# ANTIFUNGAL ACTIVITY OF METHANOLIC LEAF EXTRACT OF CARTHAMUS OXYCANTHA AGAINST RHIZOCTONIA SOLANI

## MUHAMMAD RAFIQ, ARSHAD JAVAID\* AND AMNA SHOAIB

Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan \*Corresponding author's email: arshad.iags@pu.edu.pk, arshadjpk@yahoo.com

#### Abstract

Potato is a globally important crop whose production is severely damaged by black scurf disease (stem cankers and tuber blemishes) caused by soil-borne fungus, *Rhizoctonia solani*. This study was undertaken to assess antifungal potential of *Carthamus oxycantha* extracts and detection of likely antifungal components by GC-MS. In laboratory bioassays, antifungal activity of methanolic extracts of leaf, stem, root and inflorescence of *C. oxycantha* was checked using a range of concentrations from 1.562 to 200 mg mL<sup>-1</sup>. The leaf extract significantly suppressed fungal growth. Methanolic leaf extract was subjected to GC-MS analysis. A total of 95 compounds were found present in this extract. Predominant compound was D-ribofuranose, 5-deoxy-5-(methylsulfinyl)-1,2,3-tris-O-(trimethylsilyl)- (13.312%) followed by benzoic acid, 4-hydroxy-3-methoxy-, methyl ester (11.888%), bis(2-ethylhexyl) phthalate (9.842%), 4-hydroxy-2,2',4',6'-tetrachlorobiphenyl, trimethylsilyl ether (6.837%) and pentanedioic acid (4.926%). Besides, a number of free fatty acids and fatty acid methyl esters with known antifungal potential were also identified as minor compounds.

Key words: Rhizoctonia solani, Carthamus oxycantha, Natural fungicides, Potato.

### Introduction

Black scurf of potato is a divesting disease of potato in the most potato cultivating regions around the globe. This disease is caused by Rhizoctonia solani (Kanetis et al., 2016; El-Zaidi et al., 2018). The ability of R. solani to survive in soil and plant debris for longer period of time because of their persistent sclerotia makes this disease more alarming for the crop (Sedláková et al., 2013). The optimum temperature (20-25°C) and high moisture content favor the growth of the pathogen. The pathogen affects the crop from seedling to harvesting. Black spots or sclerotia formed on potato tubers have negative effect on quality and marketing of the crop. Mostly this disease is managed by chemical methods (Lahlali & Hijri, 2010), which are not effective to completely manage this disease and in return may cause environmental pollution (Kurzawińska & Mazur, 2008). Cultivation of non-host crops in rotation is another strategy opted to minimize disease incidence and severity for 3-5 years, but rotation is not easy to carry out in the major potato growing regions (Bakali & Martín, 2006).

Plant extracts as phytobiocides could be an alternative option to control black scurf disease due to their quick degradation, narrow range of activity and nontoxic effects on the environment (Bakali & Martín, 2006). Many recent studies have shown potential use of botanicals for management of various fungal pathogens such as *Fusarium oxysporum, Macrophomina phaseolina, Sclerotium rolfsii* and *Alternaria* spp. (Sana *et al.*, 2017; Akhtar & Javaid, 2018; Javaid *et al.*, 2018a, b; Khurshid *et al.*, 2018). Earlier studies also revealed antifungal activity of extracts of *Azadirachta indica, Eucalyptus camaldulensis, Allium cepa, Allium sativum, Lantana camara, Capparis deciduas, Dodonaea viscosa* and *Peganum harmala* extracts against *R. solani* (Naz, 2006; Sharma & Kama, 2009; Atiq*et al.*, 2014; Khan *et al.*, 2016).

*Carthamus oxycantha* M. Bieb. is a problematic weed for major crops but is a major source of compounds used in medicines (Ahmad *et al.*, 2010). It

has been reported as a significant medicinally important weed due to the presence of anti-hyperlipidaemic attributes and can be used to increase blood circulation (Ahmad *et al.*, 2009). Apart from its medicinal importance, the weed is also known to exhibit allelopathy against weeds and crops plants (Hesammi, 2012; Siyar *et al.*, 2018). However, studies about antifungal activity of *C. oxycantha* are lacking. Thus, this study was carried out to check the antifungal effect of *C. oxycantha* extracts against *R. solani* isolated from black scurf disease affected potato tuners.

## **Materials and Methods**

**Pathogen's isolation:** Potato tubers suffering from black scurf disease were procured from three vegetable markets of Lahore, Pakistan. Symptomatic potatoes were treated with 1% sodium hypochlorite to remove surface microbial flora. The infected parts were sliced and inoculated on 2% malt extract agar at 25°C. After 7 days incubation, the colonies appeared around the incubated potato slices were sub-cultured on fresh malt extract agar. The fungus was identified as *Rhizoctonia solani* on the bases of macroscopic and microscopic characteristics (Lakshman *et al.*, 2016).

**Pathogenicity test:** Potato tubers were surface sterilized with 1% NaOCl and washed with sterilized water. The inoculum from fresh culture of *R. solani* was taken with the help of an inoculating needle and put on the surface of the tubers. The pathogen was allowed to establish on the potato by incubating at  $25^{\circ}$ C. The symptoms were observed after 7 days and the pathogen was again isolated for the re-confirmation.

**Extract preparation:** *C. oxycantha* was collected from Lahore. Different parts of the plant *viz.* root, stem, leaves, and flowers were separated. After drying in sun and crushing, 200 g of each part were soaked in 1 L of 80% methanol for 15 days. The solvent was filtered with

muslin cloth and filter papers followed by evaporation at  $45^{\circ}$ C on a rotary evaporator. The remaining leaf, stem, root and inflorescence materials after complete evaporation of the solvent in an oven at  $45^{\circ}$ C were weighed 8.2 g, 9.3 g, 8.4 g and 7.9 g, respectively and saved in autoclaved beakers for further experimentation (Javaid *et al.*, 2018b).

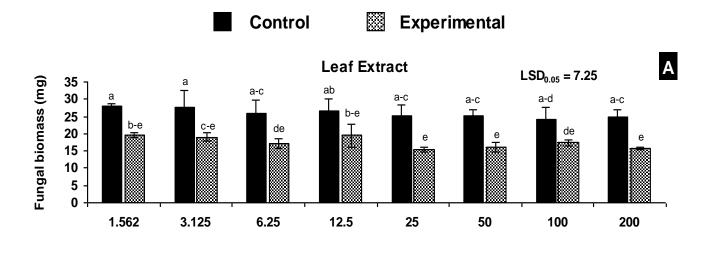
Laboratory bioassays: For stock solution preparation, 1.2 g extract of each plant part (leaf, stem, root, and inflorescence) was dissolved in 1 mL dimethyl sulphoxide (DMSO). Autoclaved malt extract broth was added to make the volume up to 6 mL. Half the amount (3 mL) was poured into pre-sterilized test tubes (1 mL in each). The volume of the remaining 3 mL was again raised to 6 mL by adding 3 mL malt extract broth. Likewise, the growth medium was serially diluted to get 1.562 to 200 mg mL<sup>-1</sup> concentrations. Each dilution was used for bioassays with 3 replications. The suspension of R. solani was prepared in autoclaved distilled water and its 20 µL were used to inoculate each test tube. Incubation was done at 25°C for 7 days. Thereafter, the fungal biomass from all the test tubes was collected on filter papers, dried and weighed (Javaid et al., 2018c).

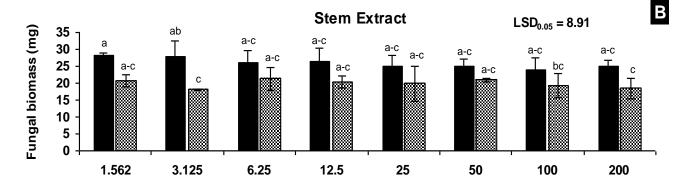
**Identification of compounds by GC-MS:** GC-MS analysis of methanolic leaf extract was carried out following Rafiq *et al.*, (2017).

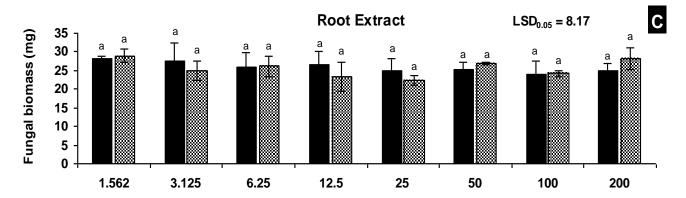
### Statistical analysis

Data were subjected to ANOVA followed by mean separation using LSD Test at P = 0.05 using software Statistix 8.1.

#### **Results and Discussion**


A significant reduction of 27-37% in fungal growth was recorded due to leaf extract. Likewise, stem and inflorescence extracts also reduced fungal biomass by 16-35% and 11-30%, respectively. However, generally antifungal effects of these extracts were insignificant as compared to corresponding control treatments. Root extract did not show any antifungal activity (Figs. 1 & 2).


Based on the highest antifungal potential, leaf extract was further analyzed through GC-MS. The GC-MS revealed the presence of 95 compounds in the extract (Table 1, Fig. 3). The major compounds included D-ribofuranose, 5-deoxy-5-(methylsulfinyl)-1,2,3-tris-O-(trimethylsilyl) (13.312%), benzoic acid, 4-hydroxy-3-methoxy-, methyl ester (11.888%), bis(2-ethylhexyl) phthalate (9.842%),4-hydroxy-2,2',4',6'tetrachlorobiphenyl, trimethylsilyl ether (6.837%), pyridine, 2-pentyl- (6.698%), pentanedioic acid (4.926%), 4-hydroxybutanoic acid (4.630%), olean-18en-3-ol, O-TMS, (3. beta.) (3.800%), phenol, 4-ethenyl-2,6-dimethoxy (3.768%), 5-amino-8-hydroxyquinoline (3.234%). 2-methylidene-6,10,14-trimethylpen 2methylidene-6,10,14-trimethylpentadecanoic acid silylated (2.439%), galactopyranose (2.176%), lisoleucine, N-trifluoroacetyl (2.100%), 13-retinoic acid, (Z)- (1.731%), and 9-octadecenamide, (Z)- (1.729%). Among the major compounds, bis (2-ethylhexyl) phthalate is known to possess antifungal activity against various fugal species (El-Sayed, 2012). This compound is a known synthetic plasticizer. However, it has been isolated from a number of plants and other organisms including *Aloe vera*, *Euphorbia cyparissias*, *E. seguieriana*, *Alchornea cordifolia*, *Calotropis gigantea* and roots of *C. oxycantha* (Toth-Soma *et al.*, 1993; Lee *et al.*, 2000; Habib & Karim, 2009; Javaid *et al.*, 2019).


Among the minor compounds, compounds namely octadecanoic acid; azelaic acid; cis-13-octadecenoic *n*-hexadecanoic acid; dodecanoic acid: acid: tetradecanoic acid and pentadecanoic acid belonged to fatty acids group. Fatty acids may be saturated or unsaturated (Moss et al., 1997). These compounds possess a number of biological activities including antifungal activity (Pohl et al., 2011). Linolenic and linoleic acids demonstrated antifungal activity against Rhizoctonia solani, Pyrenophora avenae and Pythium ultimum (Walters et al., 2004). Fatty acids isolated from cuticle of an insect Sarcophaga carnaria showed antifungal activity against various entomopathogenic fungi (Golebiowski et al., 2014). Antifungal fatty acids directly interact with cell membranes of fungi by entering in lipid bi-layer and causing increased fluidity of the membrane that results in disorganization of the cell membrane and ultimately causes cell disintegration (Avis & Bélanger, 2001). Antifungal fatty acids can replace synthetic agrochemicals which are being used to control fungal pathogens globally (Liu et al., 2008).

Various identified minor compounds belonged to fatty acid methyl esters (FAME) group. These included eicosanoic acid, methyl ester; heneicosanoic acid, methyl ester; cis-13-eicosenoic acid, methyl ester; pentadecanoic acid, methyl ester; tetracosanoic acid, methyl ester; 9,12-octadecadienoic acid (Z,Z)-, methyl ester and 13-docosenoic acid, methyl ester, (Z)- (Table 1). Most of the compounds of this group are known to exhibit antifungal activity (Javaid et al., 2018b c). Pinto et al., (2017) reported that antifungal activity of FAME of corn, soybean and maize against Paracoccidioides brasiliensis, Candida glabrata, C. parapsilosis and C. kruseiwas mainly due to 9,12-octadecadienoic acid (Z,Z)-, methyl ester (also known as methyl linoleate). Likewise, FAME isolated from seeds of Annonacornifolia showed inhibitory effects against a number of strains of P. brasiliensis (Lima et al., 2011). FAME of Salicornia brachiata (family Chenopodiaceae) also showed antifungal activity against a number of fungi (Chandrasekaran et al., 2007). FAME of Excoecaria agallocha showed antifungal activity against various clinically fungal species important (Agoramoorthy et al., 2007).

This study concludes that leaf extract of *C. oxcantha* possess a number of antifungal constituents especially bis(2-ethylhexyl) phthalate, free fatty acids and fatty acid methyl esters that inhibited the growth of *R. solani*.







D Inflorescence Extract  $LSD_{0.05} = 10.93$ ab 35 Fungal biomass (mg) ab ab ab ab ab 30 ab ab ab ab ab Т ab ab Т 25 ah 20 15 10 5 0 25 1.562 3.125 6.25 12.5 50 100 200 Concentration (mg mL<sup>-1</sup>)

Fig. 1. Effect of different concentrations of methanolic extracts of leaf, stem, root and fruit of *Carthamusoxycantha* on growth of *Rhizoctoniasolani*. Vertical bars show standard errors of means of three replicates. Values with different letters at their top show significant difference ( $p \le 0.05$ ) as determined by LSD Test.

| Table 1. Compounds identified from methanolic leaf extract of <i>Carthamus oxycantha</i> through GC-MS analysis. |                                                                                                   |                                                |        |                         |                  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------|--------|-------------------------|------------------|--|--|--|--|
| Comp.<br>No.                                                                                                     | Names of compounds                                                                                | Formula                                        | Weight | Retention<br>time (min) | Peak<br>area (%) |  |  |  |  |
| 1.                                                                                                               | D-Ribofuranose, 5-deoxy-5-(methylsulfinyl)-1,2,3-tris-O- (trimethylsilyl)-                        | $C_{15}H_{36}O_5SSi_3$                         | 412.16 | 8.42                    | 13.312           |  |  |  |  |
| 2.                                                                                                               | Benzoic acid, 4-hydroxy-3-methoxy-, methyl ester                                                  | $C_{10}H_{12}O_4$                              | 196.07 | 8.48                    | 11.888           |  |  |  |  |
| 3.                                                                                                               | Bis(2-ethylhexyl) phthalate                                                                       | $C_{24}H_{38}O_4$                              | 390.28 | 15.12                   | 9.842            |  |  |  |  |
| 4.                                                                                                               | 4-Hydroxy-2,2',4',6'-tetrachlorobiphenyl, trimethylsilyl ether                                    | C15H14Cl4OSi                                   | 377.96 | 16.12                   | 6.837            |  |  |  |  |
| 5.                                                                                                               | Pyridine, 2-pentyl-                                                                               | $C_{13}H_{13}N$                                | 183.10 | 5.65                    | 6.698            |  |  |  |  |
| 6.                                                                                                               | Pentanedioic acid                                                                                 | $C_5H_8O_4$                                    | 132.11 | 7.45                    | 4.926            |  |  |  |  |
| 7.                                                                                                               | 4-Hydroxybutanoic acid                                                                            | $C_4H_8O_3$                                    | 104.10 | 5.91                    | 4.630            |  |  |  |  |
| 8.                                                                                                               | Olean-18-en-3beta-ol                                                                              | C33H58O                                        | 498.43 | 19.53                   | 3.800            |  |  |  |  |
| 9.                                                                                                               | Phenol, 4-ethenyl-2,6-dimethoxy-                                                                  | $C_{10}H_{12}O_3$                              | 180.08 | 8.85                    | 3.768            |  |  |  |  |
| 10.                                                                                                              | 5-Amino-8-hydroxyquinoline                                                                        | $C_9H_8N_2O$                                   | 160.17 | 16.36                   | 3.234            |  |  |  |  |
| 11.                                                                                                              | 2-Methylidene-6,10,14-trimethylpen2-methylidene-6,10,14-<br>trimethylpentadecanoic acid silylated | C22H44O2Si                                     | 368.31 | 11.73                   | 2.439            |  |  |  |  |
| 12.                                                                                                              | Galactopyranose                                                                                   | $C_6H_{12}O_6$                                 | 180.15 | 17.98                   | 2.176            |  |  |  |  |
| 13.                                                                                                              | l-Isoleucine, N-trifluoroacetyl-                                                                  | C8H12F3NO3                                     | 227.08 | 6.49                    | 2.100            |  |  |  |  |
| 14.                                                                                                              | 13-Retinoic acid, (Z)-                                                                            | $C_{20}H_{28}O_2$                              | 300.43 | 15.27                   | 1.731            |  |  |  |  |
| 15.                                                                                                              | 9-Octadecenamide, (Z)-                                                                            | C <sub>18</sub> H <sub>35</sub> NO             | 281.27 | 14.11                   | 1.729            |  |  |  |  |
| 16.                                                                                                              | Dehydroabietic acid                                                                               | $C_{20}H_{28}O_2$                              | 372.25 | 14.38                   | 1.698            |  |  |  |  |
| 17.                                                                                                              | Phosphoric acid, bis(trimethylsilyl)monomethyl ester                                              | C7H21O4PSi2                                    | 256.07 | 5.42                    | 1.220            |  |  |  |  |
| 18.                                                                                                              | Decanedioic acid, dibutyl ester                                                                   | C18H34O4                                       | 314.25 | 12.96                   | 1.052            |  |  |  |  |
| 19.                                                                                                              | 9-Octadecenoic acid, (E)-                                                                         | C18H34O2                                       | 282.46 | 13.26                   | 0.977            |  |  |  |  |
| 20.                                                                                                              | Docosanoic acid, methyl ester                                                                     | C23H46O2                                       | 354.35 | 14.95                   | 0.885            |  |  |  |  |
| 21.                                                                                                              | Pentadecanoic acid, methyl ester                                                                  | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> | 256.24 | 10.71                   | 0.878            |  |  |  |  |
| 22.                                                                                                              | Benzoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester                                      | C7H6O2                                         | 282.11 | 8.83                    | 0.856            |  |  |  |  |
| 23.                                                                                                              | Cyclononasiloxane, octadecamethyl-                                                                | C18H54O9Si9                                    | 666.17 | 10.72                   | 0.846            |  |  |  |  |
| 23.<br>24.                                                                                                       | 10-Undecenoic acid                                                                                | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184.27 | 12.91                   | 0.753            |  |  |  |  |
| 25.                                                                                                              | Bohlmann k2631                                                                                    | C <sub>15</sub> H <sub>20</sub> O <sub>2</sub> | 232.15 | 11.92                   | 0.582            |  |  |  |  |
| 25.<br>26.                                                                                                       | Undecanedioic acid                                                                                | $C_{11}H_{20}O_{4}$                            | 216.27 | 11.92                   | 0.486            |  |  |  |  |
| 20.<br>27.                                                                                                       | 2-Aminoethanol, N-acetyl-                                                                         | C4H9NO2                                        | 103.12 | 5.64                    | 0.400            |  |  |  |  |
| 27.                                                                                                              | Pimelic acid                                                                                      | C7H12O4                                        | 160.16 | 9.04<br>9.09            | 0.473            |  |  |  |  |
| 28.<br>30.                                                                                                       | Octadecanoic acid                                                                                 | $C_{18}H_{36}O_2$                              | 284.27 | 12.90                   | 0.408            |  |  |  |  |
| 30.<br>31.                                                                                                       |                                                                                                   |                                                |        |                         | 0.400            |  |  |  |  |
|                                                                                                                  | 2-O-Glycerol-α-d-galactopyranoside, hexa-TMS                                                      | C27H66O8Si6                                    | 686.34 | 14.00                   |                  |  |  |  |  |
| 32.                                                                                                              | Triethylene glycol                                                                                | $C_6H_{14}O_4$                                 | 150.17 | 8.30                    | 0.364            |  |  |  |  |
| 33.                                                                                                              | Androst-4-ene-3, 17-dione, 15-hydroxy-, (15.alpha.)-                                              | $C_{19}H_{26}O_3$                              | 302.19 | 14.56                   | 0.358            |  |  |  |  |
| 34.                                                                                                              | 1-Monomyristin                                                                                    | C17H34O4                                       | 302.45 | 14.29                   | 0.314            |  |  |  |  |
| 35.                                                                                                              | <i>n</i> -Tetracosanol-1                                                                          | C24H50O                                        | 354.39 | 14.23                   | 0.309            |  |  |  |  |
| 36.                                                                                                              | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)-                                         | $C_{14}H_{20}O_2$                              | 196.07 | 8.08                    | 0.295            |  |  |  |  |
| 37.                                                                                                              | Hexacosane                                                                                        | C <sub>26</sub> H <sub>54</sub>                | 366.42 | 13.76                   | 0.273            |  |  |  |  |
| 38.                                                                                                              | Azelaic acid                                                                                      | C9H16O4                                        | 188.10 | 9.34                    | 0.273            |  |  |  |  |
| 39.                                                                                                              | Pantothenic acid                                                                                  | C9H17NO5                                       | 219.23 | 11.98                   | 0.251            |  |  |  |  |
| 40.                                                                                                              | 3-(4-Hydroxyphenyl)-1-propanol                                                                    | $C_9H_{12}O_2$                                 | 152.19 | 9.74                    | 0.224            |  |  |  |  |
| 41.                                                                                                              | Phloretic acid                                                                                    | C9H10O3                                        | 166.17 | 10.33                   | 0.215            |  |  |  |  |
| 42.                                                                                                              | Propanetriol, 2-methyl                                                                            | $C_4H_{10}O_3$                                 | 106.12 | 7.88                    | 0.183            |  |  |  |  |
| 43.                                                                                                              | Glycerol                                                                                          | $C_3H_8O_3$                                    | 92.09  | 5.55                    | 0.163            |  |  |  |  |
| 44.                                                                                                              | 2-Linoleoylglycerol                                                                               | $C_{21}H_{38}O_4$                              | 354.53 | 15.97                   | 0.152            |  |  |  |  |
| 45.                                                                                                              | 4-Coumaric acid                                                                                   | C9H8O3                                         | 164.16 | 11.57                   | 0.132            |  |  |  |  |
| 46.                                                                                                              | 5-O-Coumaroyl-D-quinic acid                                                                       | $C_{16}H_{18}O_8$                              | 388.10 | 17.32                   | 0.122            |  |  |  |  |
| 47.                                                                                                              | 2'-Hydroxy-6'-methoxyacetophenone                                                                 | C9H10O3                                        | 166.17 | 8.23                    | 0.110            |  |  |  |  |

Table 1. Compounds identified from methanolic leaf extract of Carthamus oxycantha through GC-MS analysis.

| No.     Names of compounds     Formula     Weight     Terms (mm) arrar (W)       48.     Xylinol     C5H;05     152,14     0.00     0.102       44.     L-Valine     C5H;105     152,14     0.07     0.102       50.     Octabydro-IH-cyclopenta[b]pyridin-4-01     C4H;N05     171,14     5.76     0.093       51.     Decanedicia acid, bis(2-ethylhexyl) ester     CaHsO     426,37     16.35     0.079       52.     Stigmastanol     C3HsO     16.41     0.040     5.63     0.056       53.     Dechylene glycol     C4HroO     195,13     14.38     0.056       54.     Rhonoicia acid     C3HsO     323,22     13.86     0.042       55.     Eicosanicia acid, methyl ester     C3HzQ     234,06     7.57     0.030       50.     Flowsymseteme     C3HzQ     234,06     7.57     0.030       50.     Flowsymseteme     C3HzQ     241,62     17.62     16.42     0.062       6.     Renzenseucicia acid     C4HsQ     26.63     0.060 <th colspan="10">Table 1. (Cont'd.).   Comp. Retention</th>                                                                                                                                                                                                                                                                                                                                    | Table 1. (Cont'd.).   Comp. Retention |                                                                          |                                               |        |       |                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|--------|-------|------------------|--|--|--|--|
| 49.   L'Valine   CiHuNO:   117.14   5.76   0.093     50.   Octahydro: H-cyclopenta[h]pyridin.4-01   CiHuNO:   111.12   4.26   0.003     51.   Decanciclo aid, bis(2-ethylhexyl) ester   CaHuO:   16.13   10.02   0.006     52.   Sigmastanol   CaHuO:   106.12   6.00   0.066     53.   Diethylene glycol   CHuO:   106.12   6.00   0.066     54.   NL-Bick-L-hydroxynghlyb-tohidine   CHuO:   104.12   4.38   0.035     55.   Fropanetioic acid   C3HuO:   104.06   5.63   0.055     57.   Polea cid, burly ester   CaHuO:   324.02   13.83   0.030     58.   Eicosane   CaHuO:   13.42   0.023     59.   Eicosane   CaHuO:   13.42   0.023     50.   Pilotxymestrone   CaHuO:   13.42   0.021     51.   Macaucancia acid   CaHuO:   13.42   0.001     52.   Dodecanoic acid   CaHuO:   14.15   0.001     53.   Dodecanoic acid   CaHuO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comp.<br>No.                          | Names of compounds                                                       | Formula                                       | Weight |       | Peak<br>area (%) |  |  |  |  |
| 50.     Octahydro-IH-cyclopentalb]pyridin-4-ol     CaHaNO     141.12     4.26     0.083       51.     Decanclicic acid, his(2-chtylhexyl) ester     CaHaOA     426.37     16.53     0.079       52.     Sigmatunol     CaHaOA     106.12     6.00     0.060       53.     Diethylene glycol     CaHaOA     106.12     6.00     0.060       54.     N.N-Bis(2-hydroxyethyl)-p-toluidine     CaHaOA     104.06     5.33     0.035       55.     Propanedicio acid     CaHaOA     26.32     13.88     0.042       56.     Elocsamoia acid, methyl ester     CaHaOA     23.83     0.038     0.035       56.     Phydau/necarboxylic acid, 1,2,3,4-ternhydro-2,3-dimethyl-1,4-dioxo-     CiHaOA     23.01     13.42     0.023       56.     Phydau/necarboxylic acid, 1,2,3,4-ternhydro-2,3-dimethyl-1,4-dioxo-     CiHaOA     23.02     13.83     0.038       57.     Dioxymesterone     CaHaOA     22.02     13.84     0.007       57.     AidaOA     CaHaOA     22.02     13.85     0.001       57. <t< td=""><td>48.</td><td>Xylitol</td><td>C5H12O5</td><td>152.14</td><td>10.07</td><td>0.102</td></t<>                                                                                                                                                                                                                                    | 48.                                   | Xylitol                                                                  | C5H12O5                                       | 152.14 | 10.07 | 0.102            |  |  |  |  |
| 51.     Decanetionic acid, hisQ2-ethylhexyl) ester     C <sub>20</sub> HisO     Q42.37     I6.35     0.079       52.     Stigmastanol     C <sub>20</sub> HisO     Q41.673     106.12     0.00       53.     Disthylner glycol     C <sub>11</sub> H <sub>17</sub> NO.     195.13     14.38     0.055       55.     Propanetioic acid     C <sub>31</sub> H <sub>4</sub> O,     191.06     5.33     0.055       56.     Elcosanoic acid, methyl ester     C <sub>21</sub> H <sub>4</sub> O,     24.32     13.88     0.035       57.     Olcic acid, butyl ester     C <sub>21</sub> H <sub>4</sub> O,     24.06     7.57     0.030       58.     6-Phthaltarinecarboxylic acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-ditoxe     C <sub>21</sub> H <sub>4</sub> O,     23.03     6.13     0.017       59.     Elcosanoic acid     C <sub>10</sub> H <sub>3</sub> O,     28.24     13.84     0.025       61.     Niacin     C <sub>41</sub> H <sub>3</sub> O,     28.26     13.42     0.001       71.     Gadaceanoic acid     C <sub>10</sub> H <sub>3</sub> O,     28.24     11.65     0.001       62.     Flocosanoic acid     C <sub>10</sub> H <sub>3</sub> O,     28.24     11.65     0.001       71.     Gadaceanoic acid, me                                                                                                           | 49.                                   | L-Valine                                                                 | $C_5H_{11}NO_2$                               | 117.14 | 5.76  | 0.093            |  |  |  |  |
| 52.     Stigmastanol     CaHi2O     416.73     19.62     0.068       53.     Diehylene glycol     CuHi3O2     106.12     6.00     0.060       54.     N.N.Bis(2-hydroxyethyl)-p-toluidine     CuHi3O2     195.13     14.38     0.0355       55.     Fropanedioic acid     CuHi3O2     328.32     13.86     0.041       57.     Oleic acid, buryl ester     C2Hi4O2     338.32     13.83     0.038       58.     6-Phthalazinecarboxylic acid, 1.2.3,4-tetrahydro-2,3-dimethyl-1,4-dioxo-     CuHu3O2     224.02     338.32     13.83     0.025       50.     Fluoxymesterone     CaHi2O2     222.06     12.78     0.007       61.     Niacin     CuH3O2     222.06     12.78     0.007       63.     -Haxodecanoic acid     CuH3O2     222.06     12.78     0.007       63.     -Haxodecanoic acid     CuH3O2     282.26     11.85     0.007       63.     Dodecancic     CuH3O2     282.26     11.85     0.001       64.     Borazadecanoic acid     CuH3O2     <                                                                                                                                                                                                                                                                                                                                                                          | 50.                                   | Octahydro-1H-cyclopenta[b]pyridin-4-ol                                   | C <sub>8</sub> H <sub>15</sub> NO             | 141.12 | 4.26  | 0.083            |  |  |  |  |
| 53.     Deterylene glycol     C.H.B.O.     106.12     6.00     0.060       54.     N.N.Bis(2-hydroxyethyl)-p-toluidine     C1H,rNO2     195.13     1.4.38     0.055       55.     Propanedio: acid, methyl ester     C2H4O2     326.32     1.3.86     0.042       57.     Oleic acid, hethyl ester     C2H4O2     338.32     1.3.83     0.038       58.     6-Pinthalzainecarboxylic acid, 1.2.3,4-tetrahydro-2.3-dimethyl-1,4-dioxo-     CaH4O2     338.23     1.1.88     0.025       50.     Fluoxymesterone     C2mH2O2     336.21     1.3.42     0.023       61.     Niacin     C4H3NO2     123.02     6.1.3     0.017       62.     Fluoxymesterone     CmH3O2     280.24     11.65     0.007       63.     n-Hexadecanoic acid     C1H3O2     280.24     11.65     0.001       64.     Dodecanoic acid, methyl ester     C2H4O2     340.33     14.42     0.001       65.     Hexadecanoic acid, methyl ester     C3H4G3     364.41     13.09     0.001       7.     Hexadecanoic acid, methyl                                                                                                                                                                                                                                                                                                                                         | 51.                                   | Decanedioic acid, bis(2-ethylhexyl) ester                                | $C_{26}H_{50}O_4$                             | 426.37 | 16.35 | 0.079            |  |  |  |  |
| 54.   N.N.Bis(2-hydroxyethyl)-p-toluidine   C1H1;NO2   195.13   14.38   0.056     55.   Propanedioic acid, methyl ester   C2H4O2   326.32   13.86   0.042     7.   Oleic acid, butyl ester   C2H4O2   338.32   13.83   0.038     58.   6-Phthalazinearboxylic acid, 1,2.3,4-tetrahydro-2,3-dimethyl-1,4-dioxo-   C1H1;NN20   234.06   7.57   0.030     59.   Eicosane   C2H4O2   336.21   13.42   0.023     61.   Niacin   C4H3NO2   123.03   6.13   0.017     72. <i>cis</i> -13-Octadecenoic acid   C1H3AO2   282.62   11.65   0.007     74.   Dodecanoic acid   C1H3AO   212.78   0.007     74.   Dodecanoic acid   C1H3AO   12.05   6.08   0.001     75.   Hexadecanoic acid   C1H3AO   12.05   6.08   0.001     76.   Hexadecanoic acid, methyl ester   C2H4AO2   340.33   14.42   0.001     76.   Hexadecanoic acid, methyl ester   C3H4AO   242.25   8.98   0.001     76.   Hexadecanoic acid, methyl es                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.                                   | Stigmastanol                                                             | C29H52O                                       | 416.73 | 19.62 | 0.068            |  |  |  |  |
| 55.   Propanedioic acid   CiHQ:   104.06   5.63   0.055     56.   Eicosanoic acid, methyl ester   Ci,Hu,O;   326.32   13.86   0.042     57.   Oleic acid, butyl ester   Ci,Hu,O;   234.02   13.83   0.038     58.   6.Phthalazinecarboxyli acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxo   Ci,Hu,O;   23.02   13.42   0.023     50.   Ficosane   CaHB,O;   13.02   13.42   0.023     61.   Niacin   CuHB,O;   123.03   6.13   0.017     62.   cis-13-Octadecenoic acid   CuHB,O;   123.03   6.03   0.001     63.   m-Hexadocanoic acid   CuHB,O;   123.03   6.042   0.001     64.   Dodecane   CuHB,O;   13.005   6.08   0.001     65.   Dodecane   CuHB,O;   13.005   6.08   0.001     67.   Hexadocanoic acid, methyl ester   CuHB,O;   13.005   6.08   0.001     67.   Hexadocanoic acid, methyl ester   CuHB,O;   13.05   6.08   0.001     71.   Hexadocanoic acid, methyl ester                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.                                   | Diethylene glycol                                                        | $C_4H_{10}O_3$                                | 106.12 | 6.00  | 0.060            |  |  |  |  |
| 56.   Ficosanoic acid, methyl ester   C2:H4/20;   326.32   13.80   0.042     57.   Oleic acid, buryl ester   C2:H4/20;   338.32   13.80   0.038     58.   6-Phthalazinecarboxylic acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxo   C2:H4/20;   336.21   13.42   0.030     50.   Ficosane   C3:H2/70;   336.21   13.42   0.033     61.   Nincin   C4:H3/00;   123.03   6.13   0.017     62.   rhexadecanoic acid   C1:H3/20;   25.224   11.65   0.007     63.   n-Hexadecanoic acid   C1:H3/20;   25.55   0.001     64.   Dodecaneic acid   C1:H3/20;   24.24   10.68   0.001     76.   Hexadecanoic acid, methyl ester   C2:H4/20;   340.33   14.42   0.001     76.   Hexadecanoic acid, methyl ester   C2:H4/20;   340.33   14.42   0.001     77.   I-Hexacosene   C3:H3/20;   28.26   11.85   0.001     71.   Cetene   C3:H4/20;   34.33   14.22   0.001     73.   Benzaldechydic, 3-hydroxy-4-methoxy-<                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.                                   | N,N-Bis(2-hydroxyethyl)-p-toluidine                                      | $C_{11}H_{17}NO_2 \\$                         | 195.13 | 14.38 | 0.056            |  |  |  |  |
| 57.   Oleic acid, butyl ester   C <sub>2</sub> H <sub>4</sub> D <sub>2</sub> 33.32   13.83   0.038     58.   6-Pithalazinecarboxylic acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxo   C <sub>2</sub> H <sub>4</sub> D   23.40   7.57   0.030     59.   Eicosane   C <sub>2</sub> MH <sub>2</sub> D   32.31   11.88   0.025     61.   Niacin   C <sub>2</sub> MH <sub>2</sub> D   32.61   11.82   0.023     61.   Niacin   C <sub>4</sub> H <sub>3</sub> D <sub>1</sub> D   22.62   12.78   0.007     62.   r.H-Gazdecanoic acid   C <sub>1</sub> H <sub>2</sub> D <sub>2</sub> D   20.62.4   11.65   0.007     64.   Dodecanoic acid   C <sub>1</sub> H <sub>2</sub> D <sub>1</sub> D   20.55   0.001     65.   Dodecanoic acid   C <sub>1</sub> H <sub>2</sub> D   20.18   8.72   0.001     66.   Benzeneacetic acid   C <sub>2</sub> H <sub>2</sub> D   20.18   8.72   0.001     70.   Segalenciac acid, methyl ester   C <sub>2</sub> H <sub>2</sub> D   20.18   0.001     71.   Cetene   C <sub>2</sub> H <sub>2</sub> D   20.41   13.09   0.001     71.   Cetene   C <sub>2</sub> H <sub>2</sub> D   26.41   13.09   0.001     72.   cfs-1-Eicosenic acid, methyl ester   C <sub>2</sub> D-D   26.82 <td< td=""><td>55.</td><td>Propanedioic acid</td><td><math>C_3H_4O_4</math></td><td>104.06</td><td>5.63</td><td>0.055</td></td<> | 55.                                   | Propanedioic acid                                                        | $C_3H_4O_4$                                   | 104.06 | 5.63  | 0.055            |  |  |  |  |
| 58.     6-Phthalazine carboxylic acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxo     C1/H0N204     234.06     7,57     0.030       59.     Eicosane     C2/nH2     282.33     11.88     0.025       60.     Fluoxymesterone     C2/nH2FO3     283.021     13.42     0.023       61.     Niacin     C4/H4N02     123.03     6.13     0.017       62.     cis-13-Octadecenoic acid     C1/H3O2     282.26     12.78     0.007       63.     n-Hexadecanoic acid     C3/H3O2     286.24     11.65     0.007       64.     Dodecanoic acid     C3/H3O2     286.24     11.85     0.001       65.     Dedecanoic acid, methyl ester     C2/H4O2     340.33     14.42     0.001       66.     Benzalecanoic acid, methyl ester     C3/H3O2     284.25     11.85     0.001       70.     Squalene     C3/H4O2     324.24     11.89     0.001       71.     Cettere     C3/H4O2     284.24     11.85     0.001       73.     Benzaldehyde, 3-hydroxy-4-methoxy     C4/H3O2     288.                                                                                                                                                                                                                                                                                                                                                                  | 56.                                   | Eicosanoic acid, methyl ester                                            | $C_{21}H_{42}O_2$                             | 326.32 | 13.86 | 0.042            |  |  |  |  |
| 59.   Eicosane $C_{20}H_{22}$ 282.33   11.88   0.025     60.   Fluoxymesterone $C_{20}H_{3}PO_3$ 336.21   13.42   0.033     61.   Niacin $CaH_{3}NO_2$ 282.26   12.78   0.007     62. $c_{15}-13-Octadecenoic acid   C_{10}H_{3}O_2   256.24   11.65   0.007     63.   n-Hexadecanoic acid   C_{10}H_{2}O_2   200.18   8.72   0.001     64.   Dodecanoic acid   C_{12}H_{20}O_2   200.18   8.72   0.001     65.   Dodecanoic acid, ethyl ester   C_{21}H_{20}O_2   340.33   14.42   0.001     66.   Benzeneacetic acid   C_{10}H_{3}O_2   282.26   11.85   0.001     70.   Squalene   C_{20}H_{20}O_2   340.33   14.42   0.001     71.   Cetene   C_{10}H_{2}O_2   282.26   11.85   0.001     72.   Squalene   C_{21}H_{2}O_2   242.25   8.98   0.001     72.   cis-13-Eicosenoic acid, methyl ester   C_{21}H_{2}O_2   282.11   0.24     73.   Benzaldehyde, 3-hydroxy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57.                                   | Oleic acid, butyl ester                                                  | $C_{22}H_{42}O_2$                             | 338.32 | 13.83 | 0.038            |  |  |  |  |
| 60.Fluoxymesterone $C_{30}H_{28}PO_3$ $336.21$ $13.42$ $0.023$ 61.NiacinCdHsNO2 $123.03$ $6.13$ $0.017$ 62. $cis-13$ -Octadecenoic acidClaHsIO2 $225.24$ $11.65$ $0.007$ 63.n-Hexadecanoic acidClaHsIO2 $225.24$ $11.65$ $0.007$ 64.Dodecanoic acidClaHsO2 $205.18$ $8.72$ $0.001$ 65.DodecaneClaHsO2 $226.24$ $11.65$ $0.007$ 66.Benzeneacetic acidClaHsO2 $226.24$ $11.85$ $0.001$ 67.Heneicosanoic acid, ethyl esterClaHsO2 $222.26$ $11.85$ $0.001$ 68.Hexadecanoic acid, ethyl esterClaHsO2 $222.26$ $11.85$ $0.001$ 70.SqualeneClaHsO2 $224.25$ $8.98$ $0.001$ 71.CetreneClaHsO2 $324.30$ $13.75$ $0.001$ 72.cis-13-Eicosenoic acid, methyl esterClaHsO2 $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy-ClaHsO2 $324.30$ $13.75$ $0.001$ 74.9-Hexadecanoic acid, methyl esterClaHsO2 $228.21$ $10.24$ $0.001$ 75.Tetradecanoic acid, hotyl esterClaHsO2 $228.21$ $10.24$ $0.001$ 76.Hydroxy-4-methoxy-ClaHsO2 $228.21$ $10.24$ $0.001$ 77.Phosphoric acid, dioctadecyl esterClaHsO2 $324.30$ $13.75$ $0.001$ 78.Hexadecanoic acid, huty                                                                                                                                                                                                                                                                                | 58.                                   | 6-Phthalazinecarboxylic acid, 1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxo- | $C_{11}H_{10}N_2O_4$                          | 234.06 | 7.57  | 0.030            |  |  |  |  |
| 61.   Niacin   CaHsNO:   123.03   6.13   0.017     62.   cis-13-Octadecenoic acid   CisH3xO:   282.26   12.78   0.007     63.   n-Hexadecanoic acid   CisH3xO:   282.26   12.78   0.007     64.   Dodecanoic acid   CisH3xO:   256.24   11.65   0.001     65.   Dodecane   CisH3xO:   136.05   6.08   0.001     66.   Benzeneacetic acid   CsHaO:   340.33   14.42   0.001     67.   Hencicosanoic acid, ethyl ester   C:sHaO:   340.33   14.42   0.001     68.   Hexacosene   C:sHaO:   340.33   14.42   0.001     70.   Squalene   C:sHaO:   324.30   13.75   0.001     71.   Cetene   CidH3:20   24.25   8.98   0.001     73.   Benzaldehyde, 3-hydroxy-4-methoxy-   C'sHaO:   152.05   7.50   0.001     74.   9-Hexadecanoic acid   CtH4:02   28.24   11.28   0.001     75.   Tetradecanoic acid, methyl ester   C:sHaO:   13.20   13.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.                                   | Eicosane                                                                 | $C_{20}H_{42}$                                | 282.33 | 11.88 | 0.025            |  |  |  |  |
| 62. $cis$ -13-Octadecenoic acid $C_1sH_3O_2$ $282.26$ $12.78$ $0.007$ 63. $n$ -Hexadecanoic acid $C_1H_2O_2$ $256.24$ $11.65$ $0.007$ 64.Dodecanoic acid $C_1H_2O_2$ $200.18$ $8.72$ $0.001$ 65.Dodecanoic acid $C_1H_2O_2$ $170.20$ $5.55$ $0.001$ 66.Benzeneacetic acid $C_1H_2O_2$ $340.33$ $14.42$ $0.001$ 67.Hencicosanoic acid, ethyl ester $C_2H_3O_2$ $364.41$ $13.09$ $0.001$ 68.Hexadecanoic acid, ethyl ester $C_20H_2$ $364.41$ $13.09$ $0.001$ 70.Squalene $C_20H_2$ $242.25$ $8.98$ $0.001$ 71.Cetene $C_1H_2O_2$ $224.25$ $8.98$ $0.001$ 72. $cis-13$ -Eicosenoic acid, methyl ester $C_21H_4O_2$ $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_8H_{50}$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid, methyl ester $C_1H_2O_2$ $268.24$ $11.28$ $0.001$ 75.Tetradecanoic acid, methyl ester $C_1H_2O_2$ $268.24$ $11.28$ $0.001$ 76.S-Hydroxymethylfurfural $C_{61}AO_3$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{18}H_9O_4P$ $350.26$ $13.01$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_9O_4$ $318.30$ $661$ $0.001$ 79.Picoxystrobin $C_{18}H_9O_4P$ <td>60.</td> <td>Fluoxymesterone</td> <td>C20H29FO3</td> <td>336.21</td> <td>13.42</td> <td>0.023</td>                                                                                                       | 60.                                   | Fluoxymesterone                                                          | C20H29FO3                                     | 336.21 | 13.42 | 0.023            |  |  |  |  |
| 63. $n$ -Hexadecanoic acid $C_{16}H_{22}O_2$ $256.24$ $11.65$ $0.007$ 64.Dodecanoic acid $C_{12}H_{26}O_2$ $200.18$ $8.72$ $0.001$ 65.Dodecane $C_{11}H_{26}O_2$ $360.55$ $6.08$ $0.001$ 66.Benzeneacetic acid $C_{18}H_{20}O_2$ $340.33$ $14.42$ $0.001$ 67.Heneicosanoic acid, methyl ester $C_{22}H_{20}O_2$ $340.33$ $14.42$ $0.001$ 68.Hexadecanoic acid, ethyl ester $C_{28}H_{50}$ $364.41$ $13.09$ $0.001$ 70.Squalene $C_{28}H_{50}$ $364.41$ $13.09$ $0.001$ 71.Cetene $C_{14}H_{20}O_2$ $324.30$ $13.75$ $0.001$ 72. $c_{51}-13$ -Eicosenoic acid, methyl ester $C_{21}H_{20}O_2$ $268.24$ $11.28$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{8}O_3$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid, methyl ester, (Z)- $C_{12}H_{20}O_2$ $268.24$ $11.28$ $0.001$ 75.Tetradecanoic acid $C_{10}H_{20}O_2$ $28.21$ $10.24$ $0.001$ 76. $5-HydroxymethylfurfuralC_{6}H_{2}O_228.2110.240.00177.Phosphoric acid, dioctadecyl esterC_{20}H_{40}O_231.23013.050.00178.Hexadecanoic acid, methyl esterC_{20}H_{40}O_2312.3013.050.00178.Hexadecanoic acid, methyl esterC_{20}H_{40}O_2312.3013.05$                                                                                                                                                                                                                        | 61.                                   | Niacin                                                                   | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> | 123.03 | 6.13  | 0.017            |  |  |  |  |
| 64.Dodecanoic acid $C_{12}H_{24}O_{2}$ 200.188.720.00165.Dodecane $C_{12}H_{26}$ 170.205.550.00166.Benzeneacetic acid $C_{2}H_{4}O_{2}$ 136.056.080.00167.Hencicosanoic acid, methyl ester $C_{2}H_{4}O_{2}$ 340.3314.420.00168.Hexadecanoic acid, ethyl ester $C_{2}H_{4}O_{2}$ 364.4113.090.00170.Squalene $C_{3}H_{30}$ 410.3916.480.00171.Cetene $C_{1}H_{32}$ 24.258.980.00172. $c'x-13$ -Eicosenoic acid, methyl ester $C_{1}H_{30}O_{2}$ 324.3013.750.00173.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{30}O_{3}$ 152.057.500.00174.9-Hexadecenoic acid $C_{1}H_{2}O_{2}$ 228.2110.240.00175.Tetradecanoic acid, bethyl ester $C_{6}H_{6}O_{3}$ 126.035.960.00176.5-Hydroxymethylfurfural $C_{6}H_{6}O_{3}$ 126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{2}H_{4}O_{2}$ 13.050.00178.Hexadecanoic acid, butyl ester $C_{2}H_{2}O_{4}$ 138.036.610.00181.Salicylic acid $C_{1}H_{3}O_{4}$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{2}H_{2}O_{4}$ 37.380.00184.Hexadecanoic acid, his(2-ethylhexyl) ester $C_{2}H_{3}O_{4}$ 138.036.610.                                                                                                                                                                                                                                                                      | 62.                                   | cis-13-Octadecenoic acid                                                 | $C_{18}H_{34}O_2$                             | 282.26 | 12.78 | 0.007            |  |  |  |  |
| 65.Dodecane $C_1P_{26}$ 170.205.550.00166.Benzeneacetic acid $C_8H_8O_2$ 136.056.080.00167.Hencicosanoic acid, ethyl ester $C_2P_HaO_2$ 340.3314.420.00168.Hexadecanoic acid, ethyl ester $C_1B_4S_2$ 262.0611.850.00169.1-Hexacosene $C_2H_4S_2$ 84.4413.090.00170.Squalene $C_3H_50$ 410.3916.480.00171.Cetene $C_1B_{32}$ 224.258.980.00172. $cir.13$ -Eicosenoic acid, methyl ester $C_1H_30_2$ 324.3013.750.00173.Benzaldehyde, 3-hydroxy-4-methoxy- $C_8H_60_3$ 152.057.500.00174.9-Hexadecenoic acid, methyl ester, (Z)- $C_1H_32_0_2$ 268.2411.280.00175.Tetradecanoic acid, dictadecyl ester $C_1B_{12}O_4$ 350.2613.010.00176.5-Hydroxymethylfurfural $C_4H_60_3$ 12.6013.050.00177.Phosphoric acid, dioctadecyl ester $C_1B_{12}SN_4$ 350.2613.010.00178.Hexadecanoic acid, butyl ester $C_2B_{40}O_2$ 312.3013.050.00179.Picoxystrobin $C_2H_4O_1$ 13.0912.960.00180. $\gamma$ -Kiosterol $C_2H_3O_2$ 382.3815.960.00181.Salicylic acid $C_2H_4O_2$ 342.3013.250.00182.Tetracosanoic acid, methyl ester $C_2$                                                                                                                                                                                                                                                                                                                   | 63.                                   | n-Hexadecanoic acid                                                      | $C_{16}H_{32}O_2$                             | 256.24 | 11.65 | 0.007            |  |  |  |  |
| 66.Benzeneacetic acid $C_3H_8O_2$ 136.056.080.00167.Heneicosanoic acid, methyl ester $C_{22}H_4O_2$ 340.3314.420.00168.Hexadecanoic acid, ethyl ester $C_{13}H_3O_2$ 282.2611.850.00169.1-Hexacosene $C_{23}H_{22}$ 364.4113.090.00170.Squalene $C_{20}H_{22}$ 364.4113.090.00171.Cetene $C_{10}H_{22}$ 24.258.980.00172.cis-13-Eicosenoic acid, methyl ester $C_{21}H_6O_2$ 324.3013.750.00173.Benzaldehyde, 3-hydroxy-4-methoxy- $C_3H_8O_3$ 152.057.500.00174.9-Hexadecanoic acid, methyl ester, (Z)- $C_{17}H_{32}O_2$ 268.2411.280.00175.Tetradecanoic acid $C_{10}H_{20}O_2$ 212.3013.050.00176.5-Hydroxymethyflurfural $C_4H_0O_3$ 126.035.960.00177.Phosphoric acid, diotadecyl ester $C_{18}H_16F_3NO4$ 367.1012.050.00178.Hexadecanoic acid, butyl ester $C_{29}H_8O_2$ 318.036.610.00181.Salicylic acid $C_{14}H_{20}$ 370.3114.280.00183.Methyl stearate $C_{29}H_8O_2$ 382.3815.960.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{24}H_{20}O_2$ 382.3815.960.00185.Tetradocanoic acid, heptadecyl ester $C_{20}H_9O_2$ 382.3815.96<                                                                                                                                                                                                                                                                                      | 64.                                   | Dodecanoic acid                                                          | $C_{12}H_{24}O_2$                             | 200.18 | 8.72  | 0.001            |  |  |  |  |
| 67.Heneicosanoic acid, methyl ester $C_{22}H_{4}O_{2}$ $34.0.33$ $14.42$ $0.001$ 68.Hexadecanoic acid, ethyl ester $C_{18}H_{34}O_{2}$ $282.26$ $11.85$ $0.001$ 69.1-Hexacosene $C_{26}H_{52}$ $364.41$ $13.09$ $0.001$ 70.Squalene $C_{26}H_{52}$ $364.41$ $13.09$ $0.001$ 71.Cetene $C_{16}H_{32}$ $224.25$ $8.98$ $0.001$ 72.cis-13-Eicosenoic acid, methyl ester $C_{21}H_{40}O_{2}$ $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{8}O_{3}$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid, methyl ester, (Z)- $C_{17}H_{32}O_{2}$ $28.24$ $11.28$ $0.001$ 75.Tetradecanoic acid, dioctadecyl ester $C_{18}H_{39}O_{4P}$ $350.26$ $13.01$ $0.001$ 76.5-Hydroxymethylfurfural $C_{4}H_{6}O_{3}$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{28}H_{4}O_{2}$ $312.30$ $13.05$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{4}O_{2}$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{19}H_{19}O_{4}P$ $350.26$ $13.01$ $0.001$ 81.Salicylic acid $C_{7}H_{0}O_{3}$ $138.03$ $6.61$ $0.001$ 82.Tetracosanoic acid, methyl ester $C_{24}H_{3}O_{2}$ $28.29$ $12.69$ $0.001$ 83.Methyl stearate $C_{29}H_{3}O_{2}$ $28.29$ </td <td>65.</td> <td>Dodecane</td> <td><math>C_{12}H_{26}</math></td> <td>170.20</td> <td>5.55</td> <td>0.001</td>                                            | 65.                                   | Dodecane                                                                 | $C_{12}H_{26}$                                | 170.20 | 5.55  | 0.001            |  |  |  |  |
| 68.Hexadecanoic acid, ethyl ester $C_{18}H_{34}O_2$ 282.2611.850.00169.1-Hexacosene $C_{20}H_{52}$ 364.4113.090.00170.Squalene $C_{30}H_{50}$ 410.3916.480.00171.Cetene $C_{16}H_{32}$ 224.258.980.00172. $cis-13$ -Eicosenoic acid, methyl ester $C_{1}H_{40}O_2$ 224.3013.750.00173.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{1}H_{42}O_2$ 268.2411.280.00174.9-Hexadecenoic acid, methyl ester, (Z)- $C_{1}H_{32}O_2$ 268.2411.280.00175.Tetradecanoic aciddictadecyl ester $C_{18}H_{30}O_4P$ 350.2613.010.00176.5-HydroxymethylfurfuralCd·Ho3126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{20}H_{40}O_2$ 312.3013.050.00178.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ 312.3013.050.00179.Picoxystrobin $C_{18}H_{10}F_{18}NO_4$ 367.1012.960.00180. $\gamma$ -SitosterolCid, methyl ester $C_{20}H_{20}O_2$ 382.3815.960.00181.Salicylic acidCid, methyl ester $C_{20}H_{20}O_2$ 382.3815.960.00183.Methyl stearateCidH_{30}O_2298.2912.690.00184.Hexanedicic acid, heptadecyl ester $C_{20}H_{30}O_2$ 346.2613.690.00185.Tetradecane                                                                                                                                                                                                                                                                                   | 66.                                   | Benzeneacetic acid                                                       | $C_8H_8O_2$                                   | 136.05 | 6.08  | 0.001            |  |  |  |  |
| 69.1-Hexacosene $C_{2a}H_{52}$ $364.41$ $13.09$ $0.001$ 70.Squalene $C_{30}H_{50}$ $410.39$ $16.48$ $0.001$ 71.Cetene $C_{16}H_{32}$ $224.25$ $8.98$ $0.001$ 72. $cis-13$ -Eicosenoic acid, methyl ester $C_{21}H_{40}O_2$ $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{50}$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid $C_{1}/H_{2}O_2$ $288.24$ $11.28$ $0.001$ 75.Tetradecanoic acid $C_{1}/H_{2}O_2$ $228.21$ $10.24$ $0.001$ 76.5-Hydroxymethylfurfural $C_{6}H_{6}O_3$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{20}H_{4}O_2$ $312.30$ $13.05$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{4}O_3$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{1}H_{1}G^{1}NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{2}H_{5}O_2$ $382.38$ $15.96$ $0.001$ 81.Salicylic acid $C_{7}H_6O_3$ $138.03$ $6.61$ $0.001$ 82.Tetraceanoic acid, methyl ester $C_{2}H_{3}O_2$ $282.9$ $12.69$ $0.001$ 83.Methyl stearate $C_{2}H_{3}O_2$ $282.9$ $12.69$ $0.001$ 84.Hexanedioic acid, heptadecyl ester $C_{2}H_{3}O_2$ $282.9$ $12.69$ $0.001$ 85.Tetradecanoic acidh                                                                                                                                                                                                        | 67.                                   | Heneicosanoic acid, methyl ester                                         | $C_{22}H_{44}O_2$                             | 340.33 | 14.42 | 0.001            |  |  |  |  |
| 70.Squalene $C_{30}H_{50}$ 410.3916.480.00171.Cetene $C_{16}H_{32}$ 224.258.980.00172. $cis$ -13-Eicosenoic acid, methyl ester $C_{21}H_{40}O_2$ 324.3013.750.00173.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{5}O_3$ 152.057.500.00174.9-Hexadecenoic acid, methyl ester, (Z)- $C_{17}H_{2}O_2$ 268.2411.280.00175.Tetradecanoic acid $C_{6}H_{6}O_3$ 126.035.960.00176.5-Hydroxymethylfurfural $C_{6}H_{6}O_3$ 126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{20}H_{4}O_2$ 312.3013.050.00178.Hexadecanoic acid, butyl ester $C_{20}H_{4}O_3$ 325.2613.010.00178.Y-Sitosterol $C_{29}H_{5}O_4$ 414.3919.410.00180. $\gamma$ -Sitosterol $C_{29}H_{5}O_4$ 414.3919.410.00181.Salicylic acid $C_7HeO_3$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{29}H_{5}O_4$ 370.3114.280.00183.Methyl stearate $C_{19}H_{38}O_2$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{3}O_2$ 346.2613.690.00185.Tetradecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{3}O_2$ 298.29 <td< td=""><td>68.</td><td>Hexadecanoic acid, ethyl ester</td><td>C18H34O2</td><td>282.26</td><td>11.85</td><td>0.001</td></td<>                                                                                                                                      | 68.                                   | Hexadecanoic acid, ethyl ester                                           | C18H34O2                                      | 282.26 | 11.85 | 0.001            |  |  |  |  |
| 71.Cetene $C_{16}H_{32}$ $224.25$ $8.98$ $0.001$ 72. $cis$ -13-Eicosenoic acid, methyl ester $C_{21}H_{40}O_2$ $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_{8}H_{8}O_3$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid, methyl ester, (Z)- $C_{17}H_{32}O_2$ $268.24$ $11.28$ $0.001$ 75.Tetradecanoic acid $C_{14}H_{28}O_2$ $228.21$ $10.24$ $0.001$ 76.5-Hydroxymethylfurfural $C_{6}H_{6}O_3$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_{4P}$ $350.26$ $13.01$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{18}H_{16}F_{3}NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{29}H_{90}O$ $414.39$ $19.41$ $0.001$ 81.Salicylic acid $C_{7}H_{6}O_3$ $138.03$ $6.61$ $0.001$ 82.Tetracoanoic acid, methyl ester $C_{29}H_{30}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{19}H_{38}O_2$ $298.29$ $12.69$ $0.001$ 84.Hexanedioic acid, his(2-ethylhexyl) ester $C_{29}H_{30}O_2$ $382.38$ $15.96$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{30}ClO_2$ $36.26$ <t< td=""><td>69.</td><td>1-Hexacosene</td><td>C<sub>26</sub>H<sub>52</sub></td><td>364.41</td><td>13.09</td><td>0.001</td></t<>                           | 69.                                   | 1-Hexacosene                                                             | C <sub>26</sub> H <sub>52</sub>               | 364.41 | 13.09 | 0.001            |  |  |  |  |
| 72. $c_{8}$ ·13-Eicosenoic acid, methyl ester $C_{21}H_{40}O_2$ $324.30$ $13.75$ $0.001$ 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_8H_8O_3$ $152.05$ $7.50$ $0.001$ 74.9-Hexadecenoic acid, methyl ester, (Z)- $C_1/H_{32}O_2$ $268.24$ $11.28$ $0.001$ 75.Tetradecanoic acid $C_14H_{28}O_2$ $228.21$ $10.24$ $0.001$ 76.5-Hydroxymethylfurfural $C_6H_6O_3$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{18}H_1, F_3NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{20}H_{40}O_2$ $318.03$ $6.61$ $0.001$ 81.Salicylic acid $C7H_6O_3$ $138.03$ $6.61$ $0.001$ 82.Tetracosanoic acid, methyl ester $C_{29}H_{30}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{29}H_{30}O_2$ $382.38$ $15.96$ $0.001$ 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{20}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{30}Cl_{20}$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_{14}H_{30}O_2$ $298.29$ $13.49$                                                                                                                                                             | 70.                                   | Squalene                                                                 | C <sub>30</sub> H <sub>50</sub>               | 410.39 | 16.48 | 0.001            |  |  |  |  |
| 73.Benzaldehyde, 3-hydroxy-4-methoxy- $C_8H_8O_3$ 152.057.500.00174.9-Hexadecenoic acid, methyl ester, (Z)- $C_17H_32O_2$ 268.2411.280.00175.Tetradecanoic acid $C_14H_28O_2$ 228.2110.240.00176.5-Hydroxymethylfurfural $C_6H_6O_3$ 126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_4P$ 350.2613.010.00178.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ 312.3013.050.00179.Picoxystrobin $C_{18}H_16F_3NO_4$ 367.1012.960.00180. $\gamma$ -Sitosterol $C_{29}H_{50}O$ 414.3919.410.00181.Salicylic acid $C7H_6O_3$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{29}H_{50}O_2$ 382.3815.960.00183.Methyl stearate $C_{19}H_{38}O_2$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{30}C_1O_2$ 346.2613.690.00185.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{30}C_1O_2$ 346.2613.690.00187.Arecoline $C_{19}H_{38}O_2$ 298.2913.490.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.001                                                                                                                                                                                                                                                                                   | 71.                                   | Cetene                                                                   | C16H32                                        | 224.25 | 8.98  | 0.001            |  |  |  |  |
| 74.9-Hexadecenoic acid, methyl ester, (Z)- $C_{17}H_{32}O_2$ $268.24$ $11.28$ $0.001$ 75.Tetradecanoic acid $C_{14}H_{28}O_2$ $228.21$ $10.24$ $0.001$ 76.5-Hydroxymethylfurfural $C_6H_6O_3$ $126.03$ $5.96$ $0.001$ 77.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_4P$ $350.26$ $13.01$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{18}H_{16}F_3NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{29}H_{50}O$ $414.39$ $19.41$ $0.001$ 81.Salicylic acid $C7H_6O_3$ $138.03$ $6.61$ $0.001$ 82.Tetracosanoic acid, methyl ester $C_{29}H_{50}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{19}H_{38}O_2$ $298.29$ $12.69$ $0.001$ 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_{42}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{29}H_{39}Clo2$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 90. <t< td=""><td>72.</td><td>cis-13-Eicosenoic acid, methyl ester</td><td><math>C_{21}H_{40}O_2</math></td><td>324.30</td><td>13.75</td><td>0.001</td></t<>                                      | 72.                                   | cis-13-Eicosenoic acid, methyl ester                                     | $C_{21}H_{40}O_2$                             | 324.30 | 13.75 | 0.001            |  |  |  |  |
| 75.Tetradecanoic acid $C_{14}H_{28}O_{2}$ 228.2110.240.00176.5-Hydroxymethylfurfural $C_{6}H_{6}O_{3}$ 126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_{4}P$ 350.2613.010.00178.Hexadecanoic acid, butyl ester $C_{20}H_{4}O_{2}$ 312.3013.050.00179.Picoxystrobin $C_{18}H_{16}F_{3}NO_{4}$ 367.1012.960.00180. $\gamma$ -Sitosterol $C_{29}H_{5}O_{2}$ 414.3919.410.00181.Salicylic acid $C_{7}H_{6}O_{3}$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_{2}$ 382.3815.960.00183.Methyl stearate $C_{19}H_{38}O_{2}$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{30}C_{14}H_{30}$ 198.237.380.00185.Tetradecane $C_{10}H_{30}C_{12}$ 346.2613.690.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{30}C_{12}$ 346.2613.690.00187.Arecoline $C_{19}H_{38}O_{2}$ 298.2913.490.00188.Nonadecanoic acid $C_{19}H_{38}O_{2}$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190. <i>n</i> -Butyl laurate $C_{16}H_{32}O_{2}$ 366.1210.4                                                                                                                                                                                                                                                                   | 73.                                   | Benzaldehyde, 3-hydroxy-4-methoxy-                                       | C <sub>8</sub> H <sub>8</sub> O <sub>3</sub>  | 152.05 | 7.50  | 0.001            |  |  |  |  |
| 76.5-Hydroxymethylfurfural $C_{6}H_{6}O_{3}$ 126.035.960.00177.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_{4}P$ 350.2613.010.00178.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ 312.3013.050.00179.Picoxystrobin $C_{18}H_{16}F_{3}NO_4$ 367.1012.960.00180. $\gamma$ -Sitosterol $C_{29}H_{50}O$ 414.3919.410.00181.Salicylic acid $C_{7}H_{6}O_3$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_2$ 382.3815.960.00183.Methyl stearate $C_{19}H_{38}O_2$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{30}ClO_2$ 346.2613.690.00185.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{30}ClO_2$ 346.2613.690.00187.Arecoline $C_{19}H_{38}O_2$ 298.2913.490.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{16}H_{32}O_2$ 256.2410.430.00190. <i>n</i> -Butyl laurate $C_{16}H_{32}O_2$ 256.2014.880.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{16}H_{32}O_2$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}CINAO_2$ 386.1514.7                                                                                                                                                                                                                                                                   | 74.                                   | 9-Hexadecenoic acid, methyl ester, (Z)-                                  | $C_{17}H_{32}O_2$                             | 268.24 | 11.28 | 0.001            |  |  |  |  |
| 77.Phosphoric acid, dioctadecyl ester $C_{18}H_{39}O_4P$ $350.26$ $13.01$ $0.001$ 78.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{18}H_{16}F_{3}NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{29}H_{50}O$ $414.39$ $19.41$ $0.001$ 81.Salicylic acid $C_7H_6O_3$ $138.03$ $6.61$ $0.001$ 82.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{19}H_{38}O_2$ $298.29$ $12.69$ $0.001$ 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_{42}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_{18}H_{18}NO_2$ $298.29$ $13.49$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 90. $n$ -Butyl laurate $C_{16}H_{32}O_2$ $256.24$ $10.43$ $0.001$ 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{20}H_{23}ClN_4O_2$ $386.15$ $14.71$ $0.001$ 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{4}O_2$ $352.33$ $14.84$                                                                                                                                                                      | 75.                                   | Tetradecanoic acid                                                       | $C_{14}H_{28}O_2$                             | 228.21 | 10.24 | 0.001            |  |  |  |  |
| 78.Hexadecanoic acid, butyl ester $C_{20}H_{40}O_2$ $312.30$ $13.05$ $0.001$ 79.Picoxystrobin $C_{18}H_{16}F_3NO_4$ $367.10$ $12.96$ $0.001$ 80. $\gamma$ -Sitosterol $C_{29}H_{50}O$ $414.39$ $19.41$ $0.001$ 81.Salicylic acid $C_7H_6O_3$ $138.03$ $6.61$ $0.001$ 82.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{19}H_{38}O_2$ $298.29$ $12.69$ $0.001$ 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{20}H_{42}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{3}O_2$ $298.29$ $13.49$ $0.001$ 87.Arecoline $C_{8}H_{13}NO_2$ $155.09$ $5.87$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{16}H_{32}O_2$ $256.24$ $10.43$ $0.001$ 90. <i>n</i> -Butyl laurate $C_{16}H_{32}O_2$ $256.20$ $14.88$ $0.001$ 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{20}H_{23}CINA_02$ $386.15$ $14.71$ $0.001$ 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{4}O_2$ $352.33$ $14.84$ $0.001$                                                                                                                                                                                                                                                | 76.                                   | 5-Hydroxymethylfurfural                                                  | $C_6H_6O_3$                                   | 126.03 | 5.96  | 0.001            |  |  |  |  |
| 79.Picoxystrobin $C_{18}H_{16}F_{3}NO_{4}$ 367.1012.960.00180. $\gamma$ -Sitosterol $C_{29}H_{50}O$ 414.3919.410.00181.Salicylic acid $C_{7}H_{6}O_{3}$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_{2}$ 382.3815.960.00183.Methyl stearate $C_{19}H_{38}O_{2}$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_{4}O_{4}$ 370.3114.280.00185.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_{2}$ 346.2613.690.00187.Arecoline $C_{19}H_{38}O_{2}$ 298.2913.490.00188.Nonadecanoic acid $C_{19}H_{38}O_{2}$ 298.2913.490.00190. <i>n</i> -Butyl laurate $C_{16}H_{32}O_{2}$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{20}H_{23}ClN_{4}O_{2}$ 356.2014.880.00192.Clonitazene $C_{20}H_{23}ClN_{4}O_{2}$ 356.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{4}O_{2}$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                              | 77.                                   | Phosphoric acid, dioctadecyl ester                                       | C18H39O4P                                     | 350.26 | 13.01 | 0.001            |  |  |  |  |
| 80. $\gamma$ -SiterolC_29H50O414.3919.410.00181.Salicylic acidC7H6O3138.036.610.00182.Tetracosanoic acid, methyl esterC25H50O2382.3815.960.00183.Methyl stearateC19H38O2298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) esterC22H42O4370.3114.280.00185.TetradecaneC14H30198.237.380.00186.3-Chloropropionic acid, heptadecyl esterC20H39CIO2346.2613.690.00187.ArecolineC19H38O2298.2913.490.00188.Nonadecanoic acidC19H38O2298.2913.490.00189.OctadecaneC16H32O2256.2410.430.00190. <i>n</i> -Butyl laurateC16H32O2256.2014.880.00191.Tetradecanoic acid, 13-oxo-, methyl esterC16H23O3256.2014.880.00192.ClonitazeneC20H23CIN4O2386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)-C23H44O2352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.                                   | Hexadecanoic acid, butyl ester                                           | $C_{20}H_{40}O_2$                             | 312.30 | 13.05 | 0.001            |  |  |  |  |
| 81.Salicylic acid $C_7H_6O_3$ 138.036.610.00182.Tetracosanoic acid, methyl ester $C_25H_50O_2$ 382.3815.960.00183.Methyl stearate $C_{19}H_{38}O_2$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_42O_4$ 370.3114.280.00185.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ 346.2613.690.00187.Arecoline $C_{8}H_{13}NO_2$ 155.095.870.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190. <i>n</i> -Butyl laurate $C_{10}H_{23}O_3$ 256.2014.880.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{10}H_{23}ClN_2$ 386.1514.710.00192.Clonitazene $C_{20}H_{23}ClN_4O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.                                   | Picoxystrobin                                                            | $C_{18}H_{16}F_3NO_4$                         | 367.10 | 12.96 | 0.001            |  |  |  |  |
| 82.Tetracosanoic acid, methyl ester $C_{25}H_{50}O_2$ $382.38$ $15.96$ $0.001$ 83.Methyl stearate $C_{19}H_{38}O_2$ $298.29$ $12.69$ $0.001$ 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_{42}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_14H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_{8}H_{13}NO_2$ $155.09$ $5.87$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 90. $n$ -Butyl laurate $C_{16}H_{32}O_2$ $256.20$ $14.88$ $0.001$ 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{20}H_{23}ClN_4O_2$ $386.15$ $14.71$ $0.001$ 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ $352.33$ $14.84$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.                                   | γ-Sitosterol                                                             | C29H50O                                       | 414.39 | 19.41 | 0.001            |  |  |  |  |
| 83.Methyl stearate $C_{19}H_{38}O_2$ 298.2912.690.00184.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_4O_4$ 370.3114.280.00185.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ 346.2613.690.00187.Arecoline $C_{8}H_{13}NO_2$ 155.095.870.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190. <i>n</i> -Butyl laurate $C_{16}H_{32}O_2$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{10}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}ClN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.                                   | Salicylic acid                                                           | C7H6O3                                        | 138.03 | 6.61  | 0.001            |  |  |  |  |
| 84.Hexanedioic acid, bis(2-ethylhexyl) ester $C_{22}H_{42}O_4$ $370.31$ $14.28$ $0.001$ 85.Tetradecane $C_{14}H_{30}$ $198.23$ $7.38$ $0.001$ 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_{8}H_{13}NO_2$ $155.09$ $5.87$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 90. $n$ -Butyl laurate $C_{16}H_{32}O_2$ $256.24$ $10.43$ $0.001$ 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ $256.20$ $14.88$ $0.001$ 92.Clonitazene $C_{20}H_{23}ClN_4O_2$ $386.15$ $14.71$ $0.001$ 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4O_2$ $352.33$ $14.84$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.                                   | Tetracosanoic acid, methyl ester                                         | C25H50O2                                      | 382.38 | 15.96 | 0.001            |  |  |  |  |
| 85.Tetradecane $C_{14}H_{30}$ 198.237.380.00186.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ 346.2613.690.00187.Arecoline $C_{8}H_{13}NO_2$ 155.095.870.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190. <i>n</i> -Butyl laurate $C_{16}H_{32}O_2$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}ClN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4Q_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.                                   | Methyl stearate                                                          | $C_{19}H_{38}O_2$                             | 298.29 | 12.69 | 0.001            |  |  |  |  |
| 86.3-Chloropropionic acid, heptadecyl ester $C_{20}H_{39}ClO_2$ $346.26$ $13.69$ $0.001$ 87.Arecoline $C_8H_{13}NO_2$ $155.09$ $5.87$ $0.001$ 88.Nonadecanoic acid $C_{19}H_{38}O_2$ $298.29$ $13.49$ $0.001$ 89.Octadecane $C_{18}H_{38}$ $254.30$ $10.52$ $0.001$ 90. <i>n</i> -Butyl laurate $C_{16}H_{32}O_2$ $256.24$ $10.43$ $0.001$ 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ $256.20$ $14.88$ $0.001$ 92.Clonitazene $C_{20}H_{23}ClN_4O_2$ $386.15$ $14.71$ $0.001$ 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4O_2$ $352.33$ $14.84$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.                                   | Hexanedioic acid, bis(2-ethylhexyl) ester                                | $C_{22}H_{42}O_4$                             | 370.31 | 14.28 | 0.001            |  |  |  |  |
| 87.Arecoline $C_8H_{13}NO_2$ 155.095.870.00188.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190.n-Butyl laurate $C_{16}H_{32}O_2$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}CIN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.                                   | Tetradecane                                                              | C14H30                                        | 198.23 | 7.38  | 0.001            |  |  |  |  |
| 88.Nonadecanoic acid $C_{19}H_{38}O_2$ 298.2913.490.00189.Octadecane $C_{18}H_{38}$ 254.3010.520.00190.n-Butyl laurate $C_{16}H_{32}O_2$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}ClN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_4O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.                                   | 3-Chloropropionic acid, heptadecyl ester                                 | C20H39ClO2                                    | 346.26 | 13.69 | 0.001            |  |  |  |  |
| 89.Octadecane $C_{18}H_{38}$ 254.3010.520.00190.n-Butyl laurate $C_{16}H_{32}O_2$ 256.2410.430.00191.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}ClN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.                                   | Arecoline                                                                | C8H13NO2                                      | 155.09 | 5.87  | 0.001            |  |  |  |  |
| 90.   n-Butyl laurate   C16H32O2   256.24   10.43   0.001     91.   Tetradecanoic acid, 13-oxo-, methyl ester   C15H28O3   256.20   14.88   0.001     92.   Clonitazene   C20H23CIN4O2   386.15   14.71   0.001     93.   13-Docosenoic acid, methyl ester, (Z)-   C23H44O2   352.33   14.84   0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.                                   | Nonadecanoic acid                                                        | $C_{19}H_{38}O_2$                             | 298.29 | 13.49 | 0.001            |  |  |  |  |
| 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}CIN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.                                   | Octadecane                                                               | C <sub>18</sub> H <sub>38</sub>               | 254.30 | 10.52 | 0.001            |  |  |  |  |
| 91.Tetradecanoic acid, 13-oxo-, methyl ester $C_{15}H_{28}O_3$ 256.2014.880.00192.Clonitazene $C_{20}H_{23}CIN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.                                   | <i>n</i> -Butyl laurate                                                  | $C_{16}H_{32}O_2$                             | 256.24 | 10.43 | 0.001            |  |  |  |  |
| 92.Clonitazene $C_{20}H_{23}ClN_4O_2$ 386.1514.710.00193.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.                                   | -                                                                        |                                               |        |       | 0.001            |  |  |  |  |
| 93.13-Docosenoic acid, methyl ester, (Z)- $C_{23}H_{44}O_2$ 352.3314.840.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.                                   | -                                                                        |                                               | 386.15 |       | 0.001            |  |  |  |  |
| • · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                          |                                               |        |       |                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | -                                                                        |                                               |        |       |                  |  |  |  |  |
| 95. 1-Nonadecene C <sub>19</sub> H <sub>38</sub> 266.30 11.84 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                          |                                               |        |       |                  |  |  |  |  |

# Table 1. (Cont'd.).

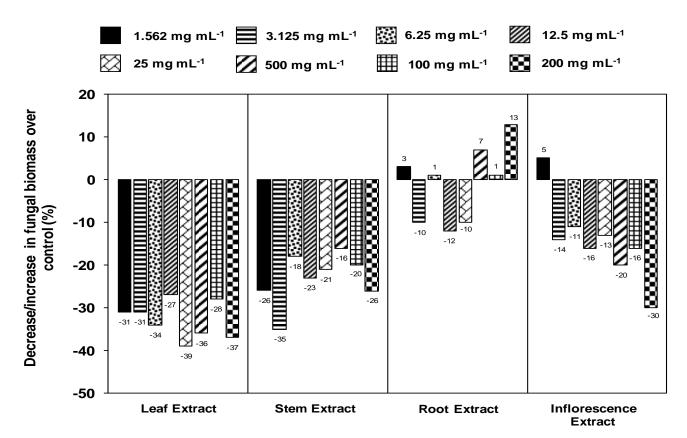



Fig. 2. Percentage decrease in biomass of *Rhizoctoniasolani* due to different concentrations of methanolic leaf, stem, root and fruit extracts of *Carthamusoxycantha*.

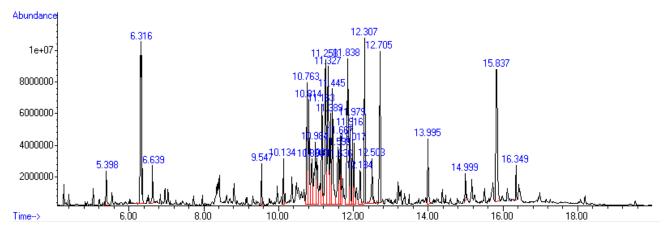



Fig. 3. GC-MS chromatogram of methanolic leaf extract of Carthamusoxycantha.

#### References

- Agoramoorthy, G., M. Chandrasekaran, V. Venkatesalu and M.J. Hsu. 2007. Antibacterial and antifungal activities of fatty acid methyl esters of the blindyour- eye mangrove from India. *Braz. J. Microbiol.*, 38: 739-742.
- Ahmad, M., I. Waheed, M. Khalil-ur-Rehman, U. Niaz and S. Saeed-ul-Hassan. 2010. A review on *Carthamus oxycantha*. *Pak. J. Pharm.*,23: 37-41.
- Ahmad, S.S., A. Wahid, E. Bukhsh, S. Ahmad and S.R. Kakar. 2009. Antihyperlidemic properties of *Carthamus* oxyacantha. Pak. J. Sci., 61: 116-121.
- Akhtar, R. and A. Javaid. 2018. Biological management of basal rot of onion by *Trichoderma harzianum* and *Withania somnifera*. *Planta Daninha*, 36: e017170507.
- Anjani, K. 2005. Genetic variability and character association in wild safflower (*Carthamus oxycantha*). Ind. J. Agric. Sci., 75: 516-518.

- Atiq, M., A. Karamat, N.A. Khan, M. Shafiq, M. Younas, R.T. Iqbal, R. Bashir, M.J. Zaib, U. Nawaz and H.U. Khan. 2014. Antifungal potential of plant extracts and chemicals for the management of black scurf disease of potato. *Pak. J. Phytopathol.*, 26: 161-167.
- Atiq, M., A. Karamat, S. Sahi, A. Habib, A. Nawaz and W. Hussain. 2013. Screening of potato varieties / cultivars against black scurf. *Pak. J. Phytopathol.*,25: 48-51.
- Avis, T.J. and R.R. Bélanger. 2001. Specificity and mode of action of the antifungal fatty acid *cis*-9-heptadecenoic acid produced by *Pseudozyma flocculosa*. *Appl. Environ. Microbiol.*, 67: 956-960.
- Bakali, A.M.E. and M.P. Martín. 2006. Black scurf of potato. *Mycologist*, 20: 130-132.
- Chandrasekaran, M., K. Kannathasan and V. Venkatesalu. 2007. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Z. Naturforsch., 63c: 331-336.

- El-Sayed, M.H. 2012. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (*Streptomyces mirabilis* strain NSQu-25). *World Appl. Sci. J.*, 20: 1202-1212.
- El-Zaidi, M., M.A. Mahmoud, M.R. Al-Othman and N.S Abdulazim. 2018. Molecular identification and characterization of *Rhizoctonia solani* AG-3 isolates causing black scurf of potato. *Pak. J. Bot.*, 50: 415-420.
- Golebiowski, M., A. Urbanek, A. Oleszczak, M. Dawgul and P. Stemnowski. 2014. The antifungal activity of fatty acids of all stages of *Sarcophagacarnaria* L. (Diptera: Sarcophagidae). *Microbiol. Res.*, 169: 279-286.
- Habib, M.R. and M.R. Karim. 2009. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from *Calotropis* gigantea (Linn.) flower. *Mycobiology*, 37: 31-36.
- Hesammi, E. 2012. Allelopathic effects of *Carthamus oxycantha* and *Chenopodium mural* on germination and initial growth of *Phasaeolous vulgaris*. Int. J. Farm. Allied Sci., 1: 54-56.
- Javaid, A., I.H. Khan and A. Shoaib. 2018a. Management of charcoal rot of mungbean by two *Trichoderma* species and dry biomass of *Coronopus didymus*. *Planta Daninha*, 36: e018182795.
- Javaid, A., U. Latif, N. Akhtar, D. Ahmed and S. Perveen. 2018b. Molecular characterization of *Fusarium moniliforme* and its management by methanolic extract of *Coronopus didymus. Pak. J. Bot.*, 50: 2069-2075.
- Javaid, A., G..R. Shahzad, N. Akhtar and D. Ahmed. 2018c. Alternaria leaf spot disease of broccoli in Pakistan and management of the pathogen by leaf extract of Syzygium cumini. Pak. J. Bot., 50: 1607-1614.
- Javaid, A., F. Anjum and N. Akhtar. 2019. Molecular characterization of *Pyricularia oryzae* and its management by stem extract of *Tribulus terrestris*. *Int. J. Agric. Biol.*, 21: 1256-1262.
- Kanetis, L., D. Tsimouris and M. Christoforou. 2016. Characterization of *Rhizoctonia solani* associated with black scurf in Cyprus. *Plant Dis.*, 100: 1591-1598.
- Karima, S., S. Farida and Z.M. Mihoub. 2013. Antimicrobial activity of an Algerian medicinal plant: *Carthamus caeruleus* L. *Pharmacogn. Commun.*, 3: 7176.
- Khan, I., S. Alam, H. Hussain, B. Shah, A. Naeem, W. Ullah, W.A. Khan, M. Adnan, K. Junaid, S.R.A. Shah, N. Ahmed and M. Iqbal. 2016. Study on the management of potato black scurf disease by using biocontrol agent and phytobiocides. J. Entomol. Zool. Stud., 4: 471-475.
- Khurshid, S., A. Javaid, A. Shoaib, S. Javed and U. Qaiser. 2018. Antifungal activity and GC-MS analysis of aerial parts of *Cenchrus pennisetiformis* against *Fusarium oxysporum* f. sp. *lycopersici. Planta Daninha*, 36: e017166627.
- Kurzawińska, H. and S. Mazur. 2008. The usefulness of chitosan and Pythiumoligandrum in potato tuber protection against *Helminthosporium solani*. Folia Hort., 20: 67-74.
- Lahlali, R. and M. Hijri, 2010. Screening, identification and evaluation of potential biocontrol fungal endophytes against *Rhizoctonia solani* AG3 on potato plants. *FEMS Microbiol. Lett.*, 311: 152-159.
- Lakshman, D.K., P.P. Jambhulkar, V. Singh, P. Sharma, and A. Mitra. 2016. Molecular identification, genetic diversity, population genetics and genomics of *Rhizoctonia solani*. In: *Perspect. Plant Pathol. Genomic Era*. P. Chowdappa, P. Sharma, D. Singh and A.K. Mitra (eds.), Today and Tomorrow's Printers and Publications, New Delhi, India. pp. 5555-5589.

- Larkin, R.P. and S. Tavantzis. 2013. Use of biocontrol organisms and compost amendments for improved control of soil-borne diseases and increased potato production. *Am. J. Potato Res.*, 90: 261-270.
- Lee, K.H., J.H. Kim, D.S. Lim and C.H. Kim. 2000. Antileukaemic and anti-mutagenic effects of di-(2ethylhexyl) phthalate isolated from *Aloe vera* Linn. *J. Pharm. Pharmacol.*, 52: 593-598.
- Lima, L.A.R.S., S. Johann, P.S. Cisalpino, L.P.S. Pimenta and M.A.D. Boaventura. 2011. *In vitro* antifungal activity of fatty acid methyl esters of the seeds of *Annona cornifolia* A. St. Hil. (Annonaceae) against pathogenic fungus *Paracoccidioides brasiliensis. Rev. Soc. Bras. Med. Trop.*, 44: 777-780.
- Liu, S., R. Weibin, L. Jing, X. Hua, W. Jingan, G. Yubao and W. Jingguo. 2008. Biological control of phytopathogenic fungi by fatty acids. *Mycopathologia*, 166: 93-102.
- Moss, G.P., P.A.S. Smith and D. Tavernier. 1997. IUPAC Compendium of Chemical Terminology. Pure & App. Chem., 67(2<sup>nd</sup> ed.). International Union of Pure and Applied Chemistry. pp. 1307-1375.
- Naz, F. 2006. Integrated management of black scurf of potato. University of Arid Agriculture, Rawalpindi, Pakistan.
- Pinto M.E.A., S.G. Araújo, M.I. Morais, N.P. Sá, C.M. Lima, C.A. Rosa and L.A.R.S. Lima. 2017. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. *An. Acad. Bras. Ciênc.*, 89: 1671-1681.
- Pohl, C.H., L.F.J. Kock and V.S. Thibane. 2011. Antifungal free fatty acids: a review. In: Science against Microbial Pathogens: Communi. Curr. Res. & Technol Advan., Méndez-Vilas (Ed.), Formatex Research Center. pp. 61-70.
- Rahul, S.N., K. Khilari and S.K. Jain. 2016. Management of black scurf of potato caused by *Rhizoctonia solani* with organic amendments and their effect on different parameter of potato crop. *J. Pure Appl. Microbiol.*, 10: 2433-2438.
- Rauf, C.A., M. Ashraf and I. Ahmad. 2007. Management of black scurf disease of potato. *Pak. J. Bot.*, 39: 1353-1357.
- Raza, M.A., F. Mukhtar and M. Danish. 2015. Cuscuta reflexa and Carthamus oxyacantha: potent sources of alternative and complimentary drug. Springer Plus, 4: 76.
- Sanam, N., A. Javaid and A. Shoaib. 2017. Antifungal activity of methanolic leaf extracts of allelopathic trees against *Sclerotium rolfsii*. *Bangladesh J. Bot.*, 46: 987-993.
- Sedláková, V., J. Dejmalová, P. DoleŽal, E. Hausvater, P. Sedlák and P. BaŠtová. 2013. Characterization of forty-four potato varieties for resistance to common scab, black scurf and silver scurf. *Crop Prot.*, 48: 82-87.
- Sharma, B. and P. Kamar. 2009. In vitro antifungal potency of some plant extracts against Fusarium oxysporum. Int. J. Pharm., 3: 63-65.
- Sharma, B.P. and B.K. Ram. 2007. Participatory black scurf disease management on potato in Nepal. Nepal Agri. Res. J., 8: 56-62.
- Siyar, S., A. Majeed, Z. Muhammad, R. Ullah and S. Islam. 2018. Allelopathic management of some noxious weeds by the aqueous extracts of *Parthenium hysterophorus* and *Carthamus oxyacantha. Pol. J. Nat. Sci.*, 33: 223-231.
- Taskova, R., M. Mitova, H. Najdenski, I. Tzvetkova and H. Duddeck. 2002. Antimicrobial activity and cytotoxicity of *Carthamus lanatus. Fitoterapia*, 73: 540-543.
- Toth-Soma, L.T., S. Gulyas and Z. Szegletes. 1993. Functional connection between and extracellular secretion in species of *Euphorbia* genus. *Acta Biol. Hung.*, 44: 433-443.
- Walters, D., L. Raynor, A. Mitchell, R. Walker and K. Walker. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. *Mycopathologia*, 157: 87-90.

(Received for publication13 March 2019)