
107	Lingvou Cuimunanba	China	Op	B. rapa B. rapa
100	Lingyou Cuimuhanpo	China	On	B. rapa B. rapa
110	Yellow Sarson	Indian	line	B. rapa B. rapa
111	Dongvoucai no.1	China	OP	B. rapa
112	Tianxuan no.8	China	OP	B. rapa
113	Tianyou Xinxuan	China	line	B. rapa
114	Gaoke Yinzhong 4	China	OP	B. rapa
115	2598-1	China	line	B. juncea
116	2598-2	China	line	B. juncea
117	Fanqi Xiaohuang	China	line	В. јипсеа
118	Laifeng Mawei	China	line	B. juncea
119	Qinghai Yejie	China	line	B. juncea
120	Shaan Jie	China	line	B. juncea
121	Weiyuan Dahuangjie-1	China	line	B. juncea
122	Weiyuan Dahuangjie-2	China	line	B. juncea
123	weiyuan Youcai	China	line	B. juncea
124	wenxi Youcai	China	line	B. juncea
125	Ainjiang no.2 Vuonito 1	China	line	B. juncea
120	I uanjie-1	China	line	В. juncea В innera
12/	mantin noucal	Unina	me	Б. јинсеа

DNA extraction and simple sequence repeat analysis: Fifteen three-leaf stage plantlets were randomly chosen from each accession for total genomic DNA isolation using the Cetyltrimethyl ammonium bromide (CTAB)method (Murray and Thompson, 1980).The DNA pellet was dissolved in 50 μ L TE buffer (1mM ethylenediaminetetraacetic acid (EDTA) and 10 mMTris-HCl, pH 8.0). All DNA samples were tested on 0.8% agarose gel for their concentration and quality and stored at -20°C.

One hundred and ninety-two SSR primers used in the genomic diversity analysis in Brassica were А synthesized by Sangon Biotechnology Company (Shanghai, China) (Bus et al., 2011; Xu et al., 2010), and these primers were widely distributed on 10 total chromosomes of the A genome. Polymerase chain reactions (PCR) were performed in a total volume of 10 µL containing about 50 ng of genomic DNA, 2 mM MgCl₂, 0.1 µM of each primer, 150 µMdNTP, and 1x Taq buffer. The PCR program (PTC-200, Bio-RAD, Hercules, CA) was as follows: 5 min pre-denature at 94°C; 0.5 min denature at 94°C, 1 min annealing at 56°C, and 0.75 min extension at 72°C for 40 cycles; and 5 min incubation at 72°C. The PCR products were separated by 8% polyacrylamide gel electrophoresis (w/v) gel in 1x Trisborate-EDTA (TBE) and visualized by silver staining.

Data analysis: Each locus of each accession was recorded as presence (1) or absence (0) in the SSR analysis. Polymorphism information content (PIC) was calculated by the formula:

PIC=1-
$$\sum_{j=1}^{n} P_{ij}^{2}$$

where P_{ij} is the frequency of the *j*th microsatellite allele of the *i*th marker locus and *n* is the total number of allele. The data were analysed using the qualitative routine to generate simple matching coefficients (SMC), calculated as SMC= a/(n-d), where *a* is the number of bands in common between two accessions, *n* is the number of bands in the matrix, and *d* is the number of bands absent in both accessions (Sokal & Michener, 1958). SMC was used to construct a dendrogram by the unweighted pairgroup method with arithmetic mean (UPGMA) and the sequential, hierarchical and nested clustering (SHAN) routine in the NTSYS program (Rohlf, 2001). Principal component analysis (PCA) was performed with the same program using the Decenter and Eigen procedures.

The 0, 1 matrix of SSR markers was also used for population structure analysis by Structure version 2.3.3 (Falush et al., 2003, 2007; Pritchard et al., 2000) as described previously (Li et al., 2012). For the analysis of molecular variance (AMOVA), all accessions were classified into three groups based on their genetic background. The components of variance attributable to different genetic background and among individuals within genetic background were estimated from the genetic distance matrix, as specified in the AMOVA procedure in ARLEQUIN version 3.1 (Schneider et al., 2000). A nonparametric permutation procedure with 3000 permutations was used to test the significance of variance components associated with the different possible levels of genetic structure in this study (Excoffier et al., 1992). The pairwise Fst values, a value of F statistic analogs computed from AMOVA, were used to compare genetic distances between any two groups.

Results

Marker polymorphism: Fifteen SSR primers (Table 2) were selected from 192 SSR primers because they were more polymorphic and produced stronger fragments. These 15 SSR primers were used to amplify the whole 127 accessions. A total of 58 polymorphic fragments were detected by these SSR primers. The number of detected alleles per primer pair ranged from 2 to 7 with a mean of 3.87 (Table 2). Two primers, BrgMS383 and BrgMS318, produced the largest number of polymorphic alleles (7 alleles) followed by BrgMS165 (5 alleles) and BrgMS1774 (5 alleles). Primer pairs BrgMS635, BrgMS135, and BrgMS571 produced the lowest number of polymorphic allele (2 alleles for each primer combination). The PIC value ranged from 0.173 for BrgMS571 to 0.831 for BrgMS318 with a mean of 0.567.

Table 2	The set of A	genome polymorphic SSR prime	rc
TADIC 4.	I HC SCLULA	261101116 001711101 01116 3358 01 1116	

Name	Chr	Forward primer	Reverse primer	Locus	PIC value
BrgMS635	A1	GTGTTTCTCTTCAACGCCTTTT	CACAAAGAATCCCCACAGATTT	2	0.374
BrgMS37	A1	CTGCCTTTGGATCGTCTTCTAT	TACGAGGTTCGGTTTTCTTCAT	4	0.688
BRAS078	A1	ATTGGGTTCTGACCTTTTCTC	CTTTTCCTCATCGCTACCAC	3	0.579
BrgMS382	A3	TCATCTCCCCTCACTTTCTCAT	ATGATCTGTTGTTGTCGGTTTG	3	0.589
Na12-E02	A3	TTGAAGTAGTTGGAGTAATTGGAGG	CAGCAGCCACAACCTTACG	4	0.686
BrgMS135	A4	GCATCACCCCTAGTTAATCGAA	AAGAAGGGAGAAACCTGAAACC	2	0.347
BrgMS165	A5	TCTATGTAATCGTCGTCGCAGT	GCTCTTTCTCAGTCCCTCTTGA	5	0.652
BnGMS662	A5	CGATCGAATTGCACTGTACT	ATGCACAGAGCTGAAGAAAT	3	0.545
BrgMS1757	A5	ATCGTCTCCACCACCTTATCC	ATCGGTAATTGAAATCGAGAGG	3	0.424
BrgMS1774	A5	GCAAGTTACAAGCTACCCCTTT	AAGCGGAGGAGGTTAATGTAGA	5	0.665
BrgMS318	A9	AACGAAAGACTCGACAGAAAGG	GTGAAGGTCAGGCGAATTTAAG	7	0.831
BrgMS571	A9	TCCCCACCCAGATGAGAGTAT	GAAAGGTCAAGAAGGTGCTGTT	2	0.173
BrgMS287	A10	TGGGTCTCAGTTTCCATTTTCT	TGCTTGTGAATCTTTGTGTGTG	4	0.609
BrgMS383	A10	TCGGGCAGATAAAGTAATCCAT	AGAAACCCCTTCACAACAATGA	7	0.797
BrGMS4514	A10	CTTTCACAACTCACCAGTGCAT	TGTTGTTCCATGTCACACCTTT	3	0.553

Cluster and principal component analysis: A dendrogram was generated using the UPGMA method based on SSR data (Fig. 1). All 127 *Brassica* accessions fell into three major clusters. Cluster I consisted of 67 *B. napus* accessions. Cluster II contained 11 *B. juncea* accessions and one *B. napus* accession 'No.5' from Canada. Cluster III contained all 46 *B.rapa* accessions and two *B. juncea* accessions, 'No.116' and 'No.123'.

The principal component analysis result was similar to the cluster analysis (Fig. 2). The first two principal components accounted for 22.59% and 10.13% of the total variation, respectively. Based on the first two components, the 127 accessions could be clearly separated into three groups. Group I composed of 66 *B. napus* accessions and one *B.rapa*accession 'No.69'. Eleven *B. juncea* accessions formed Group II. Group III included 45 *B. rapa* accessions, two *B. napus* accessions 'No.21' and'No.51', and two *B. juncea* accessions 'No.116' and'No.123'.

Population structure analysis: Three groups were formed when Structure version 2.3.3 was used to analyze the population structure of the total 127 accessions (Fig. 3). Group I contained 65 *B. napus* accessions and one *B. rapa* accession 'No.69'. Group II contained 12 *B. juncea* accessions, one *B. napus* accession 'No.5', and two *B. rapa* accessions 'No.97 and No.100'. Group III contained 43 *B. rapa* accessions, two *B. napus* accessions 'No.21 and No.51', and one *B. juncea* accession 'No.116'.

Analysis of molecular variance: All accessions were classified into three groups based on their species for AMOVA. The result indicated that 36.86% of the variance was due to differences among populations of species and 63.14% was due to difference within species (Table 3). The pairwise Fst values of three species ranged from 0.3491 to 0.4192, which are all significant (Table 4). The highest pairwise Fst value was between *B. juncea* and *B. napus* accessions, which indicated they have the farthest relationship.

Discussion

Rapeseed breeders are more and more concerned about the narrowing of the genetic base of germplasm. *B. napus, B. rapa,* and *B. juncea* are three important *Brassica* oil crops in China and they all have the A genome. Both *B. rapa* and *B. juncea* are considered as good resources to widen the genetic base of *B. napus* and the elite genes can be exchanged through interspecific crosses of *B. napus* and *B. rapa,* and *B. juncea,* such as disease and herbicide resistance (Somers *et al.,* 2002; Qian *et al.,* 2005, 2006; Garg *et al.,* 2010; Liu *et al.,* 2010; Li *et al.,* 2013). In this study, 127 *Brassica* accessions which corresponding to *B. napus, B. juncea,* and *B. rapa* were evaluated by the A genome SSR markers with the aim of investigating genetic diversity of the A genome of these three species. Three major groups that corresponding to the three *Brassica* species were generated in the current analysis, which obtained by cluster analysis, principal component analysis, and population structure analysis, respectively. The result indicated that 36.86% of the variance was due to significant differences among populations of species. The highest Fst value (0.4192) of three *Brassica* species was found between *B. napus* and *B. juncea*, and lowest Fst value (0.3491) was found between *B. napus* and *B. rapa*, which indicated that abundance genetic diversity existed among the A genome of *B. napus*, *B. rapa*, and *B. juncea* accessions. Thus, the genetic variation existing among the A genome of *B. rapa* and *B. juncea*, remains largely unexplored in genetic improvement of *B. napus*.

In total 192 SSR primers, 15 A genome specific SSR primers were selected to evaluate the genetic diversity of 127 accessions of three *Brassica* species. In this investigation, the *B. rapa* accessions from Canada have the greatest genetic distance from *B. rapa* accessions of Asia (Fig. 1), which indicated the selected primers could be used to analyse the A genome genetic diversity because *B. rapa* accessions only have the A genome.

The plant materials used in the present study only included 13 *B. juncea* accessions, which came from different geographical regions of China, such as Shaanxi, Qinghai, and Xinjiang provinces. However, the A genome of *B. juncea* show more diversity with the A genome of *B. napus*, than the A genome of *B. rapa* by the structure analysis. A set of 95 accessions of *B. juncea* representing oil and vegetable mustards from China, France, India, Pakistan, and Japan were assessed by Wu *et al.* (2009), they reported that the accessions from different regions of China showed abundant diversity. They suggested that the A genome of *B. juncea* will play important role in the future *B. napus* breeding.

In our results, 127 accessions were divided into three groups, which correspond well with three *Brassica* species separately with several exceptions. These results occurred probably because the crosses were happened among *B. napus*, *B. rapa*, and *B. juncea* accessions, which made the gene exchange in the A genome (Qian *et al.*, 2005; Garg *et al.*, 2010), and these outliers may be valuable for the rapeseed genetic improvement.

In early days, *B. rapa* and *B. juncea* were the important traditional oilseed crops in China before the introduction of *B. napus* from Europe and Japan (Liu, 2000), and the materials used in this study are representative accessions in China, which could be used to cross with the *B. napus* in the breeding program. All accessions were divided into three groups which are corresponding to *B. napus*, *B. rapa*, and *B. juncea* separately. *B. rapa* and *B. juncea* could be important germplasm resources for enriching the genetic background of *B. napus*, which will be very valuable for future rapeseed breeding program.

Fig. 1. Clustering of 127 rapeseed accessions by unweighted pair-group method with arithmetic mean method with Dice index. Brief results of population structure analysis and principal components analysis also showed in the right part in comparison with the cluster analysis.

Table 3. Analysis of molecular variance of accessions from three Brassica species.

Source of variation	df	Sum of squares	Variance components	Percentage of variation
Among populations	2	380.9053	5.0103	36.86 %
Within populations	124	1064.0869	8.5813	63.14 %
Total	126	1444.9921	13.5916	100 %

Fig. 3. Population structure of the tested *Brassica* accessions suggested by structure analysis (K = 3). Three colors represent three inferred groups (I – III). Each bar represents each accession. The estimated genetic fraction of each accession of each inferred group was indicated in different colors. The numbers under each bar is the same accession numbers in Table 1.

 Table 4. Population pairwise Fsts (values of F statistic analogs) between different Brassica species.

	B. napus	B. rapa	B .juncea		
B. napus	0				
B. rapa	0.3491	0			
B. juncea	0.4192	0.3645	0		
Significance level = 0.01					

Fig. 2. Biplot of the first two major principal components extracted from simple sequence repeat data.

Conclusion

In this investigation, the A genome genetic diversity was evaluated among 127 accessions *B. napus*, *B. rapa*, and *B. juncea* by using the specific SSR primers. Generally, these accessions were clearly separated into three groups, which corresponding to the three *Brassica* species, by cluster analysis, principal component analysis, and population structure analysis. The results showed that abundance genetic diversity existed among the A genome of *B. napus*, *B. rapa*, and *B. juncea* accessions, and some elite genes can be used to broaden the genetic base of them, especially for *B. napus*, in future rapeseed breeding program.

Acknowledgements

This work was supported by the earmarked fund for China Agriculture Research System (CARS-13), National Key Technology R&D Program (2010BAD01B02) and a grant of Northwest A&F University for SW Hu.

Reference

- Bus, A., N. Korber, R.J. Snowdon and B.Stich. 2011. Patterns of molecular variation in a species-wide germplasm set of *Brassica napus.Theor. Appl. Genet.*, 123(8): 1413-1423.
- Downey, R.K. and G. Robbelen. 1989. Brassica species. In: (Eds.): Robbelen, G, R.K. Downey, A. Ashri. Oil crops of the World. McGraw-Hill Publishing Company, New York, pp. 339-362.

- Excoffier, L., P.E. Smouse and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA data. *Genetics*, 131: 479-491.
- Falush, D., M. Stephens and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. *Genetics*, 164: 1567-1587.
- Falush, D., M. Stephens and J.K. Pritchard. 2007. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. *Mol. Ecol. Notes*, 7: 574-578.
- Garg, H., C. Atri, P.S. Sandhu, B. Kaur, M. Renton, S.K. Banga, H. Singh, C. Singh, M.J. Barbetti and S.S. Banga. 2010.
 High level of resistance to *Sclerotiniasclerotiorum* in introgression lines derived from hybridization between wild crucifers and the crop *Brassica* species *B. napus* and *B. juncea. Field Crop Res.*, 117: 51-58.
- Gomez-Campo, C. and S. Prakash. 1999. Origin and domestication. In: (Ed.): Gomez-Campo, C. Biology of Brassica Coenospecies. Elsevier, Amsterdam, pp. 33-58.
- Jiang, C.C., N. Ramchiary, Y.B. Ma, M.N. Jin, J. Feng, R.Y. Li, H. Wang, Y. Long, S.R. Choi, C.Y. Zhang, W.A. Cowling, B.S. Park, Y.P. Lim and J.L. Meng. 2011. Structural and functional comparative mapping between the *Brassica* A genomes in allotetraploid *Brassica napus* and diploid *Brassica rapa. Theor. Appl. Genet.*, 123(6): 927-941.
- Li, M.T., W. Qian, J.L. Meng and Z.Y. Li. 2004. Construction of novel *Brassica napus* genotypes through chromosomal substitution and elimination using interploid species hybridization. *Chromosome Res.*, 12: 417-426.
- Li, M.T., X. Chen and J.L. Meng. 2006. Intersubgenomic heterosis in rapeseed production with a partial new-typed *Brassica napus* containing subgenome Ar from *B. rapa* and Cc from *Brassica carinata*. Crop Sci., 46(1): 234-242.
- Li, Q.F., J.Q. Mei, Y.J. Zhang, J.N. Li, X.H. Ge, Z.Y. Li and W. Qian. 2013. A large-scale introgression of genomic components of *Brassica rapa* into *B. napus* by the bridge of hexaploid derived from hybridization between *B. napus* and *B. oleracea. Theor. Appl. Genet.*, 126: 2073-2080.
- Li, W., W. Jiang, H.X. Zhao, M. Vyvadilova, M. Stamm and S.W. Hu. 2012. Genetic diversity of rapeseed accessions from different geographic locations revealed by Expressed Sequence Tag-Simple Sequence Repeat and Random Amplified Polymorphic DNA markers. *Crop Sci.*, 52: 201-210.
- Liu, H.L. 2000. Genetics and Breeding in Rapeseed, 26-45. Chinese Agricultural University Press, Beijing (in Chinese).
- Liu, Y.B., W. Wei, K.P. Ma and H. Darmency. 2010. Backcrosses to *Brassica napus* of hybrids between *B. juncea* and *B. napus* as a source of herbicide-resistant volunteer-like feral populations. *Plant Sci.*, 179: 459-465.
- Lu, K.C., S.Y. Liu, J.B. Guo and Z.S. Liu. 2006. Development of the novel yellow-seeded *Brassica napus* germplasm through the interspecific crosses *B. juncea* × *B. napus. J. Hunan Agri. Uni. (Natural Sciences)*, 32(2): 116-119 (in Chinese with English abstract).
- Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Res.*, 8: 4321-4325.

- Nishio, T. 2000. Polyploidy and genome analysis of Brassicaceae. Genes Genet. Syst., 75: 360.
- Pires, J.C., J.W. Zhao, M.E. Schranz, E.J. Leon, P.A. Quijada, L.N. Lukens and T.C.Osborn. 2004. Flowering time divergence and genomic rearrangements in resynthesized *Brassica* polyploids (*Brassicaceae*). *Biol. J. Linn. Soc.*, 82: 675-688.
- Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. *Genetics*, 155: 945-959.
- Qian, W., J. Meng, M. Li, M. Frauen, O. Sass, J. Noack and C. Jung. 2006. Introgression of genomic components from Chinese *Brassica rapa* contributes to widening the genetic diversity in rapeseed (*B. napus* L.), with emphasis on the evolution of Chinese rapeseed. *Theor. Appl. Genet.*, 113: 49-54.
- Qian, W., X. Chen, D. Fu, J. Zou and J. Meng. 2005. Intersubgenomic heterosis in seed yield potential observed in a new type of *Brassica napus* introgressed with partial *Brassica rapa* genome. *Theor. Appl. Genet.*, 110: 1187-1194.
- Rohlf, F.J. 2001. NTSYS-pc numerical taxonomy and multivariate analysis system, Exeter Publ, Setauket.
- Schneider, S., D. Roessli and L. Excoier. 2000. Arlequinver 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
- Sokal, R.R. and C.D. Michener. 1958. A statistical method for evaluating systematic relationships. *Univ. Kansas Sci. Bull.*, 38: 1409-1438.
- Somers, D.J., G. Rakow and S.R. Rimmer. 2002. Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theor. Appl. Genet., 104: 1121-1124.
- Suwabe, K., C. Morgan and I. Baneroft. 2008. Integration of Brassica A genome genetic linkage map between *Brassica* napus and *Brassica rapa. Genome*, 51: 169-176.
- U N. 1935. Genomic analysis in *Brassica* with specific reference to the experimental formation of *B. napus* and peculiar mode of fertilization. *J. Japanese Bot.*, 7: 389-452.
- Wang, H.Z. 2010. Review and future development of rapeseed industry in China. *Chinese Journal of Oil Crop Sciences*, 32(2): 300-302 (in Chinese with English abstract).
- Wu, X.M., B.Y. Chen, G.Y. Lu, H.Z. Wang, K. Xu, G.Z. Gao and Y.C. Song. 2009. Genetic diversity in oil and vegetable mustard (*Brassica juncea*) landraces revealed by SRAP markers. *Genet. Resour. Crop Ev.*, 56: 1011-1022.
- Xiao, Y., L.L. Chen and J. Zou. 2010. Development of a population for substantial new type *Brassica napus* diversified at both A/C genomes. *Theor. Appl. Genet.*, 121(6): 1141-1150.
- Xu, J.S., X.J. Qian, X.F. Wang, R.Y. Li, X.M. Cheng, Y. Yang, J. Fu, S.C. Zhang, G.J. King, J.S. Wu and K.D. Liu. 2010. Construction of an integrated genetic linkage map for the A genome of *Brassica napus* using SSR markers derived from sequenced BACs in *B. rapa. BMC Genomics*, 11: 1-15.
- Zou, J., J.L. Zhu and S.M. Huang. 2010. Broadening the avenue of intersubgenomicheterosis in oilseed *Brassica*. *Theor. Appl. Genet.*, 120(2): 283-290.

(Received for publication 23 January 2016)