PHYLOGENETIC RELATIONSHIPS OF GENUS *ERIOBOTRYA* LINDL. (ROSACEAE), BASED ON NUCLEAR RIBOSOMAL DNA (ITS) SEQUENCE

MUHAMMAD IDREES^{1,2,3}, AKASH TARIQ^{4,5,6*}, MITRA LAL PATHAK^{2,3}, XIN-FEN GAO^{2*}, SEHRISH SADIA⁷, ZHIYONG ZHANG¹ AND FANJIANG ZENG^{4,5,6}

¹College of Life Science, Neijiang Normal University, Neijiang 641000, Sichuan, China

²CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and

Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology,

Chinese Academy of Science, P.O Box 416, Chengdu 61004, China.

³The University of Chinese Academy of Science, Beijing, China

⁴State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,

Chinese Academy of Sciences, Urumqi 830011, China

⁵Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and

Geography, Chinese Academy of Sciences

⁶Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China

⁷Discipline of Botany, University of Veterinary and Aniimal Sciences, Ravi Campus, Pattoki, Pakistan

*Correspondence author's email: xfgao@cib.ac.cn; akash.malik786@mails.ucas.ac.cn

Abstract

The phylogenetic relationships of genus *Eriobotrya* Lindl. (Rosaceae) was evaluated based on the nuclear ribosomal internal transcribed spacers (ITS) sequence using 22 wild species of *Eriobotrya*, and 4 closest genera were used as an outgroup (*Mespilus germanica* L., *Malus sieboldii* (Regel) Rehder, *Photinia beauverdiana* C.K Schneid. and *Rhaphiolepis indica* (L.) Lindl.). Our results supported the view that the *Eriobotrya* species were monophyletic and suggested that *E. condaoensis*, *E. henryi* and *E. seguinii* as the most primitive group of *Eriobotrya*. Our results also suggest that *E. grandiflora* considered as a valid species and have close relationship to *E. fragrans*. We reported here three more taxa of the genus for the first time, *E. hookeriana* have close relationship with *E. petiolata; E. bengalensis* f. *contracta*have close relationship with *E. malipoensis* and *E. bengalensis* var. *intermedia* have close relationship to *E. salwinensis* and *E. tengyehensis*. Furthermore, it was also resolved that *E. malipoensis* have close relationship to *E. bengalensis* var. *contracta*. In addition, *E. cavaleriei* and *E. fragrans* were found to be distantly related to each other.

Key words: Eriobotrya, ITS sequence, Phylogenetic relationship, China.

Introduction

The genus *Eriobotrya* Lindl., belongs to the tribe Pyreae (subtribe Pyrinae, subfamily Spiraeoideae) of the family Rosaceae (Campbell *et al.*, 2007; Potter *et al.*, 2007). The genus is mainly distributed in the Guangxi Province, in the Yangtze River Valley, Dadu River Valley, and Yunnan Province, China and the area is considered as the centre of diversity (Zhang *et al.*, 1996; Yang, 2005; Yang *et al.*, 2005). Other distribution centers include: the Himalayas (Bhutan, Nepal and Sikkim); southern Japan; Taiwan and southeast Asia, mainly Cambodia, Indonesia, Laos, Myanmar, Thailand, and Vietnam (Vidal, 1965; Vidal, 1968; Pham, 2000; Yang *et al.*, 2005; Wong & van der Ent, 2014; Idrees *et al.*, 2018). The medicinal importance of *E. Japonica* has been documented in many studies (Liu *et al.*, 2016).

Molecular makers are the most important tools for estimating phylogenetic studies, species and cultivars identification, genetic mapping, detection of mutant gene, and population studies (Hartl & Jones, 2005; Shinwari *et al.*, 2014; Zahra *et al.*, 2016; Shinwari *et al.*, 2018). They are independent of environmental conditions and show high polymorphism. In previous studies, the phylogenetic relationships of *Eriobotrya* were analyzed by various molecular markers, such as ISSR (Xie *et al.*, 2007), RAPD and AFLP (Yang *et al.*, 2007), AFLP (Yang *et al.*, 2009). Li *et al.* (2009) was the first to evaluate the phylogenetic relationship of *Eriobotrya* using ITS sequences and showed the genus Eriobotrya to be monophyletic and further suggested that E. cavaleriei could be treated as a variety of E. fragrans. Zhao et al., (2011) evaluated the genetic relationships among loquat cultivars and wild species of the genus Eriobotrya based on ITS sequences. They revealed that E. malipoensis and E. seguinii could be the most primitive species of the genus Eriobotrya. Yang et al., (2012) supported the previous molecular studies (Yang, 2005; Li et al., 2009) and suggested that E. malipoensis was genetically separated from others and further studies should be conducted to confirm its relationship. However, most of these studies have been conducted in E. japonica cultivars and a few wild species. The phylogenetic relationships of the genus Eriobotrya and complete classification within the genus is still unclear. The available little information is insufficient to evaluate the whole genus of Eriobotrya.

The current study aims to investigate the phylogenetic relationship of wild *Eriobotrya* species by using ITS sequences and to confirm the previous suggestions on the species relationships.

Materials and Methods

Taxon sampling: A total of 19 *Eriobotrya* species were obtained from herbarium specimens at the China National Herbarium (PE), Kunming Institute of Botany (KUN), South China Botanical Garden (IBSC), corresponding to more than half of accepted species in the genus.

According to previous studies, four genera of Roseaceae (*Mespilus, Malus, Photinia* and *Rhaphiolepis*) are closely related to the genus *Eriobotrya* (Campbell *et al.*, 1995; Campbell *et al.*, 2007). Therefore, *Mespilus germanica* L., *Malus sieboldii* (Regel) Rehder, *Photinia beauverdiana* C.K Schneid. and *Rhaphiolepis indica* (L.) Lindl., were chosen as outgroup. All species with detailed information are given in Table 1.

DNA extraction and PCR amplifications: Total genomic DNA was extracted from 20-30 mg of dried herbarium specimens, using the Tiangen Plant Genomic DNA Extraction Kit (Beijing), according to instructions from the manufacturer. DNA quality was visually checked on 0.8% of agarose gel electrophoresis.

The nrDNA ITS region was amplified by using the primers 'ITSF' and 'ITSR' of Li *et al.*, (2009) and Yang *et al.*, (2011). Polymerase chain reactions (PCR) were performed in a 25 μ l volume containing 2.5 μ l of 10 X EasyTaq buffer with MgCl₂, 10 mM of 0.5 μ l of dNTP Mix, 1 μ l of each forward and reverse primer (10 mmol/L), 5 U/ μ l of EasyTaq DNA polymerase and 1 μ l of genomic DNA (20-100 ng)and18 μ lsterile water. PCR amplification reactions were performed using SimpLiAmp thermo cycler (Applied Biosystem, Life technology). Conditions for amplification of the region

consisted of initial denaturation at 94°C for 5 min, then 35 cycles at 94°C for 1 min (denaturation), annealing temperature at 58°C for 1 min, 72°C for 1 min and 30 sec (extension), with the final step of extension at 72°C for 7 mint., followed by maintaining temperature at 4°C. PCR products were electrophoresed on 1% Agarose TAE gel and were sequenced by Tsingke Biological Technology Co., Ltd. (Chengdu, China).

Data analysis

A total of 19 generated sequences together with additional ITS sequences of the three species of *Eriobotrya* were retrieved from GenBank and included in final data set. Sequence alignment was performed using ClustalW (Larkin *et al.*, 2007) with default parameters as implemented in MEGA 6 (Tamura *et al.*, 2013). Alignments were then verified and modified manually using Bioedit sequence alignment editor v 7.0.5.3 (Hall, 1999). The GC content was also analyzed by Bioedit (v 7.0.5.3). Phylogenetic analysis was conducted using Maximum Likelihood (ML) method. The K2+G model was selected asthe best model for phylogenetic analysis. ML analysis was performed using MEGA 6 (Tamura *et al.*, 2013), with gaps treated as missing data. Support values were assessed using the bootstrap option with 1000 replicates.

Table	1.	List of	species	. locality and	GenBank	accession	numbers	used in t	the present s	udv.
		1000 01	- DPCCICD	, iocuity and	Oundain	. accession	II GALLOULD	abea m e		

Species name	Locality	Vouchers	Herbarium	Genbank accession No.
				ITS
E. bengalensis (Roxb.) Hook. f.	China	0298946	IBSC	MH246941 ^a
E. bengalensis var. angustifolia Card.	China, Yunnan	0298949	IBSC	MH246942 ^a
E. bengalensis var.intermedia Vidal	China, Yunnan	0772338	KUN	MG938047 ^a
E. bengalensis f. contracta Vidal	China, Yunnan	0704812	IBSC	MH246943 ^a
E. cavaleriei (H.Lévl.) Rehd.	China, Guangxi	0299011	PE	MH246944 ^a
E. condaoensis X.F. Gao, M. Idrees & T.V. Do	Vietnam	VNMN_CN 633	CDBI	MG938050 ^a
$E. \times daduheensis$ Liao et al.	China, Sichuan	00004578	PE	MG938045 ^a
E. deflexa (Hemsl.) Nakai	China, Taiwan	01568202	PE	MG938042 ^a
E. deflexa var. buisanensis (Hay.) Kah. & Sas.	China, Taiwan	0299109	IBSC	MG938043 ^a
E. fragrans Champ. ex Benth.	China, Guandong	0299116	IBSC	MH246945 ^a
E. grandiflora Rehder & E.H.Wilson	China	00799225	PE	MH246946 ^a
E. henryi Nakai	GenBank		-	KJ170777 ^b
E. hookeriana Decne.	Bhutan	1575791	PE	MG938046 ^a
E. japonica (Thunb.) Lindl.	China, Sichuan	00799571	PE	MG938044 ^a
E. malipoensis K.C.Kuan	China, Yunnan	0299390	IBSC	MH246947 ^a
E. obovata W.W.Sm.	China, Yunnan		PE	MH246948 ^a
<i>E. petiolata</i> Hook. f.	Bhutan	01639921	PE	MH246949 ^a
E. prinoides Rehder&E.W.Wilson	China, Yunnan	0299340	IBSC	MH246950 ^a
E. salwinensis HandMazz.	China, Yunnan	607631	KUN	MG938048 ^a
E. seguinii (H.Lév.) Card. ex Guill.	China, Yunnan		-	FJ571507 ^b
E. serrata Vidal	China, Yunnan	1227861	KUN	MG938049 ^a
E. tengyuehensis W.W.Sm.	China, Yunnan		-	FJ796915 ^b
Mespilus germanica L.	USA, Chicago	M645-80	-	EF127040 ab
Photinia beauverdiana C.K Schneid.	GenBank	1733-80A	-	JQ392492 ab
Rhaphiolepis indica (L.) Lindl.	GenBank		-	KP093148 ab
Malus sieboldii (Regel) Rehder	Japan, C. & E. China	East Malling A1406	-	AF186505 ab

^a stands for sequences used in present study, ^b stands for sequences from GenBank, ^{ab} stands for sequences used as an outgroup, - stands for no information about the specimen

Fig. 1. Maximum Likelihood strict tree illustrating the phylogeny of the genus *Eriobotrya* based on nrDNA ITS datasets. Maximum Likelihood bootstrap values are shown above branches.

Results

The nrDNA data set had a total of 22 sequences, including 6 sequences reported here for the first time. The final data set consisted of 596 aligned DNA characters, of which 414 were constant, 181 variable sites and 79 informative sites. The GC content ranged from 62.99% to 66.95%. The genus Eriobotrya was resolved as monophyletic group with a bootstrap support value 95%. The best tree from the phylogenetic analysis of ITS DNA sequences of 22 taxa including species, varieties and one hybrid species, and Mespilus germanica L., Malus sieboldii (Regel) Rehder, Photinia beauverdiana C.K Schneid. and Rhaphiolepis indica (L.) Lindl., as an outgroup species is shown in Figure 1. The phylogenetic tree divided the genus into three main clades. E. henryi and E. seguinii formed a clade I, which might be the most primitive taxa in the genus Eriobotrya. E. condaoensis formed a distinct clade II, whereas others clustered into the clade III, which was further divided into 5 groups. Group A can be subdivided into 3 subgroups, E. cavaleriei formed subgroup I, E. serrata, E. grandifolia, E. fragrans formed subgroup II, E. tengyuehensis, E. salwinensis and E. bengalensis var. intermedia, formed subgroup III. Group B consisted of E.

japonica and *E. daduheensis. E. obovata* formed a monophyletic group C. Group D consisted of *E. maliopensis* and *E. bengalensis* var. *contracta* with bootstrap 96 %, while Group E consisted of *E. bengalensis*, *E. bengalensis* var. *angustifolia*, *E. deflexa*, *E. deflexa* var. *busianensis*, *E. petiolata*, *E. prinoides*, *E. hookeriana*, with bootstrap 64%.

Discussion

Phylogenetic information of ITS sequences: The length of internal transcribed spacers (ITS) region in different *Eriobotrya* species ranged from 638 bp in *E. japonica* to 652 bp in *E. serrrata* and *E. condaoensis*. Our results agreed with the previously reported finding in *Eriobotrya* sequences (Li *et al.*, 2009, Yang *et al.*, 2011) and with others fruits plants, including *Dimocarpus, Mespilus, Paeonia* (Lo *et al.*, 2007, Jiang *et al.*, 2008, Zhao *et al.*, 2008) which showed that the length of the nrDNA ITS sequences of angiosperms was more conserved, because of its faster evolution rate (Wendel *et al.*, 1995). ITS regions in many angiosperms have a higher GC content, normally ranged from 50% to 75% (Baldwin *et al.*, 1995). In the present study, the GC content ranged from 62.99%

Phylogeny and taxonomy of the Eriobotrya: Internal transcribed spacer (ITS) sequences can be used for phylogenetic analysis and evolutionary studies. The nrDNA ITS sequence was used to study the phylogenetic relationships of closely related taxa, including Rosaceae (Eriksson et al., 1998; Guo et al., 2011; Li et al., 2012; Zhu et al., 2015). Several attempts have been made to resolve the phylogenetic and interspecies relationships in the genus Eriobotrya. However, only a limited number of wild species of Eriobotrya have been included in the previous phylogenetic analysis. In the present study, more than half of accepted Eriobotrya (22 wild species), were included alongwith Mespilus germanica, Malus sieboldii, Photinia beauverdiana and Rhaphiolepis indica as an outgroup to construct the phylogenetic tree by nrDNA ITS sequence. The phylogenetic tree was resolved as monophyletic group and consistent with those presented by Li et al., (2009). In his analysis, suggested that E. henyri and E. seguinii might be the most primitive taxa in Eriobotrya. We also agreed with their analysis, but the addition of more taxa and new data improved the relationships within the genus, E. condaeoensis collected from Con Dao National Park (Vietnam) reported here for the first time supported by ITS sequence data. This newly described species formed a small clade II and had close relationship with E. henryi, E. seguiniiand with the rest of the species. Hereafter we confirmed that E. condaoensis, E. henryi and E. seguinii are the most primitive taxa in genus Eriobotrya.

Yang (2005) concluded that E. cavaleriei morphologically closely resembled to E. fragrans, and could not delimited on the basis of leaf size under some ecological condition, and suggested that one of them should be reduced to a varietal level. Later, Li et al., (2009) based on ITS sequences data showed that E. cavaleriei and E. fragransformed a group with bootstrap value (93%). The pairwise divergence was determined to be 0.003, and was suggested to be treated E. cavaleriei as a variety of E. fragrans. Based on our ITS analysis, we disagree with both author suggestions, and found that E. cavaleriei and E. fragrans were distantly related to each other. E. fragrans formed a clade with E. serrata, E. grandifolia, whereas E. cavaleriei formed a monophyletic subgroup. The pairwise divergence of E. cavaleriei and E. fragrans was determined to 0.075. Our results confirmed the position of both species and should be treated as distinct species. Morphologically, E. cavaleriei and E. fragrans have some common morphological characters and can be mainly distinguished from each other by the shape, margins of leaves, pairs of lateral veins, petals shape, styles number, indumentum of ovary and fruit size. E. cavaleriei has oblong, oblong-lanceolate leaves with slightly sharply serrate margins, 10-14 pairs of lateral veins, obovate petals, 2 (-3) styles, glabrous ovary and subglobulose elliptic fruits, 1.5 cm in diameter. In contrast, *E. fragrans* has oblong-elliptic or elliptic leaves with remotely inconspicuously apically serrate margins, elliptic or broadly ovate petals, 4 or 5 styles, pubescent apically ovary and globose, rounded fruits, 1.5–2 cm in diameter. Our results confirmed that both taxa should be treated as distinct species.

E. grandiflora was originally described by Rehder & Wilson (1913). Later it was reduced to the variety as E. deflexa var. grandiflora (Nakai 1924), and also as conspecific with E. cavaleriei (Gu Cuizhi & Spongberg, 2003). Although Huxley (1992) treated it as distinct species. Our results showed that E. grandiflora formed a subclade with E. fragrans and E. serrata with bootstrap value above 90 %, while E. cavaleriei and deflexa formed a different clade with others species. Thus we confirmed the phylogenetic positions and relationships with other species of the genus. Hereafter, E. grandiflora considered here as a distinct species as described by Rehder & Wilson (1913). We observed that most of the habit foliage and morphological characters of E. grandiflora has close resemblance to E. deflexa and E. cavaleriei, but distinguished from the former by having elliptic-oblong, rarely oblong-oblanceolate leaves, blades $10-19 \times 3-5.5$ cm, cuspidate or obtuse apex, remotely appressedly serrated margins, inflorescence 10-13 cm long, flowers larger, 2-2.5 cm and ovoid to oblong-ovoid fruits, 0.8-1.5 cm. In contrast, E. deflexa has oblong, oblong-lanceolate or elliptic leaves, blades $11-25 \times 3-7$ cm, shortly caudate or acute apex, coarsely obtusely serrate or remotely irregularly incurved-serrate or crenate margins, inflorescence short, 5.5-10 cm long, flowers shorter, 1.5-1.8 cm in diameter and ellipsoid or subglobose fruits, 1-2 cm in diameter. Comparison from the latter, E. grandiflora is 6-10 m high tree, elliptic-oblong, rarely oblong-oblanceolate leaves, blades $10-19 \times 3-5.5$ cm, cuspidate or obtuse apex, remotely appressedly serrated margins, inflorescence 10-13 cm long, pedicel 6-10 mm, filament 2-3 mm long, orbiculate to obovate-orbiculate petals, $7-9 \times 4-8$ mm, and ovoid to oblong-ovoid fruits, red-orange. In contrast, E. cavaleriei is 4-5 cm high tree, oblong, oblong-oblanceolate leaves, blades $10-18.5 \times 3-6$ cm, acuminate apex, slightly sharply serrate margins, and entire near base, inflorescence short, 9-12 cm long, filament short, 1 mm long, obovate petals, 8-10 mm, and subglobulose elliptic fruits, vellowish-red, dark when mature.

E. bengalensis var. intermedia reported here for the first time supported by ITS sequence data, and formed a subclade III with bootstrap 88%, and with close relationships to E. tengyuehensis and E. salwinensis. Yang et al., (2012) demonstrated that E. maliopensis formed a monophyletic clade and was separated from the others. They also concluded that further studies were needed for getting clear picture of its phylogenetic relationships. Our results confirmed the phylogenetic relationships of E. maliopensis and formed a clade with E. bengalensis f. contracta with bootstrap value of 96%. E. hookeriana and E. petiolata are also reported here for the first time by ITS sequence data and formed a clade with E. petiolata and E. prinoides and with other species of the genus with bootstrap value 64%, and consistent with previous studies those of Yang et al., (2017), which revealed that E. petiolata formed a clade with E. prinoides and E. x daduheensis.

Conclusions

This study revealed the phylogenetic relationships in the genus Eriobotrya based on nrDNA ITS sequence. A total of 22 Eriobotrya species and 4 closely related genera were used to construct the phylogenetic tree which resolved as monophyletic. Most of the phylogenetic relationships are essentially in agreement with previous Eriobotrya studies those of Yang et al., 2005; Li et al., 2009 and Yang et al., 2011, such as E. japonica and E. x daduheensis formed a clade and were close to each others. E. deflexa, E. deflexa var. busianensis were close to each other's, E. bengalensis and E. benaglensis var. angusifolia were also close. Following conclusion was drawn, (1) E. condaoensis, E. henryi and E. seguinii might be the most primitive taxa in genus *Eriobotrya*. (2) The position of E. fragrans, and have close relationship to E. serrata and E. grandiflora. (3) The position of E. cavaleriei was confirmed with others species (4) E. grandiflora is examined for the first time using molecular ITS data, suggested as a distinct species and have a close relationship to E. fragrans (5) E. hookeriana is also reported here for first time and have a close relationship with E. petiolata. (6) E. bengalensis forma contracta is also reported here for the first time and have a close relationship with E. malipoensis. (7) E. bengalensis var. intermedia is also reported here for the first time and have a close relationship to E. salwinensis and E. tengyehensis. However, the complete phylogeny and relationship is still unclear, further research with taxa from Mynmar is needed to resolve the whole phylogenetic and systematic positions and evolution within the genus of Eriobotrya.

Acknowledgments

We are deeply grateful to the curators and staffs of CENT. IBSC, KUN, PE, SCAU and SYS for their assistance in the study of specimens. Thanks to Dr. Meng Li (Chengdu Institute of Biology, CAS) for his support. We are also grateful to the reviewers for their helpful comments on the manuscript. This research was supported by the National Natural Science Foundation of China (Grant Nos. 31670192 & 31110103911), and Science and Technology Basic Work, Project of the Ministry of Science and Technology of China (Grant No. 2013FY112100), the CAS-TWAS President's Fellowship Programme (CAS-TWAS, 2014-2018), the Technology Department of Sichuan Province of China [2015JY0242], and the Major Scientific and Technological Achievements Transformation Project of Neijiang Normal University, the Key Program of Joint Funds of the National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region of China (Nos. U1603233, U1903102), National Natural Science Foundation of China (No. 41977050).

References

Baldwin, B.G., M.J. Sanderson, J.M. Porter, M.F. Wojciechowski, C.S. Campbell and M.J. Donoghue. 1995. The ITS region of nuclear rDNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Garden, 82: 247-277.

- Campbell, C.S., M.J. Donoghue, B.G. Baldwin and M.F. Wojciechowski. 1995. Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequence of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. *Amer. J. Bot.*, 27: 903-918.
- Campbell, C.S., R.C. Evans, D.R. Morgan, T.A. Dickinson, M.P. Arsenault. 2007. Phylogeny of subtribe Pyrinae (formely the Maloideae, Rosaceae): Limited resolution of complex evolutionary history. *Plant Syst. Evol.*, 266: 119-145.
- Chen, R. 1937. Illustrated manual of Chinese trees and shrubs. Science press, Beijing, pp. 1191.
- Eriksson, T., J.D. Michael and S.H. Malin. 1998. Phylogentic analysis of *Potentilla*using DNA sequence of nuclear ribosomal internal transcribed spacer (ITS), and implications for the classification of Rosoideae (Rosaceae). *Pl. Syst. Evol.*, 211: 155-179.
- Guo, W., Y. Yu, R.J. Shen and W.B. Liao. 2011. A phylogeny of *Photinias*enulato (Rosaceae) and related genera based on nrITS and cpDNA analysis.*Plant Syst. Evol.*, 291(1-2): 91-102.
- Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT. Nucleic Acids Symp. Ser., 41: 95-98.
- Hartl, D.L. and E.W. Jones. 2005. DNA structure and DNA manipulation. In Genetic: analysis of genes and genomes. Sudbury: *Jones and Baltlett Pub.*, 5: 36-85.
- Huxley, A. 1992. The New Royal Horticutural Society Dictionary of Gardening. Macmillan, London, pp. 196.
- Idrees, M., V.D. Troung and X.F. Gao. 2018. A new species of *Eriobotrya* (Rosaceae) from Con Dao National Park, southern Vietnam, *Phytotaxa.*, 365(3): 288-294.
- Jiang, F., H.Y. Gao, X.P. Chen and S.Q. Zheng.2008. Analysis of ITS sequences of rDNA in *Dimocarpus* plants. J. Fruit Sci., 25: 262-268.
- Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson and D.G. Higgins. 2007. Clustal W and Clustal X version 2.0. *Bioinformat.*, 23: 2947-2948.
- Li, P., S.Q. Lin, X.H. Yang, G.B. Hu and Y.M. Jiang. 2009. Molecular Phylogeny of *Eriobotrya*Lindl. (loquat) infered from internal transcribed spacer sequences of nuclear ribosome. *Pak. J. Bot.*, 41(1): 185-193.
- Li, P., X.H. Yang, G.B. Hu and S.Q. Lin. 2011. A preliminary Phylogenetic study of *Eriobotrya* based on cpDNArbcL and trnL-F sequences. *Acta Hort.*, 887: 79-83.
- Lindley, J. 1822. Rosaceae: Eriobotrya Japonica. Trans. Lin. Soc. London 8: 102.
- Liu, Y., W. Zhang, C. Xu and X. Li. 2016. Biological Activities of Extracts from loquat (Eriobotrya japonica Lindl.): A Review. *Int. J. Mol. Sci.*, 17(12). pii: E1983.
- Lo, E.Y.Y., S. Stefannovic and T.A. Dickson. 2007. Molecular Reappraisal of relationships between *Crataegus* and *Mespilus* (Rosaceae, Pyreae)- Two Genera or One?. *Syst. Bot.*, 32(3): 596-616.
- Pham, H.H. 2000. Rosaceae. In: (Ed.): Pham, H.H, An illustrated Flora of Vietnam, vol. 1. Young Publishing House, Tp. Ho Chi Minh, pp. 776-779.
- Potter, D., T. Eriksson, R.C. Evans, S. Oh, J.E.E. Smedmark, D.R. Morgan, M. Kerr, K.R. Robertson, M. Arsenault, T.A. Dickinson and C.S. Cambell. 2007. Phylogeny and classification of Rosaceae. *Pl. Sys. Evol.*, 266: 5-43.
- Shinwari, Z.K., K. Jamil and N.B. Zahra. 2014. Molecular Systematics of Selected Genera of Family Fabaceae. *Pak. J. Bot.*, 46(2): 591-598.
- Shinwari, Z.K., S.A. Jan, A.T. Khalil, A. Khan, M. Ali, M. Qaiser and N.B. Zahra. 2018. Identification and Phylogenetic analysis of selected medicinal plant species from Pakistan: DNA barcoding approach. *Pak. J. Bot.*, 50(2): 553-560.

- Tamura, K., G. Stecher, D. Peterson, A. Filipski, S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetic Analysis Version 6.0. *Mol. Biol. Evol.*, 30(12): 2725-2729.
- Vidal, J.E. 1968. Flora Du Cambodge, Laos, Vietnam. *Tuseum National D'historeNaturalle*, pp. 60-81.
- Vidal, J.E. 1965. Notes surquelquesRosacéesasiatiques (III). Révision du genre *Eriobotrya*(Pomoideae). *Adansonia.*, 5: 551-576.
- Wendel, J.F., A.S. Schabel and T. Seelan. 1995. Bidirectional interlocus concerted evolution following speciation in cotton (Gossypium). *Proc. Natl. Acad. Sci.*, 92: 280-284.
- Wong, K.M. and A.V.D. Ent. 2014. Eriobotryabalgooyi (Rosaceae), a new obligate ultramafic endemic from Kinabalu Park, Borneo. Plant Ecol. Evol., 147(1): 134-140.
- Xie, J.H., X.H. Yang and S.Q. Lin. 2007. Analysis of genetic relationships among *Eriobotrya* germplasm in China using ISSR markers. *Acta Hort.*, 750: 203-208.
- Yang, X.H. 2005. A systematic study of the genus *Eriobotrya*. Doctoral dissertation of South China Agricultural University: pp. 1-99.
- Yang, X.H. and S.Q. Lin. 2007. New ideas on the classification of loquat. *South China Fruit.*, 36(3): 28-31. (In Chinese with English abstract).
- Yang, X.H., C.M. Liu and S.Q. Lin. 2009. Genetic relationships in *Eriobotryas*pecies as revealed by amplified fragment length polymorphism (AFLP) markers. *Sci. Hort.*, 122: 264-268.
- Yang, X.H., K.Glakpe, S.Q. Lin, Y.L. Hu, Y.H. He, T.C.N. Nguyen, Y.X. Liu, G.B. Hu and C.M. Liu. 2005. Taxa of plants of the genus *Eriobotrya* around the world and native to Southeastern Asia. *J. Fruit Sci.*, 22: 55-59.

- Yang, X.H., P. Li, Z.K. Zhang. 2012. A Priliminarily phylogeny sudy of the *Eriobtorya*based on the nrDNA*adh* sequences. *NotulaebotanicaeHorti*. Agrobot., 40(2): 233-237.
- Yang, X.H., S.K. Najafabadi, M.Q. Shahid, Z. Zhang, Y. Jing, W. Wei, J.C. Wu, Y.S.GaoandS.Q. Lin.2017. Genetic relationships among *Eriobotrya* species revealed by genome-wide RAD sequence data. *Ecol. Evol.*, 7: 2861-2867.
- Yang, X.H., S.Q. Lin, G.B. Hu, P. Li, and S. J. Xu (2011). Preliminary study on ITS sequencing and characterization of *Eriobotrya*. Acta Hort., 887: 85-88.
- Zahra, N. B., Z.K. Shinwari and M. Qaiser. 2016. DNA barcoding: a tool for standardization of herbal medicinal products (HMPS) of Lamiaceae from Pakistan. *Pak. J. Bot.*, 48: 2167-2174.
- Zhang, H.Z. and W.L. Qiu. 1996. Flora of Chinese FrTit trees. Chapter Logan, Loquat. China Forestry Press, Beijing, pp. 106-111.
- Zhao, G., Z.Q. Yang, X.P. Chen and Y.H. Guo.2011. Genetic relationships among loquat cultivars and some wild species of the genus *Eriobotrya* based on the internal transcribed spacer (ITS) sequences. *Sci. Hort.*, 130: 913-918.
- Zhao, X., Z.Q. Zhou, Q.B. Lin, K.Y. Pan and M.Y. Li. 2008. Phylogenetic analysis of *Paeonia* sect. *Moutan* (Paeoniaceae) based on multiple DNA fragment and morphological data. J. Syst. Evol., 46: 563-572.
- Zhu, Z.M., X.F. Gao and F.D. Marie.2015. Phylogeny of Rosa sections *Chinense* and *Synstylae* (Rosaceae) based on chloroplast and nuclear markers. *Mol. Phylogenet. Evol.*, 87: 50-64.

(Received for publication 25November 2018)