ASSESSING YIELD STABILITY OF WHEAT GENOTYPES THROUGH VARIOUS STABILITY ANALYSES MODELS GROWN UNDER DIFFERENT AGRO-ECOLOGICAL ZONES OF SINDH

KHALIL AHMED LAGHARI, MAHBOOB ALI SIAL, SAIMA MIR ARAIN, MUHAMMAD FAHEEM AND SHAFIQUE AHMED ABRO

Nuclear Institute of Agriculture (NIA), TandoJam, Pakistan **Corresponding author's email:lagharikhalil@hotmail.com*

Abstract

Eleven stability models including parametric and non-parametric were assessed for grain yield stability. Twelve advanced wheat genotypes along with two commercial check varieties, Kiran-95 and NIA-Amber were evaluated at seven different locations viz Umerkot, Badin, Sakrand, Shahadadpur, Sanghar, Khairpur and Nausheroferoz during 2014-15 wheat growing season. The experimental layout was RCBD with three replication. Mean grain yield data showed that genotypes G4 (NIA-EST-28/11), G3, (AS-3) G5 (NIA-EST-92/9), G1 (AS-1) and G13 (Kiran-95) produced higher yield than other contesting genotypes across seven ecological zones. Results of stability analyses revealed that out 11 models studied G2, G6 were declared as stable by 8 models and G11 and G14 by 7 models. Thus, these genotypes could be more stable. Results of coefficient of variation (CV%), deviation from regression(S²di), coefficients of determination (R²), stability variance (σ_i^2) , desirability index (DJi), wricke's ecovalence (Wi) stability models, genotypic absolute rank S_i⁽¹⁾ and genotypic variance S_i⁽²⁾ were closely similar in declaring genotypes as stable. However, the regression coefficient (bi) and superiority index (Pi) models picked high yielding genotypes as stable, which indicated that models for high yielding and low yielding genotypes may be assessed seprately for further confirmation of the results.

Key words: Yield stability, Genotype x Environmental interaction, Stability models, Wide adaptable, High yielding genotypes.

Introduction

Every breeding program targets to produce high productive genotypes with other desirable traits. Multienvironmental trials help to identify and select stable genotypes by evaluting elite lines in different environments over many years (Sajid & Mohammd, 2018). These agro-ecological trials are the key to successsfully evaluate and identify highly productive, wide adaptable, specific adaptable and stable genotypes. However, climatic conditions, soil properties, temperature, percipitation, light intensity and other major weather and micro climatic conditions vary from site to site (Kukal & Irmak, 2018). The same genotype grown in different environments often shows significant variation regarding production and performance (Conde et al., 2010; Devita et al., 2010). This fluctuation is the result of the environmental component and refers to the genotype(G) \times environment (E) interaction (GEI). Various stability models have been proposed by different scientists with the passage of time to study genotype x environmental interaction. Some of which are based on univariate analysis, while other use multivariate approaches. These stability models are often categorized into parametric and non-parmetrics models. Among those methods, joint regression and deviation from regression of Finlay & Wilkinson, (1963), Eberhart & Russel, (1966) are widely used models. Other models proposed by Perkins & Jinks, (1968), stability variance by Shukla, (1972), coefficient of determination by Pinthus, (1973), coefficient of variability by Francis & Kanneberg (1978) are also used to analyze multi-environmental data. However, most of these models use univariate approaches. Single model using univariate approaches may not provide an exact stability remarks because of the genotype's multivariate response to different environments (Lin & Binns., 1988; Crossa et al., 1990 and Gauch, 1992). It has been reported that nonparametric stability methods possess some advantages over parametric methods. As, these are bias free, because they do not require assumption about the distribution of observed values. They are easy to use, understand and interpret. Moreever, additions or deletions of one or a few genotypes do not have any significant effect on the results (Huehn, 1990a). However, integrated approaches can be expoloited by using both parametric and non parmetric methods of stability for selection of genotypes. It would further strengthen in selecting best possible stable genotypes. Those genotypes which are common in more number of models during stability analyses. In literature, a lot of publications have been generated for the levels of association between different stability models. Methodologies to evaluate adaptability and stability using different models clearly indicated that more than one method should be used for reliable prediction of genotypic performance (Silva & Duarte, 2006; Roostaei et al., 2014). There is a need to conduct studies to compare traditional methods and recent statistical models. Hence, integrated model approach can be the best approach to select genotypes for wider adaptability. It can indicate the methodologies that can increase the accuracy of the selection process of genotypes, which can result in greater genetic gain (Bornhofen et al., 2017; Sabghnia et al., 2015). As, alarge number of models have been developed to study stability but in most of the cases all different models produce different results. Some models have close resemblance while others vary largely. Studies comparing the methods to assess wheat adaptability and stability parameters are scarce, and there is no consensus on which stability model is the appropriate in given condition (Mohammadi et al., 2010; Tadege et al., 2014). Hence, the present study was carried out with the objectives to integrate all the commonly used parametric and nonparmetric stability methods using same data of multienvironment trials (MET) and to select superior high yielding stable genotypes using these models in an integrated way.

Materials and Methods

Multi-environmental trials under field conditions were conducted during rabi season 2014-15 at seven differen zones *viz.*, Umerkot, Badin, Sakrand, Shahadadpur, Sanghar, Khairpur and Nausheroferoz in Sindh province of Pakistan.

Twelve elite spring wheat genotypes along with two commercial check varieties Kiran-95 and NIA-Amber were evaluated in a randomized complete block design (RCBD) with three replications at each site. All genotypes at all the seven locations were sown by seed drill in 1.2 m x 5 m plots, consisting of 6 rows spaced 30cm apart.List of environments and genotypes are presented in Table 1. Agronomic practices regarding irrigation, fertilizer, weeding were carried out with these experiments as per requirements of farmers to provide genotypes wih best possible local conditions. At crop maturity, four central rows of each genotype was harvested from all three replications to record grain yield data. Data recorded in grams per plot were converted into kg ha⁻¹ and then subjected to various stability analyses models.

Data analysis

Parametric and non-parametric stability parameters for grain yield were performed using CIMMYT software GEA-R (2015) Version 2.0 by Angela *et al.*, 2015.

These different stability models like parametric which included coefficient of variation (CV%) by Francis & Kannenberg's (1978), the regression coefficient (bi) by Finlay & Wilkinson (1963), deviation from regression (S²di) by Eberhart & Russel's (1966), coefficients of determination (R²) was estimated according to Pinthus (1973), stability variance (σ^i^2) by Shukla (1972), (Bi) by Perkin & Jink (1968), Desirability index (DJi) by Hernandez *et al.*, (1993), ecovalance (Wi) by Wricks's (1962), Superiority index (Pi) by Lin & Binn (1988) and non-parametric such as genotype absolute rank difference mean over "n"environments and between ranks variance over "n"environments S_i⁽¹⁾ and S_i^(2) by Nassar and Huehn (1987).

Results and Discussion

Mean grain yield data, showed that genotypes G4 (NIA-EST-28/11), G3₇ (AS-3) G5 (NIA-EST-92/9), G1 (AS-1) and G13 (check variety Kiran-95) produced higher mean grain yield than other contesting entries across seven zones (Table 2). These genotypes along with their grain yield data were assessed for their stability analyses by diffrent models. According to Francis & Kannenberg's (1978) stability model, those genotypes which had low CV% in all environments were considered stable. G11, G6, G4, G14 and G8 (DANI-15, KDJ-V2-10-12, NIA-EST-28/11, NIA-Amber and NIA-MN-6 respectively) had shown low CV% values than other entries. Hence, these genotypes can be categorized as stable genotypes by this model. Genotype NIA-EST-28/11was the only high yielding genotype with low

CV% values and could be potential selection provided most of other models gave it same ranking. Based on Eberhart & Russel (1966) that genotype having (bi) values near 1.0 is categorized as stable. Genotypes G5, G2, G14, G4, G6 and G13 (NIA-EST-29/9, AS-2, NIA-Amber, NIA-EST-28/11, KDJV2-10-12 and Kiran-95 respectively) had values around 1.0, hence were declared stable and less responsive to environmental changes. Based on S²di values of Eberhert & Russel (1966), lower the deviation from regression, more stable will be the genotypes, therefore, G11, G2, G6, G14 and G7 (DANI-15, AS-2, KDJV2-10-12, NIA-AMBER and KDJV2-10-13) showed lower S²di values and were kept in category of stable genotypes by this model. The value of coefficient of determination suggested by Pinthus (1973) that higher the R^2 values more stable the genotype would be considered. Therfore, G2, G7, G11, G14, G1, G6 and G10 (AS-2, KDJ-V2-10-13, DANI-15, NIA-AMBER, AS-1, KDJV2-10-12 and DANI-14) were confirmed stable according to the criterion of Pinthus (1973). According to Shukla (1962) lower the stability variance, more stable are the genotypes. Genotypes G2, G14, G6 (AS-2, NIA-AMBER and KDJV2-1012 respectively) showed desirable stability variance. According to Bi model by Perkin & Jink (1968) that genotypes showing values close to unity (1.0) are desirable. Genotype G10, G3 and G7 (DANI-14, AS-3, KDJV2-1013) showed values close to 1.0. Therefore, these were considered stable. According to Desirability index (DJi) by Hernandez et al., (1993) model that the lower Dji values are required to declare genotype as stable. Hence, G11, G2 and G6 have been confirmed as stable genotypes by this model. According to Wricke's ecovalence model that the lower the Wi value the more stable is that genotype (Wricke, 1962). Genotypes G2, G14, and G6 (AS-2, NIA-Amber, KDJ-V2-10-12) had low Wricke's ecovalence values and hence were stable. When we assessed superiority index (Pi) model given by Lin & Binn's (1988), it described that genotypes showing lower superiority index (Pi) values were considered stable genotypes. Hence, G4, G3, G8 G13 and G6 (NIA-EST-28/11, AS-3, NIA-MN-6. KDJV-2-10-13 and KIRAN-95 respectivley) were declared as stable. According to non-parametric stability models such as $S_i^{(1)}$ and $S_i^{(2)}$ values by Nassar & Huehn's (1987) that genotypes showing low variance are more adaptable. According to Si(1), G11, G2, G6 (DANI-15, AS-2, KDJV2-10-12) showed low values hence were stable. Whereas, $S_i^{(2)}$ values declared G2, G11, G14 (AS-2, DANI-13, and NIA-AMBER) as stable genotypes. Abate et al., (2015) found that stability models, Wricke'ecovalence and Shukla's stability variance could produce similar results. The two nonparametric models given by Nassar&Huehn's mean absolute rank difference S_i⁽¹⁾ and variance of ranks S_i⁽²⁾ were also reported significantly correlated with AMMI stability value, Shukla'stability variance and Wricke' ecovalence stability models hence any one of them could produce equally effective results.

S. No.	Genotype name	Parentage/ Pedigree	Environments	Site name
G1	AS-1	TJ-83/VASCO//INQILAB-91	E1	Umerkot
G2	AS-2	TJ-83/4085-3//INQILAB-91	E2	Badin
G3	AS-3	TJ-83 /4085-3	E3	Sakrand
G4	NIA-EST-28/11	CIMMYT selection	E4	Shahdadpur
G5	NIA-EST-29/9	CIMMYT selecion	E5	Sanghar
G6	KDJ V2-10-12	Mutant of Bhittai	E6	Khairpur
G7	KDJ V2-10-13	Mutant of Bhittai	E7	Nausheroferoz
G8	NIA-MN-6	Sarsabz /Khirman		
G9	NIA-MN-7	Khirman / Kiran-95		
G10	DANI-14	Kiran-95/Nayab/Sarsabz//Sunco		
G11	DANI-15	Kiran-95/Nayab//Sunco		
G12	DANI-16	Sonalika / Bhittai		
G13	KIRAN-95	Mutant of WL711/Crow "S"		
G14	NIA-AMBER	Vee #5 ''S'/Sara//Soghat-90		

Table 1. List of genotypes and environments included in this study.

Table 3 described ranking of genotypes according to various models. It could be observed that G1 ranked on 8th postions by most of models such as CV%, S²di, Dji, Wi, Pi, and S_i⁽²⁾. G2 were declared on number 1 or 2 by most of the models. Stability models R^2 , σ_i^2 , Wi, $S_i^{(2)}$ ranked it number 1, whereas, bi, S²di, DJi, S_i⁽¹⁾ ranked it number 2. Hence, almost 8 models have decalared it as stable (Table 3). Genotype G3 was ranked number 14th or on number 13th by most of models by its stability points of view. Models S²di, DJi, Wi, ranked it on number 14th whearas CV%, Si⁽²⁾ placed it on number 13th. G4 was kept on number 7 due to its stability. Models S²di, σ_i^2 , DJi, Wi, S_i⁽²⁾ declared G4 on 7th ranking. Genotype G5 exhibited variabile positions and fell on 12th, 14th and 11th rank according to stability models S²di and DJi, S_i⁽¹⁾and S_i⁽²⁾, Wi and σ_i^2 respectively. Hence, it can be assumed that in case of genotype G5, its response to various environments is highly variable which indicates that some time more Gx E interactions exist and patterns or partition of variation is higher in one genotype as compared with other genotypes. It showed presence of some other source of variation even at the same site. Genotype G6 has been ranked uniformly on number 3 or 4 by most of models. Models Bi, S²di, σ_i^2 , DJi, Wi, S_i⁽¹⁾ have ranked it on number 3 whereas, Pi and $S_i^{(2)}$ ranked it on number 4. G7 has been ranked as on 5th postion by S²di, R², DJi and Wi. G8 has been ranked on number 6 due to its stability by S²di, R2, σ_i^2 , Dji, Wi, S_i⁽²⁾ models. G9 has been categorized number 13th by S²di, σ_i^2 , Bi, DJi, Wi, $S_i^{(1)}$ models. G10 has been placed on number 12 by σ_i^2 , Wi, $S_i^{(1)}$ and $S_i^{(2)}$ stability models. G11 has been ranked as on number 1 by CV%, S²di, DJi and S_i⁽¹⁾. G12 has been ranked by different models differently. S²di, σ_i^2 , Wi models ranked it on number 9 where as DJi and Pi ranked it as number 11 and $S_i^{(1)}$ and $S_i^{(2)}$ on number 10. G13 has been ranked on number 9,10 and 11 by most of models under study. G14 has been declared on number 4

by CV%, S²di, DJi , S_i⁽¹⁾ and Bi, R2, σ_i^2 , Wi ranked it on number 2. By observing closely, it can be assessed that Wi, Pi, $S_i^{(1)}$, $S_i^{(2)}$ R2, σ_i^2 , S^2 di, DJi models have close simliarities in ranking genotypes whearas, bi, Pi models have pointed high yielding genotypes and confirmed them among stable genotypes. This shows that high yielding and low yielding lines may be sepratley analysed for stability parmeters which may possibly generate still a better identification and ranking of genotypes. Table 4 showed that how many models had declared genotypes as stable or not. Plus (+) sign declared that genotype had been ranked as stable and (-) sign represented unstable genotypes declared by the respective models. Out of 11 models, 7 models clearly indicated that genotypes 2, 6, 11 and 14 were stable. Hence, these can be effectivley used in breeding programme to produce high yielding and wide adaptable genotypes. Rharrabti et al., (2003) used five stability models to assess G x E interaction of various genotypes for quality and other traits. They placed genotypes among the category of stable genotypes if 3 models out of 5 models had declared as stable in stability analyses. The close view of results showed that coefficient of variability (CV%), deviation from regression(S²di), coefficients of determination (R²), stability variance (σ_i^2) , desirability index (DJi), Wricke's ecovalence (Wi) stability models and parametric models such as genotypic absolute rank S_i⁽¹⁾ and genotypic variance S_i⁽²⁾ were very closely similar in declaring genotypes as stable. However, the regression coefficient (bi) and superiority index (Pi) modle picked high yielding genotypes as stable, this indicates that model for high yielding and low yielding genotypes may be assessed seprately to further confirm these findings. Sabaghnia et al., (2012) in their yield stability studies identified the desirability index (DJi), superiority index (Pi) models were found to be useful in detecting the stability as well as high yielding of the genotypes.

	Table 2. V	7 arious stabi	lity analyses 1	nodels of	14 elite wheat	genotyp	es grown in se	ven differ	ent ecological z	sones in Sindh	Province of Pak	istan.	
GEN	Mean	Sd	CV (%)	bi	${ m S}^2_{ m di}$	\mathbf{R}^2	σ _i ²	Bi	DJi	Wi	Pi	$\mathbf{S_i}^{(1)}$	${f S_i}^{(2)}$
G1	5037.2	972.2	19.3	1.3	233580.4	0.7	352844.3	0.3	344370	1967049	666161.0	1.0	11.5
G2	4627.0	733.0	15.8	1.1	-54788.7	0.9	34535.39	0.1	56000.85	330032	794867.0	0.6	2.4
G3	5234.2	1198.5	22.9	1.4	742779.5	0.5	868723.6	0.4	853569.1	4620142	403335.2	0.8	20.7
G4	5336.5	640.3	12.0	0.7	159865.6	0.4	271180.1	-0.3	270655.2	1547062	212846.8	1.1	10.0
G5	5039.5	890.3	17.7	0.9	489161.7	0.4	559068.9	-0.1	599951.3	3027633	502663.1	2.0	22.5
G6	4834.1	468.9	9.7	0.7	-35405.9	0.7	96526.16	-0.3	75383.68	648841	499100.6	0.6	6.3
G7	4301.5	910.0	21.2	1.4	6765.909	0.9	154877.5	0.4	117555.5	948934	1240208.7	0.9	7.4
G8	4069.1	558.6	13.7	0.6	110802.1	0.4	260070.6	-0.4	221591.7	1489927	1735312.3	1.0	9.6
G9	4067.5	805.7	19.8	0.6	509621.5	0.2	643968.2	-0.4	620411.1	3464258	1920988.3	1.7	18.2
G10	4547.7	1130.6	24.9	1.5	404375.7	0.7	584984.1	0.5	515165.3	3160911	1045977.4	1.5	20.5
G11	4177.7	312.6	7.5	0.5	-83796.5	0.8	127426.2	-0.5	26993.11	807756	1458666.1	0.5	2.6
G12	4502.3	993.5	22.1	1.3	312419.3	0.6	422726.5	0.3	423208.9	2326443	1257096.9	1.4	17.4
G13	5008.7	1002.0	20.0	1.2	452666	0.5	535519	0.2	563455.6	2906519	476041.9	1.4	13.9
G14	4461.2	566.4	12.7	0.8	-26012.1	0.8	66641.09	-0.2	84777.51	495147	1066023.3	0.6	3.5
Mean= Me	an grain yield	$(\text{kg ha}^{-1}), \text{Sdef}$	Standard deviati	on, CV% ₌	= Coefficient of v 2	ariation, b	i = Regression c	Sefficient, S	2 di 				-

=Deviation from regression, R^{2} = Coefficients of determination, σ_{1}^{2} = Shukla's stability variance, Bi= Perkin and Jink, Dji=Desirability index Pi = Superiority index, Wi = Wricke's ecovalence, $S_{1}^{(1)}$ = Genotype absolute rank difference mean over 'n'environments and $S_{1}^{(2)}$ = Ranks variance over 'n'environments

					ecolgic	al zones in S	Sindh Provi	ice of Pakist	an.				
GEN	Mean	Sd	CV(%)	bi	${ m S}^2_{ m di}$	\mathbb{R}^2	αi ²	Bi	DJi	Wi	Ŀ	$\mathbf{S_i^{(1)}}$	$\mathbf{S_i}^{(2)}$
G1	4	10	8	5	8	3	14	4	8	8	8	7	8
G2	7	9	9	7	2	1	1	7	2	1	7	2	1
G3	7	14	13	9	14	5	12	7	14	14	2	5	13
G4	1	S	ю	б	7	9	7	10	7	7	1	6	7
G5	б	8	L	1	12	9	11	8	12	11	5	14	14
G6	6	7	2	б	ю	ω	б	11	б	б	4	ю	4
G7	11	6	11	9	5	1	5	б	5	5	10	9	5
G8	13	б	5	4	9	9	9	12	9	9	б	8	9
G9	14	L	6	4	13	7	13	13	13	13	4	13	11
G10	8	13	14	7	10	б	12	1	10	12	8	12	12
G11	12	1	1	5	1	7	4	14	1	11	12	1	2
G12	6	11	12	4	6	4	6	5	11	6	11	10	10
G13	5	12	10	ю	11	5	10	9	6	10	ю	11	6
G14	10	4	4	2	4	2	7	6	4	2	6	4	б
Mean= Rai =Deviation	nk according to from regressio	n, R ² = Coef.	yield (kg ha ⁻¹) ficients of deter	, Sd=Standa rmination, σ	rrd deviation, C 5 ₁ ² = Shukla's st	CV% = Coeffic tability variane	cient of variab ce, Bi= Perkin	ility, b i = Reg and Jink, Dji=	ression coefficie -Desirability inde	nt, S ² _{di} x Pi = Superiori	ty index, W i	= Wricke's ec	ovalence, S _i ⁽¹⁾
= Genotype	absolute rank	difference n	nean over 'n'en	vironments	and $S_i^{(2)} = Ran$	iks variance o	ver 'n'environ	ments					

Table 3. Rank order of fourteen advanced wheat genotypes according to different stability models grown in seven different

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•		•	-				U			D	E	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Genotype	Mean	Sd	CV (%)	bi	${f S}^2_{ m di}$	\mathbf{R}^2	σi ²	Bi	DJi	Wi	Ŀ	$\mathbf{S_i}^{(1)}$	$\mathbf{S_i}^{(2)}$	1 otal models	No of model declared genotypes as stable
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G1	4	10		ı	ı	+	ı	ı	ı	ı	ı	ı	ı	11	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G2	7	9	·	+	+	+	+	ı	+	+	ı	+	+	11	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G3	2	14	ı	ı	ı	ı	ı	+	ı	ı	+	ı	ı	11	2
G5 3 3 8 G6 6 5 3 G6 6 6 7 7 G7 11 9 7 7 G7 11 9 7 G8 13 3 7 G9 14 7 7 G1 15 1 G9 14 7 7 G1 1 9 7 G1 2 9 7 G1 1 9 7	G4	1	5	+	+	ı	ı	ı	ı	ı	ı	+	ı	ı	11	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G5	с	8		+	ı	ı	ı	ı	ı	ı	ı	ı	ı	11	1
G7 11 9 </td <td>G6</td> <td>9</td> <td>7</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>ı</td> <td>+</td> <td>+</td> <td>ı</td> <td>+</td> <td>ı</td> <td>11</td> <td>8</td>	G6	9	7	+	+	+	+	+	ı	+	+	ı	+	ı	11	8
G8 13 3 .	G7	11	6	ı	ı	ı	+	ı	+	ı	ı	ı	ı	ı	11	2
G9 I4 7 - - - - 11 0 G10 8 I3 - - + + - - 11 2 G11 I2 1 + + + + + 11 2 G12 9 11 - + + + + 11 7 G13 5 I2 - - + + + 11 2 G14 10 4 + - - - - 11 2	G8	13	с		ı	ı	ı	ı	ı	ı	ı	+	ı	ı	11	1
G10 8 13 ·	G9	14	7	·	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	11	0
G11 12 1 + 11 7 G12 9 11 - - - - - - 11 7 G13 5 12 - + + + + + 11 2 G14 10 4 + - - - + + 11 2	G10	8	13	·	ı	ı	+	ı	+	ı	ı	ı	ı	ı	11	2
G12 9 11 - - - - - 11 0 G13 5 12 - + - - - 11 0 G13 5 12 - + + - - 11 2 G14 10 4 + - + + - 11 2	G11	12	1	+	ı	+	+	+	ı	+	ı	ı	+	+	11	7
GI3 5 12 - + - - - 11 2 GI4 10 4 + - + + - + + 11 7	G12	6	11	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	11	0
G14 10 4 + - + + + + + 11 7	G13	5	12	ı	+	ı	ı	ı	ı	ı	ı	+	ı	ı	11	2
	G14	10	4	+	ı	+	+	+	ı	ı	+	ı	+	+	11	7

Conclusion

Based on the present results, out of 11 stability models studied, G2, G6 were decalred as stable by 8 models and G11 and G14 by 7 models. Results of coefficient of variability (CV%), deviation from regression(S²di), coefficients of determination (R²), stability variance (σ_i^2),desirability index (DJi), Wricke'secovalence (Wi) and stability models such genotypic absolute rank S_i⁽¹⁾ and genotypic variance S_i⁽²⁾ were very closely similar in declaring genotypes as stable. However, the regression coefficient (bi) and superiority index (Pi) model picked high yielding genotypes as stable. This indicates that model for high yielding and low yielding genotypes may be assessed seprately to further confirm these findings.

References

- Abate, F., F. Mekbib and Y. Dessalegn. 2015 Association of different parametric and non parametric stability models in durum wheat (*TriticumTurgidum*Desf.) genotypes. *Int. J. Plant and Soil Sci.*, 7(4): 192-201.
- Angela, P., M. Vargas, G. Alvarado, F. Rodríguez, M. López, J. Crossa and J. Burgueno. 2015. GEA-R (Genotype x Environment Analysis with R for Windows.) Version 2.0, http://hdl.handle.net/11529/10203 International Maize and Wheat Improvement Center.
- Bornhofen, E., G. Benin, L. Storck, L.G. Woyann, T. Duarte, M.G. Stoco and S.V. Marchioro. 2017. Statistical methods to study adaptability and stability of wheat genotypes. *Bragantia, Campinas*, 76(1): 1-10.
- Conde, ABT., M.A.O. Coelho, C.H. Yamanaka and H.R. Corte 2010. Adaptability and stability of wheat genotypes under drought conditions in Minas Gerais. *Pesqui. Agropecu. Trop.*, 40: 45-52.
- Crossa, J., H.G. Gauch and R.W. Zobel. 1990. Additive main effects and multiplicative interactionanalysis of two international maize cultivar trials. *Crop Sci.*, 30: 493-500.
- De Vita, P., A.M. Mastrangelo, L. Matteu, E. Mazzucotelli, N. Virzì, M.Lo. Palumbo, M. Storto, F. Rizza and L. Cattivelli. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. *Field Crops Res.*, 119: 68-77.
- Eberhart, S.A and W.A. Russell. 1966. Stability parameters for comparing varieties. *Crop Sci.*, 6: 36-40.
- Finlay, K.W. and G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding programme. *Aust. J. Agric. Res.* 14: 742-754.
- Francis, T.R. and L.W. Kannenberg. 1978. Yield stability studies in short season maize. I.A descriptive method for grouping genotypes. *Can. J. Plant. Sci.*, 58: 1029-1034.
- Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. 1stedn. Elsevier, New York.
- Gollob, H.F. 1968. A statistical model which combines features of factor analytic and analysis of valiance techniques. *Psychometrika* 33: 73-115.
- Hernandez, C.M., J. Crossa and A. Castillo. 1993. The area under the function: An index for selecting desirable genotypes. *Theor. Appl. Genet.*, 87: 409-415.
- Huehn, M. 1990a. Non-parametric measures of phenotypic stability: part 1. Theory. *Euphytica* 47: 189-194.
- Kukal, M.S and S. Irmak. 2018. Climate driven crop yield and yield variability and climate change impact on the U.S. Great Plains agricultural production. *Sci. Rep.*, 8: 3450.
- Lin, C.S. and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar × location data. *Can. J. Plant. Sci.*, 68: 193-198.

- Mohammadi, R., M. Roostaei, Y, Ansari, M., Aghaee and A. Amri. 2010. Relationships of phenotypic stability measures for genotypes of three cereal crops. *Can. J. Plant. Sci.*, 90: 819-830.
- Nassar, R. and M. Huehn. 1987. Studies on estimation of phenotypic stability: tests of significance for nonparametric measures of phenotypic stability. *Biometrics*, 43: 45-53.
- Perkins, J.M. and J.L. Jinks. 1968. Environmental and genotype environmental components of variability III, Multiple lines and crosses. *Heredity*, 23: 339-354.
- Pinthus, J.M. 1973. Estimate of genotype value: A proposed method. *Euphytica*, 22: 121-123.
- Rharrabti, Y., L.F. Gracia de Moral, D. Villagas and C. Royo. 2003. Durum wheat quality in medeterranean environment III. Stability and comparative methods in analyzing G x E interaction. *Field Crop Res.*, 80: 141-146.
- Roostaei, M., R. Mohammadi and A. Amri. 2014. Rank correlation among different statistical models in ranking of winter wheat genotypes. *The Crop J.*, 2: 154-163.

- Sabaghnia, N. 2015. Identification of the most stable genotypes in multi-environment trials by using nonparametric methods. Acta. Agriculturae Slovenica, 105(1): 103-110.
- Sabaghnia, N., R. Karimizadeh and M. Mohammadi. 2012. Genotype by environment interaction and stability analysis for grain yield of lentil genotypes. *Žemdirbystė Agri.*, 99(3): 305-312.
- Sajid, M. and F. Mohammad. 2018. Identifying stable bread wheat derived lines across environments through GGE biplot analysis. Sarhad J. Agri., 34(1): 63-69.
- Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. *Heredity*, 29: 237-245.
- Silva, W.C.J. and J.B. Duarte. 2006. Statistical methods to study phenotypic adaptability and stability in soybean. *Pesquisa Agropecuária Brasileira*, 41: 23-30.
- Tadege, M.B., H.Z. Utta and A.A. Aga. 2014. Association of statistical methods used to explore genotype x environment interaction (GEI) and cultivar stability. *Afr. J. Agri. Res.*, 9: 2231-2237.
- Wricke, G. 1962. On a method of understanding the biological diversity in field research. Z. Pflanzenzucht, 47: 92-46.

(Received for publication 21 January 2019)