ETHNOBOTANICAL INDICES BASED ETHNOVETERINARY PLANT PROFILE OF JABBAN HILLS, MALAKAND, HINDUKUSH RANGE, PAKISTAN

BARKATULLAH¹*, MUHSIN KHAN¹, HABIB AHMAD¹, MUHAMMAD SALEEM KHAN¹ AND ABDUL RAZZAQ²

¹Department of Botany, Islamia College Peshawar, Pakistan ²Department of Botany, Unversity of Peshawar, Peshawar, Pakisan ^{*}Corresponding author's email: barkatullah@icp.edu.pk

Abstract

Seventy-one plant species of ethnoveterinary usage were reported during the survey conducted in 2016-17, from Jaban Hills, District Malakand, hindukush range, Pakistan. Highest usage value (8.66%) was found for plants used for relieving skin problems and as galactagogue in cattles. 7.87% of reported plant species were used for wound healing followed by species used as anti-dyspepsia (7.08%), anti-constipation (5.51%), anti-diarrheal, antitussive and anthelmintic (4.72% each), as diuretic and carminative (3.93% each). The percentage of plant used other veterinary usage like general tonic, febrifuge, analgesic, coolant, abortifacient, curing eye and udder disorders and releaving problems during after birth processes in cattles were ecorded a total of 40.15%. The most frequently used part was shoot (21.21%), followed by leaf (12.12%), whole plant (10.10%), fruit (9.09%), root (8.08%) and seeds (7.07%). Species with highest RFC values were Ailanthus altissima (0.5), Ajuga bracteosa (0.43), Rumex hastatus (0.33), Dodonaea viscosa (0.23), and Melia azedarach (0.21). Species with highest Use values include Ailanthus altissima (0.87), Rumex hastatus (0.73), Ajuga bracteosa (0.44), Melia azedarach (0.45) and Dodonaea viscosa (0.39). As this area is blessed with high number of ethnomedicinal plants and high usage of herbal drugs used for veterinary purposes may be accompanied with certain adverse effects therefore, further investigation is required to explore more informations and to determine safe usage of the herbal drugs.

Key words: Ethnoveterinary, Hinduksh range, Highest use value, RFC, Herbal drugs.

Introduction

Plants have been reported to be used traditionally for the treatment of animal diseases; such type of human-plant relation is termed as ethno-veterinary uses of plants. Medicines used for curing livestock health are known as ethno-veterinary medicines (EVM). Plants therapeutic properties are used globally for treating the health issues of livestock. Locals of rural areas are normally more dependent on the ethno-veterinary medicines (Shen et al., 2010; Yirga et al., 2012; Gebrezgabiher et al., 2013). Traditional systems of treatment animal diseases are more common in the underdeveloped countries especially in the areas where allopathic drugs are either expensive or not easily accessible. In such areas locals normally take the help of local healer who use herbal drugs for treating the health problems of livestock (Tanzin et al., 2010). Traditional herbal ethnoveterinary medicines are also significant in cattle health maintenance in developing countries. Ethnoveterinary medicines of plants origin plays a significant role in increasing livestock products by controlling veterinary diseases. The herbal drugs are best alternatives of synthetic drugs used for treating veterinary diseases because herbal drugs produce negligible side effects in comparison with the synthetic drugs (Yirga et al., 2012).

The ethno- medicinal information of plants is also helpful for experts in ecology, pharmacology, taxonomy, wild life management and other fields as it provides base line for further studies. Modern medicines have been derived in large number from natural sources particularly from plants. The plant based traditional system of medicines continue to play a vital role in health repair, about eighty percent animal growers and farmers are mainly relying on traditionally used medicines for giving treatment to their livestock (Lulekal *et al.*, 2008).

Supporting traditional medical knowledge by documentation is necessary to discover new drug sources (Teferi *et al.*, 2009). Jaban Wartair Hills, District

Malakand, Hindukush range, KPK is situated 71° 56' east longitude and 34° 37' north latitude in Pakistan (Fig. 1). The area is hilly and distributed into many small villages including Bijligar Jaba, Qadam Khela, Spero Gat, Sro Kando, Kamangara, Tora Panha, Kwanj and Dwabandai Wartair. Babasar and Zwarhandi Uba are the sites towards Batkhela city. The sources of economy are very rare, but farming, Gujar occupation and purchasing fuel wood are common sources of earning (Khan *et al.*, 2011a, 2011b). Present study, therefore, tries to find ethnoveterinary medicinal plants used in curing of different livestock ailments in this area, which is blessed with high percentage of ethnomedicinal flora.

Material and Methods

Data collection: The area was visited regularly in different seasons during 2016-17 to collect the information regarding the ethnoveterinary uses of plants. A total of 62 respondents were interviewed during the study. Most of the respondents i.e. 34 were elders (above 50 years). 16 respondents were in the range of 30-50 while 12 respondents were below 30 years of age (Fig. 2). The ratio of elders was quite large as compared to the young people. They were asked through open ended questionnaire about the plant local names, part used, its veterinary uses and conservation status etc. The data about an individual plant was considered authentic when at least 5 persons gave the same information.

Specimen collection, preservation and identification: The plant specimens were collected, dried, mounted on herbarium sheet and identified with the help of standard literature (Shinwari *et al.*, 2011, Barkatullah & Ibrar, 2011). These specimens were then tagged with Voucher numbers and kept in the herbarium, Department of Botany, Islamia College, Peshawar, Pakistan.

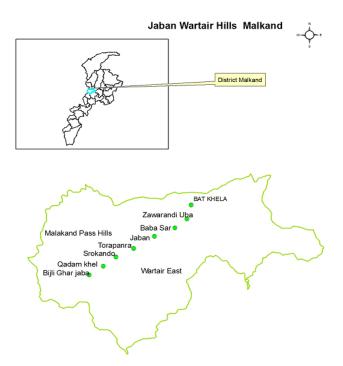
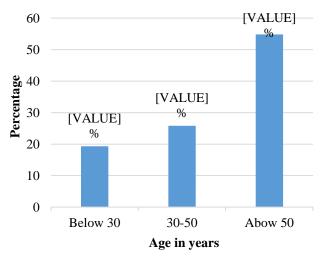
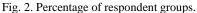




Fig. 1. Map of Jaban Hills, Hindukush range, Malakand KPK, Pakistan.

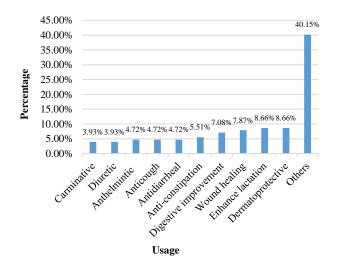


Fig. 3. Percentage of ethnoveterinary uses.

Quantitative ethnobotanical analysis: There are certain statistical formulae used for ethnobotanical study. Change of the qualitative data into measurable and quantitative data is crucial for hypothesis-testing, statistical authentication and comparative investigation (Hoffman & Gallaher, 2007; Barkatullah *et al.*, 2015). For this purpose following important indices were used for the present study.

Frequency citation (FC): The sum of informants stating the uses of individual plant during the survey is term as Frequency Citation.

Relative frequency citation (RFC): Relative frequency citation is defined as the ratio of the sum of times of an event happens to the total sum of events. An ethnobotanical study, we should say that it is the ratio of informants revealing the uses of a plant (FC) to the total sum of informants for all plants during the survey (N). It is calculated as "frequency citation (FC, the number of informants mentioning the usage of the species) divided by the sum of all informants (N), without seeing the use groups" (Kayani *et al.*, 2014; Barkatullah *et al.*, 2015). RFC is defined by the given formula:

RFC = FC/N

The value of RFC ranges from '0' (none of the informant cites the plant as useful) to '1' (every informant reported the plant to be useful) (Sadeghi & Mahmood, 2014; Barkatullah *et al.*, 2015). In ethnobotanical study RFC indicates the local importance of plants species present in an area.

Use value (UV): UV is calculated by dividing total uses mentioned by all informants for an individual plant species ($\sum Ui$) by the total number of informants (N) during the survey i.e.

$UV = \sum Ui / N$

where as "Ui" is the sum of uses stated by each informant for in an individual plant species and \sum Ui is the sum of all uses mentioned by all informants for an individual species. Use value demonstrates the relative importance of locally known plants (Ong & Kim, 2014; Barkatullah *et al.*, 2015).

Pearson correlation coefficient: Pearson productmoment correlation coefficient is a numerical metric of the strength of the lined association between 2 variables (Barkatullah *et al.*, 2015). It is the ratio of the covariance between two variables to their standard deviations (Mukaka, 2012).

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]\left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

where r is the Pearson correlation coefficient for the assumed sample, x (RFC) and y (UV) are the variables, xi and yi are the values of x and y. The r value of 0

designates no association between the variables, whereas a value more than 0 designates a positive association. Higher absolute value designates higher correlation (Zhang *et al.*, 2014). The square of correlation (r^2) is the metric of variability of cross species in RFC that is clarified by variance in UV (Bano *et al.*, 2014; Barkatullah *et al.*, 2015).

Results and Discussion

Ethnobotanical data from informant reports: In this study 71 plant species belonging to 40 families were reported for treating veterinary problems. Various ethnoveterinary uses are summarized (Table 1; Fig. 3). Plants usage for treatment of skin problem and enhance lactation (galactagogue) were recorded the highest (8.66%) followed by wound healing (7.87%), digestive tract disorders improvement (7.08%), anti-constipation (5.51%), antidiarrheal (4.72%), antitussive and anthelmintic (4.72%) each), diuretic (3.93%) and carminative (3.93%). Other ethnoveterinary application included were tonic, febrifuge, analgesic, coolant, treatment of eye and udder diseases, delivery and for disorders after birth processes. The record the plants used by the locals is also summarized (Fig. 4). The most frequently used part of plants was shoot (21.21%), followed by leaf (12.12%), whole plant (10.10%), fruit (9.09%), root (8.08%) and seed (7.07%). Less reported part used included bark, twig, flower, tuber, rhizome and latex. Ailanthus altissima was reported to be used as anti-coolant and laxative, Ajuga bracteosa as carminative. Rumex hastatus as anticough. fever reducer and to treat scabies, Dodonaea viscosa as tonic and for wound healing, Dalbergia sissoo as antidiarrheal and in mouth infections, Melia azedarach as anthelmintic, anticough and anti-lice, ant-fever and to treat stomach problems. The rout of administration was reported to be oral (68.35%), paste (30.37%) and eye drops (1.26%). Euphorbia hirta, Taraxacum officinale, Ficus palmata, Ficus carica and Acacia modesta were the most usable species used as glactogauge. Acacia nilotica, Agelops tavschii, Chenopodium album Datura innoxia, Dodonaea viscosa, Lactuca serriola and Micromeria biflora were found to use mostly for wounds healing. 7.08% of the plants including Acacia nilotica, Withania coagulans, Fagonia cretica, Verbena officinalis and Cannabis sativa were the frequently usable species for improvement of digestive disorders. 5.51% usage of plants was anticostipation. Convolvulus arvennsis, Melilotus indicus, Morus alba, Morus nigra and Ricinus communis were frequently used species for the treatment of constipation. Yirga et al., (2012) documented 22 species of plants used as veterinary medicines. Most of the medicinal plants with respect to cattle, were collected from the wild and the common part use was leaves. The veterinary medicinal preparations of plants were applied through diverse routes like oral, nasal, dermal, anal and ocular routes. Similarly, Musarrat et al., (2014) documented 43 plants distributed among 26 genera used for treatment of livestock disorders like in lactation and wound healing. The present study is much elaborated as compared to other workers including some new findings about glactgauge and wound healing both qualitatively and quantitatively.

Study reported that plants were used as antidiarrheal, anticough and anthelmintic (4.72% each). The most

frequently used species as antidiarrheal were reported to be Dalbergia sissoo, Verbascum thapsus and Withania coagulans. Aerva javanica, Calotropis procera, Morus alba and Morus nigra were the species used as antitussive. Species mostly used as anthelmintic include Melia azedarach, Ziziphus nummularia, Chenopodium botrys, Chenopodium album, Anagallis arvensis. 3.93% of the plant usage was as diuretic. Merrabilis jelapa, Silybum marianum and Solanum nigrum were reported as diuretic and carminative (3.93%). Mentha longifolia, Mentha arvences and Ajuga parviflora were reported species to be used as carminatives. Yipel et al., (2017) reported 67 plants species used in animal diseases. They stated that the medicinal plants were mostly used for gastrointestinal disorders (26%). Their stusy strengthens our finding about ethnoveternary usage.

Mostly used species for curing skin problems were Rumex hastatus, Plantago lanceolata, Polygonum barbatum and Cannabis album. Acacia modesta was found to be used making easy delivery, release of placenta. Species used for treatment of eyes disorders (watering eyes) comprised Albizia lebbeck and Calotropis procera. Solanum surattense was reported species for retaining pregnancy. Dhayapriya and Senthilkumar (2016) reported 25 plants species of 23 genera, used for the treatment of various animal disorders such as diarrhoea, dysentery, cut injury, fever, Haemarogic, Inflammatory etc. Aveni and Basiri (2018) reported 30 plants species together with different animal diseases conditions they treat. The leaves (61.29%) were commonly used, bark (25.80%), root (6.45%) and fruits (6.45%). Similarly, Patil et al., (2015) conducted 25 species of 25 genera distributed in 19 families which were used for 14 types of animal diseases which support our study.

Quantitative ethnoveternary uses: Quantitative value indices are useful tools for the analysis of ethnobotanical information. Various indices were used to analyze the data obtained in the present study. Species with highest RFC values (Fig. 5) were Ailanthus altissima (0.5), Ajuga bracteosa (0.43), Rumex hastatus (0.33), Dodonaea viscosa (0.23), and Melia azedarach (0.21). Species with highest Use values (UV) (Fig. 6) were Ailanthus altissima (0.87), Rumex hastatus (0.73), Melia azedarach (0.45), Ajuga bracteosa (0.44), Dodonaea viscosa and Dalbergia sissoo (0.39 each). These indices i.e RFC and UV are the statistical indicators of the ethnobotanical information of the native inhabitants of the area. Higher values for these attributes of some species validate the traditional knowledge about the usage of herbal medications. Pearson correlation coefficient "r" was calculated to be 0.852. This is a strong positive correlation, which means that high x variable (RFC) scores correlate with high y variable (UV) scores. The value of r^2 , the coefficient of determination was 0.7259 (Fig. 7). The robust correlation implies that RFC and UV share a linear relation across species (Bano et al., 2014; Barkatullah et al., 2015). The quantitative attributes provide support to novelty to the ethnobotanical information. Ethnobotanical indices based study reflects multiple aspects of the plants of the study area including vegetation structure, the ethnic uses, the dominant species and the conservation status. Various traditional information are rationalized by pharmacological bioassays, which revealed the novelty of the findings obtained from the area. This study generated a wealth of information worthy of guiding future course of action.

		Aman anada	Family	Local name	Veterinary uses	Part used	Rout	5	ĩ	P T	5	2
	Muhsin-ICP-01	Acacia modesta Wall.	Mimosaceae	Palosa	Ease labor and after birth processes, enhance lactation	Bark decoction, leaf	Oral	3	6	0.15	19	0.31
	Muhsin-ICP-02	Acacia nilotica (L.) Delile	Mimosaceae	Kikar	Improve digestion, wound healing	Bark decoction	Oral, paste	2	12	0.19	14	0.23
	Muhsin-ICP-04	Adiantum venustum D. Don.	Adiantaceae	Sunbal	Anthelmintic	Leaf	Oral	1	5	0.08	6	0.15
	Muhsin-ICP-05	Aegilops tauschii Coss.	Poaceae	Mastak	Wound healing	Leaf	Paste	1	9	0.10	9	0.10
	Muhsin-ICP-06	Aerva javanica (Burm.f.) Juss. Ex Schult.	Amaranthaceae	Kharbutey	Anticough, antidiarrhea	Leaf, flower	Oral	2	9	0.10	10	0.16
	Muhsin-ICP-07	Ailanthus altissima (Mill.) Swingle	Simaroubaceae	Laintus	Anti-coolant, laxative	Leaf, shoot, bark	Oral	2	31	0.5	54	0.87
	Muhsin-ICP-08	Ajuga bracteosa Wall. ex Benth	Lamiaceae	Booti	Carminative	Root, shoot	Oral	1	27	0.43	27	0.44
8.	Muhsin-ICP-10	Albizia lebbeck (L.) Benth.	Mimosaceae	Srikh	Treat eye diseases of cattle	leaf decoction	Drops into eye	1	6	0.15	6	0.15
.6	Muhsin-ICP-11	Alhagi maurorum Medik.	Fabaccae		Carminative	whole plant	Oral	1	9	0.10	9	0.10
10.	Muhsin-ICP-14	Amaranthus spinosus L.	Amaranthaceae	Ghanuganhar	Antidiarrhea, diurctic	Leaf, root	Oral	2	5	0.08	8	0.13
11.	Muhsin-ICP-15	Amaranthus viridus L.	Amaranthaceae	Ganher	Anti-stomachache, enhance immunity	Leaf, shoot	Oral	5	8	0.13	14	0.23
12.	Muhsin-ICP-16	Anagallis arvensis L.	Primulaceae	Ghatyali	coolant, anthelmintic	Leaf, fruit, shoot	Oral	2	9	0.10	10	0.16
13.	Muhsin-ICP-20	Asphodelus tenuifolius Cavan	Liliaceae	Piazakay	Anti-constipation	Leaf	Oral	1	6	0.15	6	0.15
14. J	Muhsin-ICP-21	Avena sativa L.	Poaceae	Jamdar	Enhance lactation	Shoots	Oral	1	9	0.10	9	0.10
15. 1	Muhsin-ICP-29	Calotropis procera (Aiton) Dryand.	Asclepediaceae	spalmey	Anti-stomachache, anti-cold, anti- cough, treat swollen udder, watering eye and mouth	Flowers, leaf, stem, twig, root	Oral, paste	5	11	0.18	34	0.55
16. 1	Muhsin-ICP-30	Cannabis sativa L.	Cannabaceae	Bhang	Anti-rheumatism, wound healing, improve digestion	Dried or fresh Leaf	Oral, Paste	3	7	0.11	13	0.21
17. 1	Muhsin-ICP-33	Carthamus oxyacantha M.Bieb.	Asteraceae	Ghana	Anti-fever, treat skin infection	Flower, seed	Oral	2	5	0.08	8	0.13
18.	Muhsin-ICP-38	Chenopodium album L.	Chenopodiaceae	Sarmay	Wound healing, treat skin infection, anthelmintic	Whole plant	Paste	3	7	0.11	16	0.26
19.	Muhsin-ICP-39	Chenopodium botrys L.	Chenopodiaceae	Wrejakai	Anthelmintic, treat intestinal infection	Shoots	Oral	7	5	0.08	12	0.19
20.	Muhsin-ICP-42	Clematis grata Wall.	Rannunculaceae		Wound healing	Leaf	Paste	1	5	0.08	5	0.08
21. 1	Muhsin-ICP-44	Convolvulus arvennsis L.	Convolulaceae	Prewatkay	Anti-constipation	Whole plant	Oral	1	8	0.13	8	0.13
22.	Muhsin-ICP-48	Cynodon dactylon (L.) Pers.	Poaceae	Kabal	Treat udder tumors, wound healing, tonic	Whole plant	Oral, paste	2	6	0.15	16	0.26
23.	Muhsin-ICP-50	Cyperus rotundus L.	Cyperaceae	Drab	Anthelmintic, anti-stomachache	Tuber	Oral	2	5	0.08	6	0.15
	Muhsin-ICP-51	Dalbergia sissoo DC.	Fabaceae	Shawa	Antidiarrheal, treat mouth diseases	Leaf	Oral, paste	2	13	0.21	24	0.39
	Muhsin-ICP-53	Datura innoxia L.	Solanaceae	Daltura	Wound healing for goat	Grinded fruit	Paste	1	5	0.08	5	0.08
	Muhsin-ICP-54	Debregeasia salicifolia (D.Don) Rendle	Utricaceae	Ijalai	Antidiarrheal	Leaf	Oral	1	9	0.10	9	0.10
	Muhsin-ICP-57	Dodonaea viscosa (Linn). Jacq	Sapindaceae	Ghwarhaskay	Tonic, wound healing	Leaf	Paste	2	14	0.23	24	0.39
	Muhsin-ICP-62	Euphorbia helioscopa L.	Euphorbiaceae	Mandaanu	Anthelmintic	Leaf	Oral	1	5	0.08	S	0.08
	Muhsin-ICP-63	Euphorbia hirta L.	Euphorbiaceae	Paybutey	Increase lactation and appetite	Whole plant	Oral	2	7	0.11	12	0.19
30.	Muhsin-ICP-64	Euphorbia prostrata L.	Euphorbiaceae	Wermaga	Reduce fever	Shoot	Oral	1	5	0.08	5	0.08
31. 1	Muhsin-ICP-65	Fagonia cretica L.	Zygophylaceae	Azghakay	tonic, appetite, stimulant, improve digestion	Whole plant	Oral	4	9	0.10	11	0.18
32. 1	Muhsin-ICP-66	Ficus carica Forssk.	Moraceae	Inzar	Enhance lactation, ease after birth processes	Leaf, latex	Oral	2	5	0.08	6	0.15
33	Muhein-ICD-67	Rivus nalmata Eoreck	Moreceae	(Chat In zar	Increase lactation, ease after birth	I eaf latev	ImO	"	٢	110	18	0.00
			INDIACCAC		processes, used to used skill infection and indigestion	LCal, Jalca	Olal	n	-	11.0	10	67.0
34. 1	Muhsin-ICP-70	Fumaria indica (Husskn). Pugsley	Fumaraceae	Paprha	Mastitis	Whole plant	Paste	1	5	0.08	5	0.08

30	0.110. 100 100 100.	Species name	Family	Local name	Veterinary uses	Part used	Rout	ſſ	FC	RFC	Σui	N
35.	Muhsin-ICP-80	Justica adhatoda L.	Acanthaceae	Baikan	Treat skin infection, laxative	Leaf	Paste	2	9	0.10	10	0.16
36.	Muhsin-ICP-83	Lactuca serriola L.	Asteraceae	,	Wound healing, Enhance lactation	Fruit, seed	Paste	2	9	0.10	12	0.19
37.	Muhsin-ICP-85	Lathyrus cicera L.	Papilionaceae	Marghaykhpa	Skin infection	Shoot	Paste	1	7	0.11	7	0.11
38.	Muhsin-ICP-89	Malvastrum coromandelianum (L.) Garcke	Malvaceae	Ghatkabal	Enhance lactation	Shoot	Oral	1	8	0.13	8	0.13
					Used to treat stomach problems,	I eaf branches						
39.	Muhsin-ICP-92	Melia azedarach L.	Meliaceae	Torashanday	anthelmintic, reduce fever, anti- tussive, anti-lice	seeds	Oral	2	13	0.21	28	0.45
40.	Muhsin-ICP-93	Melilotus indicus (L.) All.	Fabaceae	Lawanai	Anti-constipation of cattle	Leaf	Oral	1	5	0.08	5	0.08
41.	Muhsin-ICP-94	Mentha arvensis L.	Lamiaceae	Podina	Carminative	Shoot	Oral	1	9	0.10	9	0.10
42.	Muhsin-ICP-95	Mentha longifolia (L.) Huds.	Lamiaceae	Inalay	Carminative	Shoot	Oral	1	6	0.15	6	0.15
43.	Muhsin-ICP-96	Merabilus jalapa L.	Nyctaginaceae	Gulabbasy	Diuretic	Root	Oral	1	12	0.19	12	0.19
44.	Muhsin-ICP-97	Micromeria biflora (Buch-Ham. ex D. Don) Benth.	Lamiaceae	Nareyshamakey	Wound healing	Shoot (dried powder)	Paste	1	7	0.11	7	0.11
45.	Muhsin-ICP-98	Morus alba L.	Moraceae	Spin tut	Anti-constipation, anti-tussive	Shoot	Oral	2	9	0.10	10	0.16
46.	Muhsin-ICP-99	Morus nigra L.	Moraceae	Tor tut	Anti-constipation, anti- tussive	Leaf	Oral	2	8	0.13	12	0.19
47.	Muhsin-ICP-103	Nasturtium offficinale R. Br	Brassicaceae	Termira	Blood purifier	Shoot	Oral	1	5	0.08	5	0.08
48.	Muhsin-ICP-105	Nepeta laevigata (D.Don) HandMazz.	Lamiaceae	ŗ	Treat urinary and intestinal problem	Shoot	Oral	2	9	0.10	11	0.18
49.	Muhsin-ICP-111		Oxalidaceae	Tarukey	Increase lactation, pain killer	Root, shoot	Oral	2	8	0.13	14	0.23
50.	Muhsin-ICP-116	1	Poaceae	Nall	Improve pregnancy	Rhizome	Oral	1	9	0.10	9	0.10
51.	Muhsin-ICP-117		Pinaceae	Nakhter	Treat skin infection, wound healing	Leaf	Paste	2	6	0.15	16	0.26
52.	Muhsin-ICP-118		Plantaginaceae	Jabay	Anti-inflammatory	Leaf	Paste	1	9	0.10	10	0.16
53.	Muhsin-ICP-119	Polygonum barbatum L.	Polygonaceae	Palpulak	Anti-inflammatory	Leaf, shoot	Paste	1	7	0.11	7	0.11
54.	Muhsin-ICP-121	Portulaca olaracea L.	Portulaceae	Warkharhy	Mastitis of cattle, carminative	Root, whole plant	Paste, oral	2	5	0.08	10	0.16
55.	Muhsin-ICP-124	Ricinus communis L.	Polygonaceae	Randa	Anti-constipation, wound healing	Seed (oil), dried leaf	Oral, paste	2	9	0.10	П	0.18
56.	Muhsin-ICP-128	Rumex hastatus D. Don	Polygonaceae	Tarukay	Anti-tussive, anti-phyretic, anti- scabies	Root, stem, leaf	Oral, paste	ю	21	0.33	45	0.73
57.	Muhsin-ICP-131	Sageretia thea (Osbeck) M.C. Johnst.	Rhamnaceae	,	Treat skin diseases	Shoot	Paste	1	9	0.10	9	0.10
58.	Muhsin-ICP-134	Salvia moocrofitiana Wall. ex. Benth.	Lamiaceae	Kharghwag	Used to treat skin infection	Leaf, root	Paste	1	4	0.06	4	0.06
59.	Muhsin-ICP-138	Silybum marianum (L.) Gaertn.	Asteraceae	Kareza	Used to treat kidney and liver disorders	leaf	Oral	2	5	0.08	6	0.15
60.	Muhsin-ICP-140	Solanum nigrum L.	Solanaceae	Kachmachu	Diuretic	Shoot	Oral	1	11	0.18	11	0.18
61.	Muhsin-ICP-141		Solanaceae	Marghuny	Improve pregnancy	Fruit	Oral	1	7	0.11	2	0.11
62.	Muhsin-ICP-142	Sonchus asper (L.) Hill	Asteraceae	shawdapay	Increase lactation	Shoot	Oral	1	9	0.10	9	0.10
63.	Muhsin-ICP-145	Tamarix aphylla L.	Tamaricaceae	Ghaz	anthelmintic	Leaf	Paste	1	5	0.08	5	0.08
64.	Muhsin-ICP-146	Taraxacum Sp.	Asteraceae	Ziarhguley	Increase lactation, used to treat udder tumors	Whole plant	Oral	2	7	0.11	12	0.19
65.	Muhsin-ICP-149	Tribulus terestris L.	Zygophylaceae	Markundai	Anti-rheumatism, used to treat stomach problems, enhance lactation	Leaf, seed and fruit	Oral	3	9	0.10	15	0.24
66.	Muhsin-ICP-151	Typha latifolia L.	Typaceae	Luha	Appetizer	Root	Oral	1	7	0.11	7	0.11
67.	Muhsin-ICP-152	Verbascum thapsus L.	Scrophulariaceae	Khardag	Antidiarrheal	Whole plant	Oral	1	5	0.08	5	0.08
68.	Muhsin-ICP-153	Verbena officinale L.	Verbenaceae	Jarushamakay	Improve digestion	Shoot	Oral	1	8	0.13	8	0.13
69.	Muhsin-ICP-157	Withania coagulans (Stocks) Dunal	Solanaceae	Sperabutey	Antidiarrheal	Fruit with oil	Oral	1	9	0.10	9	0.10
70.	Muhsin-ICP-159	Zanthoxylum armatum DC.	Rutaceae	Dambara	Improve digestion, control vomiting, treat mouth infection	Fruit, leaf, seed	Oral	3	7	0.11	18	0.29
71.	Muhsin-ICP-162	Muhsin-ICP-162 Zizyphus nummularia (Burm. f.) Wight & Arn.	Rhamnaceae	Karkanra	Ease labor and after birth processes, anthelmintic	Leaf decoction	Oral	2	80	0.13	14	0.23

0.6 0.5 0.5 0.43 0.4 0.33 CLU 0.3 0.23 0.21 0.2 0.1 0 Ailanthus Ajuga Rumex Dodonaea Melia altissima bracteosa hastatus viscosa azedarach

Fig. 4. Part used in percent.

Fig. 5. Plants with highest RFC values.

Conclusion

Most People of the area are dependent on livestock for their livelyhood. To keep animals healthy, traditional herbal practices are common which has been transferred orally from generation to generation in the areas. But due to change in life style and modernization the traditional knowledge is going to vanish. On the contrary, the folkloric usage of the medicinal plants is passed down from generation to generation, so they are presumed to be safe in general usage. Due to modernization, the traditional knowledge, is going to be eroded. This study generated a wealth of information worthy of guiding future course of action.

References

- Ayeni, E.A. and B. Basiri. 2018. Ethnoveterinary Survey of Plants used in Treating Livestock among the Fulani people of Girei, Adamawa State, Nigeria. World News of Natu. Sci., 16: 53-66.
- Ayeni, E.A. and B. Basiri. 2018. Ethnoveterinary survey of plants used in treating livestock among the Fulani people of Girei, Adamawa State, Nigeria. World News of Natu. Sci., 16: 53-66.

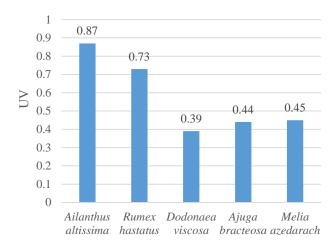


Fig. 6. Plants with highest UVs.

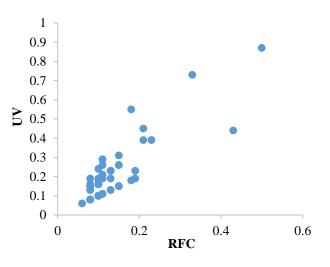


Fig. 7. Relationship between RFC (x- values) and UV (y-values) (Respondents interviewed=62).

- Bano, A., M. Ahmad, T.B. Hadda, A. Saboor, S. Sultana, M. Zafar and M.A. Ashraf. 2014. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J. Ethnobiol. and Ethnomed., 10(1): 43-60.
- Barkatullah and M. Ibrar. 2011. Plants profile of Malakand Pass Hills, District Malakand, Pakistan. Afr. J. Biotechnol., 10(73): 16521-16535.
- Barkatullah, M. Ibrar, A. Rauf, T. B. Hadda, M.S. Mubarak and S. Patel. 2015. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J. Ethnopharmacol., 169: 335-46.
- Dhayapriya, R.G. and S. Senthilkumar. 2016. Ethno veterinary medicine among Malayali tribes in Bodamalai hills Southern Eastern Ghats of Namakkal District, Tamil Nadu, India. *Asian J. Pl. Scie. & Res.*, 6(3): 7-10.
- Gebrezgabiher, G., S. Kalayou and S. Sahle. 2013. An ethnoveterinary survey of medicinal plants in woredas of Tigray region, Northern Ethiopia. *Inter. J. Biodiv. & Conser.*, 5(2): 89-97.
- Hoffman, B. and T. Gallaher. 2007. Importance indices in ethnobotany. *Ethnob. Res. & Applicat.*, 5: 201-218.
- Kayani, S., M. Ahmad, M. Zafar, S. Sultana, M.P.Z. Khan, M. A. Ashraf and G. Yaseen. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. J. Ethnopharmacol., 156: 47-60.

- Khan, A.V., Q.U. Ahmed, M.R. Mir, I. Shukla and A.A. Khan. 2011. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. *Asian Pacific J. Tropic. Biomedicine*, 1: 452-455.
- Khan, F., H. Akbar, M. Idrees, H. Khan, K. Shahzad and M.A. Kayani. 2011. The prevalence of HBV infection in the cohort of IDPs of war against terrorism in Malakand division of Northern Pakistan. *BMC Infectious Dis.*, 11: 176.
- Lulekal, E., E. Kelbessa, T. Bekele and H. Yineger. 2008. An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopian J. Ethnobiol. & Ethnomedicine, 4(1): 2-10.
- Mukaka, M.M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. *Malaysia Med. J.*, 24: 69-71.
- Mussarat, S., R. Amber, A. Tariq, M. Adnan, N.M. Abd Elsalam, R. Ullah and R. Bibi. 2014. Ethnopharmacological assessment of medicinal plants used against livestock infections by the people living around Indus River. *Bio. Med. Res. Inter.*, 8(12): 1424-1434.
- Ong, H.G. and Y.D. Kim. 2014. Quantitative ethnobotanical study of the medicinal plants used by the Ati Negrito indigenous group in Guimaras Island, Philippines. *J. Ethnopharmacol.*, 157: 228-242.
- Patil, U.S., O.S. Deshmukh and M.S. Amravati. 2015. Plants used in ethno-veterinary medicines by tribal peoples in betul district, Madhya Pradesh, India. J. Global Biosciences, 4(8): 3049-3054.

- Sadeghi, Z. and A. Mahmood. 2014. Ethno-gynecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran. *Revista Brasileira de Farmacognosia*, 24(6): 706-715.
- Shen, S., J. Qian and J. Ren. 2010. Ethnoveterinary plant remedies used by Nu people in NW Yunnan of China. J. Ethnobiol. & Ethnomedicine, 6(1): 1746-4269.
- Shinwari, S., R. Qureshi and E. Baydoun. 2011. Ethnobotanical study of Kohat Pass (Pakistan). Pak. J. Bot., 43(SI), 135-139.
- Tanzin, R., K.C. Ghosh, R. Jahan, A. Khatun and M. Rahmatullah. 2010. An ethnoveterinary survey of medicinal plants used to treat cattle diseases in Birishiri area, Netrakona district, Bangladesh. Adv. & Appl. Sci., 4(1): 10-14.
- Teferi, F., G. Teferi, A. Kaleab and G. Tsige. 2009. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. J. Ethnobiol. & Ethnomedicine, 10.1186/17464269-5-14.
- Yipel, M., F.A. Yipel, I.O. Tekeli and Y. Guze. 2017. Ethnoveterinary uses of medicinal plants in mediterranean district, Turkey. *Revista de Chimie*, 68(2): 411-416.
- Yirga, G., M. Teferi, G. Gidey and S. Zerabruk. 2012. An ethnoveterinary survey of medicinal plants used to treat livestock diseases in Seharti-sumre District, North Ethiopia. *Afr. J. Pl. Sci.*, 6(3): 113-119.
- Zhang, X., Y. Wang, Q. Liang, Z. Ma, C. Xiao, H. Tan and Y. Gao. 2014. The correlation between chemical composition, as determined by UPLC-TOF-MS, and acute toxicity of *Veratrum nigrum* L. and *Radix paeoniae alba. Evidence Based Complementary and Alternative Medicine*, 2014: 13 pages. Article ID 892797.

(Received for publication 29 August 2017)