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Abstract

Water shortage resulting from climate change has become one of the major threats to agricultural production globally.
Performance of 68 mutants (M,) of wheat (Triticum aestivum L.), 35 of Bhittai and 33 of Kiran-95 varieties, induced by
gamma-rays were evaluated, along with wild-types and a drought-resistant check, under three irrigation treatments, viz., T-
1(no irrigation), T-2 (two irrigations) and T-3 (four irrigations). Drought susceptibility index (DSI) and relative yield (RY)
values were used to describe yield stability and yield potential of wheat genotypes. BM-14, BM-15, KM-26, and KM-27 had
the lowest DSI (.3, .18, -0.1,0.27) and higher relative yield under stress (.88, 1.00,1.00,1.00), than all other entries and check
varieties; indicated better performance under water-deficit stress. A significant positive association was observed between
biomass and grain yield in both the mutant populations of Bhittai (=0.61) and Kiran-95(7=0.83) under T-1. However, a
significantly negative relationship was observed in DSI with grain yield (=-0.70; r=-0.68), biological yield (+=-0.30; r=-
0.67), and harvest index (+=-0.66; »=-0.29) in Bhittai and Kiran mutants, respectively. Principal component analysis (PCA)
identified seven of Bhittai and 11of Kiran-95 mutants for both water-stress and irrigated conditions. Furthermore, mutants
with low DSI and high RY could be employed to breed varieties with both high yield stability and high yield potential
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(DSI<I and RY>mean RY) for drought-prone areas.
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Introduction

Wheat (Triticum aestivum L.) serves as a principal diet
for over 35% of the world population and is the major
cereal crop of Pakistan. It contributes to nearly 20% of both
calories and protein requirements for humans in more than
94 developing countries globally (Braun et al., 2010). In
Pakistan, about 19% area is rainfed. In irrigated areas,
water scarcity is more prevalent and damaging, especially
in wheat-producing zones (Khakwani et al., 2012), and its
intensity is projected to increase under changing climate in
coming decades in most of the wheat-producing countries
worldwide (Lobell et al., 2008; Trenberth et al., 2014).
Moreover, developing countries have been projected to
suffer 29 to 34% of wheat yield loss by 2050 because of
these changes. (Hellin et al., 2012).The area under water
shortage has increased by 50% to 200% because of the
worldwide occurrence of agricultural drought during the
21" century (Zhao & Dai, 2017). An approximate water
reduction of 40% resulted in as much as a 21% yield
decrease in wheat (Daryanto et al., 2016).

Crop plants often face multiple abiotic stresses, such
as water scarcity, flooding, increasing temperatures, and
soil salinity during their life cycle. In the current scenario
of climate change, wheat production is most prone to
drought stress in semi-arid zones of the world (Fleury,
2010; Khakwani et al., 2011). Water-stress tolerance is a
complex trait and is polygenic in nature (Serba & Yadav,
2016; Sallam et al., 2019), which negatively influences
plant growth and grain yield. Improving tolerance to
water stress has long been a prime objective in most of
the wheat-breeding programs. Therefore, from time to
time, significant work has been done in bread wheat to
characterize and study the traits influencing grain yield
subjected to environments with the scarcity of irrigation
water. (Kili¢ &Yagbasanlar 2010; Amiriet al., 2013;
Ahmad et al., 2015; Zhang et al., 2018).

The availability of genetic divergence is the mainstay
of crop improvement programs to preserve and harness
economically important traits. It provides the basis for the
selection of superior combinations, endowed with the
potential to face the environmental stresses and fast-
changing pathogen races. Genetic divergence in common
wheat has been greatly reduced by the replacement of
traditional wheat varieties (landraces) with large-scale
cultivation of wuniform, high-yielding, semi-dwarf
varieties. For improved sustainability, these varieties
should be replaced with new superior varieties (Shiferaw
et al.,, 2013). To create variation, there are several
molecular and conventional hybridization techniques
available. However, these techniques and approaches are
time-consuming, need special skills, and are tedious and
costly. Hence, there are other promising ways to induce
genetic variation in crop plants, i.e., the use of chemical
or physical mutagens (Kharkwal & Shu, 2009; Yang et
al., 2014; Celik & Atak, 2017, Bano et al., 2017).
Through the use of mutation breeding techniques, >3000
mutants of major crops have been commercialized
(Tanaka et al., 2010; Pathirana, 2011) and 286 wheat
mutant varieties have been developed globally (Kharkwal,
2018). Among the available mutagens, the gamma source
of radiation is the most efficient physical mutagen used by
the breeders to create a variation for use in crop
improvement programs. Hence, our objectives were to
evaluate and select the gamma-irradiated bread wheat
mutants possessing improved yield potential, stability and
other yield-related traits under water-deficit conditions.

Materials and Methods

The wheat wvariety Bhittai, developed in 2004,
possesses high yield potential (7300 kgha™), has long
spikes and amber grain color, and is suitable for early
sowing in Pakistan (Baloch et al., 2014; Anon., 2016);
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whereas, Kiran-95 was developed through the use of
chemical mutagen sodium azide (NaNj3) in the year 1996,
with the yield potential of 6200 kg/ha and moderate plant
height, and is suitable for both early- and late-sowing
systems (Anonymous, 2016; 2019). To improve these
varieties (Bhittai and Kiran-95) with respect to yield and
associated traits in stress environments, seeds of each
variety were irradiated with different doses (100, 150, 200,
and 250 Gy) of gamma (y) rays. Irradiated seeds were
space planted using the dibbler method. Five grains
perspike from each plant of M, generation were taken and
planted individually to grow the M, generation. Fifty
putative mutant plants from both mutant groups (Bhittai
and Kiran-95), with superior traits, were collected in M,,
and individual plant to progeny rows were planted to raise
the M; generation. In the M; generation, superior plants
with desirable traits, viz., fertility, early in heading days,
short stature (semi-dwarf type plant height), more tillers
and grain yield per plant, were promoted to M, generation.
Selected M, mutant plants were tested under different
irrigation regimes for their response to water stress. The
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studies on water stress were conducted during the crop year
2013-14 at NIA (Nuclear Institute of Agriculture) Research
Farm in Tando Jam, Pakistan.

The materials consisted of 68 M, mutants of Bhittai
(35) and Kiran-95 (33) wheat varieties (Supplementary
Table 1), along with wild-type and drought-tolerant check
viz., Margalla-99 (Sial ef al., 2009). Bhittai wild-type was
used as a check for Bhitai-mutants and Kiran-95 for
Kiran-mutants, Margalla-99 was used as a drought-
tolerant check. The experiment with three replications
was set in a randomized complete block design (RCBD).
The sowing of wheat was done using a single row, hand
drilled on 15 November 2013. The experimental area of
soil was a sandy-loam type. Four rows of each genotype
were planted, each row 2 m long and 30 cm apart; net plot
size = 2.4 m’. The Nitrogen (46%) was applied as urea @
130 kg/ha and phosphorus using Diammonium phosphate
(DAP containingP205 46% and N 18%) @ 90 kg/ha. All
of the DAP was utilized at the time of sowing, while
nitrogen fertilizer was used in three portions following the
irrigation schedule.

Supplementary Table 1. Details of the material studied under this work are given as follows.

S. No. Genotypes S. No. Genotypes S. No. Genotypes S. No. Genotypes
1 WT-1 20 BM -19 1 WT-1 19 KM-18
2 BM-1 21 BM -20 2 KM-1 20 KM-19
3 BM-2 22 BM -21 3 KM -2 21 KM-20
4 BM -3 23 BM -22 4 KM -3 22 KM-21
5 BM -4 24 BM -23 5 KM -4 23 KM-22
6 BM -5 25 BM -24 6 KM -5 24 KM-23
7 BM -6 26 BM -25 7 KM -6 25 KM-24
8 BM -7 27 BM -26 8 KM -7 26 KM-25
9 BM -8 28 BM -27 9 KM -8 27 KM-26
10 BM -9 29 BM -28 10 KM -9 28 KM-27
11 BM -10 30 BM -29 11 KM-10 29 KM-28
12 BM -11 31 BM -30 12 KM-11 30 KM-29
13 BM -12 32 BM -31 13 KM-12 31 KM-30
14 BM -13 33 BM -32 14 KM-13 32 KM-31
15 BM-14 34 BM -33 15 KM-14 33 KM-32
16 BM -15 35 BM -34 16 KM-15 34 KM-33
17 BM-16 36 BM -35 17 KM-16 35 WT-2
18 BM -17 37 WT-2 18 KM-17
19 BM -18

Note= Mutants of Bhittai are designated as Bhit (1-35) and of Kiran-95 as Kir (1-33), Bhittai wild type is given on number 1 and
Marghalla-99 on 37 and of Kiran-95 on 1 and Marghalla-99 on 35. WT=Wild-type control

The mutants were evaluated under three irrigation
treatments, i.e., treatment-1 (T-1; no-irrigation),
treatment-2 (T-2; two irrigations: Ist at three-leaf stage
(Zadoks-13) and 2nd at tillering (Zadoks-21) and
treatment-3 (T-3; four irrigations: st at three-leaf stage
(Zadoks-13); 2nd at tillering (Zadoks-21); 3rd at booting
(Zadoks-41), 4th at grain filling (Zadoks-71). The T-3
with four irrigations served as a control. The three
irrigation treatments translated as follows: T-1 = 15%
field capacity, T-2 = 45% field capacity (stress conditions)
and T-3 = 75% field capacity (control). Field capacity was
measured according to Estefan et al., (2013). There was
no rainfall during the crop season.

After maturity, five plants from each replicate were
selected randomly and harvested from the two central
rows to collect the data on yield and other agro-
morphictraits,viz., days to heading (DH); counted as days
from sowing date to 50% spike emergence on the tillers in
each plot, plant height (PH); in centimeters, from the base
of the plant to the tip f the spike, excluding awns and
spike length (SL); measured in centimeters, as the
distance from the basal rachis to the tip of the spike,
without awns. Data on the spikelets per spike (SPS), the
numbers of grains per spike (GPS) and yield per the main
spike (g) were noted from the harvested main tillers of the
five randomly selected plants. Thousand-grain weight
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(g/1000 grains) was analyzed from randomly sampled
1000 kernels after harvest using a top-loading digital
balance. Data on biological and grain yield were
determined from two middle rows in g/ per uni area; later
was transformed to yield per hectare (kg/ha). Harvest
index was validated by following the equation:

Economic yield
Biological yield

Harvest index (%) = x 100

Drought Susceptibility Index (DSI)

The yield stability (DSI) and yield potential (RY)
were obtained from mean grain yield. The DSI (Drought
Susceptibility Index) was calculated to quantify the
relative water stress tolerance in wheat genotypes using
grain yield according to the formula of Fischer &
Maurer (1978).

DSI = [(1-Yd)/'Yw]/D

where Yd=mean yield under drought, Yw =mean yield
under well-watered conditions, and D = environmental
stress intensity = 1- (all genotype mean yield under water
stress /mean yield of all genotypes under well-watered
conditions). However, relative yield under water stress/
yield for control condition were calculated as the yield of
a given genotype under water scarcity divided by the
yield of the highest yielding genotype in the population.

Statistical computing software, statistix version
8.1(https://statistix.informer.com/8.1/), was used to
compute the combined ANOVA; means were separated by
Tukey’s HSD test. To quantify the extent of the
association among the agromorphic traits along with DSI,
correlation coefficients (r) were calculated separately for
stressed and normal treatment using the statistix (8.1)
software. Biplots were developed from the first two
principal components (PC1 and PC2) using a multivariate
statistical package (MSVP).

Results and Discussion

Mean squares for various traits of wheat mutants
showed  highly significant differences (p<0.01)
attributable to the three irrigation treatments and mutant
genotypes. Additionally, a highly significant (p<0.01)
genotype by treatment interaction effect was observed for
all the traits under study (Table 1). The significant
genotype X treatment interaction suggests the impact of
the various water stresses over the performance of
genotypes. It provides better opportunities to select
suitable genotypes for water-stressed environments.

Phenological changes in mutants: The results are
based on the mean values of pooled genotypes (Table 2).
Water stress caused a significant decrease in the number
of days from sowing to heading, plant height, spike
length, grains per spike, main spike yield, and grain
yield in both Bhittai and Kiran-95 mutants in T-1 as

compared to T2. The effect of water stress led to early
heading (84.77 days) relative to the check (87.41 days)
in the case of BhittaiinT-1 (no-irrigation). The Kiran-95
mutants had early heading (79.74 days) inT-1, which
might be attributable to accelerated plant growth when
subjected to stress. However, Kiran-95 mutants in T-3
(full-irrigation) had late heading (87.63 days). Blum
(2010) and Khakwani et al., (2012) stated that early
heading might contribute to plant escape from stress,
and reportedly, a drought at this stage reduced grain
yield by16.8% (Zhang et al., 2018). The height of both
mutant populations (Bhittai and Kiran-95) was reduced
in T-1 as compared to T-2 and T-3. Similarly, reduced
plant height in response to water stress has also been
revealed in other studies (Khan & Nagvi, 2011; Li et al.,
2011; Bowman, 2015; Magbool et al., 2015).
Insufficient water availability reduces plant height; in
that case, taller genotypes (to a certain extent) could be
helpful in producing more biomass and assimilates to
feed developing grains, consequently increasing grain
yield (Lopes et al., 2014). The spike length in Bhittai
mutants (12.67) was increased as compared to wild-type
(12.45) in T-1, T-2(13.32) and T-3 (13.39). Results
showed significant differences between mutants and
wild-type for the spike length in T-1 and T-2 but not in
T-3. The Kiran-95 mutants also showed decreased spike
length in T-1 (13.20) in relation to T-2 (14.50) and T-3
(14.32). Sokoto & Singh (2013) indicated that decreased
photosynthesis and translocation of photosynthates
resulted in retarded spike growth under water stress.
Bhittai-mutants produced significantly more spikelets
per spike in T-1(20.87) and T-2 (22.04) as compared to
the wild-type. Similarly, Kiran-95 mutants also
produced significantly more spikelets per spike (20.04)
as compared to the wild-type (19.02) in T-1. However,
the number of spikelets per spike was decreased in T-1
as compared to T-2 and T-3. Although, Kili¢ &
Yagbasanlar (2010) found no significant effect of
drought stress on the number of spikelets per spike. In
T-1, Bhittai mutants produced a significantly higher
number of grains (70.22) than the wild-type (66.40).
Similarly, Kiran-95 mutants showed a significantly
higher number of grains per spike than its wild-type
check, in all three treatments. Overall, no-irrigation (T-
1) showed a reduced number of grains per spike as
compared to two (T-2) and four irrigations (T-3) in both
mutant groups under study. Water stress imposed after
heading has been shown to decrease grain yield because
of the reduced number of grains per spike, that is one of
the main yield contributing traits in cereals (Mori &
Inagaki, 2012; Mohammadi, 2018). Prior research has
indicated that water stress at a particular stage affects a
specific trait (Sokoto & Singh, 2013), reduced spike
length under water stress (Mujtaba et al., 2018), and at
the reproductive stage, it significantly affects seed
setting because of male and female sterility caused by
water stress (Dolferus et al., 2011; Powell et al., 2012;
Barber et al., 2015; Bogale & Tesfaye, 2016;
Onyemaobi et al., 2017).
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Bhittai mutants had significantly higher grain yield
per the main spike (2.33 g), (2.36 g), and (2.61 g) as
compared to wild-type in T-1, T-2, and T-3, respectively.
Further, Kiran-95 mutants also had increased main spike
yield compared with the check variety in T-1, T-2, and
T-3. Overall, results showed lower main spike yield
under deficit irrigation (T-1) in comparison to T-2 and
control (T-3) in both mutants and wild-type genotypes.
However, some mutants produced a comparatively
higher main spike yield than check varieties in T-1.
Reduced main spike yield might be attributable to
shriveling of grains as a result of reduced time for seed
formation under water stress. The impacts of low water
on grain yield performance of Bhittai and Kiran-95 and
their respective M4 mutants are given in (Tables 3 and
Table 4), respectively. The BM-15mutant produced the
highest yield in T-1 (3438 kg/ha) and T-3 (3583 kg/ha),
with lower DSI value and highest relative yield under
stress and control, whereas BM-18 produced highest
yield in T-2 (4236 kg/ha) in contrast to the wild-type.
While in Kiran-95 mutants, the highest yield among
mutants in comparison to wild-type was produced by
KM-27 and KM-28 (3229 kg/ha) in T-1, KM-29 (4514
kg/ha) in T-2, and KM-23 (4558 kg/ha) in T-3 (Table 4).
The drought susceptibility index of Bhittai mutants for
yield ranged from -0.03 to 3.2 and of Kiran-95 mutants
from -0.1 to 1.73 (Table3 and Table 4, respectively).
Twenty Bhittai mutants (BM-3, BM-5, BM-6, BM-7,
BM-8, BM-10, BM-11, BM-12, BM-13, BM-14, BM-
15, BM-16, BM- 17, BM-29, BM-30, BM-32, BM-33,
BM-34, BM-35 and BM-36), considered as water-stress
tolerant having DSI value <lwere selected whereas
others with DSI >1 were rejected. However, mutants
from Kiran-95-based population,viz., KM-2, KM-3,
KM-6, KM-9, KM-11, KM-12, KM-15, KM-21, KM-24,
KM-25, KM-26, KM-27, KM-28, KM-29, KM-30, KM-
31 and KM-33 were relatively water-stress tolerant (DSI
value <1), as only a slight reduction in yield was
recorded in these mutants under no-irrigation as
compared to the control treatment. Moreover, under
stress conditions Kiran-95 mutants, KM-27, and KM-28
produced the highest grain yield and low DSI values
than all other contesting lines and check varieties, also
showed low DSI values were, thereby selected for
further evaluation.

When pooled data were analyzed, Bhittai mutants
had comparatively higher grain yield (2196 kg/ha), (3086
kg/ha) and (2907 kg/ha) than its wild-type variety Bhittai
in T-1 (1958 kg/ha), T-2 (2578 kg/ha) and T-3 (2594
kg/ha), respectively (Table 2). The higher yield in T-1
might be attributable to early heading (84.77 days)
relative to the check and in T-3 attributable to the increase
in the number of grains per spike (81.10) and
comparatively better spike yield (2. 61g). Likewise,
Kiran-95 mutants also had significantly higher grain yield
in T-1 (2336 kg/ha), T-2 (3777 kg/ha) and T-3 (3602
kg/ha) than wild-type genotypes. In T-1 and T-3,
moderate plant height might be the reason for increased
yield, whereas, in T-2, longer spikes, more spikelets per
spike, and comparatively better spike yield might have
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contributed to increased yield in mutants. The mean RY
values in response to water stress and full irrigation
ranged from 0.79 to 0.64 for Bhittai mutants, and from
0.80 to 0.70 for Kiran-95 mutants (Tables 3 and 4).
Among the Bhittai mutants, a total of 17 entries (BM-2,
BM-3, BM-5, BM-6, BM- 7, BM-8, BM-10, BM-11, BM-
12, BM-13, BM-14, BM-15, BM-16, BM-17, BM-27,
BM-28, and BM-36) were comparatively high yielding
(RY> mean RY) under water-deficit conditions, whereas
BM-4, BM-9, BM-18, BM-19, BM-20, BM-21, BM-22,
BM-23, BM-24, 25, BM-26, BM-29, BM-30, BM-31,
BM-32, BM-33, BM-34, BM-35 and wild-type (1
Bhittai& 37 Margalla-99) were relatively low yielding
under water stress.

Correlation analysis of traits under no-irrigation and
four irrigations condition: Correlation coefficients
between grain yield and main yield constituents,
underwater stress (no irrigation), and control (four
irrigations) settings, of Bhittai and Kiran-95mutants, are
presented in Table Sand Table 6, respectively. In Bhittai
mutants, under stress (no irrigation) conditions, grain
yield showed a strong positive correlation with biomass
(r=0.60"") and harvest index (r=0.82"""), whereas positive
but weak correlation with grains per spike (=0.34"") and
main spike yield (r=0.21"), whereas grain yield had a
highly significant negative (r=-0.70""") correlation with
DSI (Table 5 upper diagonal). Further, a positive
correlation was also found between spike length and DSI
(r=0.30""). The positive correlation of biological yield
with grain yield suggested that grain yield was increased
because of improved biomass yield, as it might have
helped to accumulate more photosynthates to developing
grain. The correlation was also determined for the control
(T-3) of Bhittai mutants (Table Slower diagonal).
Correlation analysis revealed significant positive
correlations of grain yield with main spike yield
(r=0.76""", and harvest index (r=0.92""").

Likewise, in Kiran-95 mutants under stress (no-
irrigation), grain yield exhibited a strong positive
correlation with biomass (r=0.83"") and harvest index
(r=0.62"""), whereas it had a negative correlation with DSI
(r=-0.68"") (Table 6, upper diagonal DSI exhibited a
significantly negative association to biomass yield (r=-
0.67""), and grain yield (r=-0.68). The number of grains
per spike showed positively significant association with the
main spike yield (r=0.67" ", whereas the association was
negative with the height of the plant (=-0.34"). The
number of grains plays a pivotal role in improving yield,
specifically under conditions of low water availability
(Dencicet al., 2000; Slaferet al., 2005; Li et al., 2012).
Under normal irrigation, grain yield showed a strong
positive correlation with biomass yield (r=0.69"") and
harvest index (1=0.75"), (Table 6 lower diagonal).
Moreover, significant relationships of biomass were also
recorded with some other traits. These results indicated that
adequate irrigation water is crucial for growth and crop
productivity, whereas biomass is a vital trait for selection
under water stress. Therefore, a significant positive
association of grain yield with biomass and harvest index
could be helpful in selecting drought-tolerant genotypes.
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Fig. 1. Biplot diagram derived from the first and second-factor components for Bhittai mutants and Kiran-95 mutants under water

stress and non-stress conditions.

Fig. 1 Dispersion of the wheat mutants/genotypes
under study according to first and second components,
over yield, and other quantitative traits under water- stress
and non-stress conditions. (a) PCA biplot for traits and
genotypes studied under stress in Bhittai-mutants
population (b) PCA biplot for traits and genotypes studied
under non-stress treatment in Bhittai-mutants population
(c) PCA biplot for traits and genotypes studied under
stress in Kiran-mutants population (d) PCA biplot for
traits and genotypes studied under non-stress treatment in
Kiran-mutants  population. ~ Multivariate  Statistical
Package (MSVP) was used to develop this figure.

Biplot analysis: PC1 showed the significance of MSY, GY,
and HI, accounting for 32.27% of the total variability.
Hence, these traits proved to be helpful in selecting
genotypes for water stress tolerance. The PC2
explained24.1% variation, with more importance placed on
DH and DSI, which may be called stress-sensitivity
components. Overall, PC1 and PC2 explained56.4% of the
variability among the traits associated with these two PCs.
This suggests that the best mutants can be selected with
increased PC1 and decreased PC2 for drought-prone and

normal irrigation systems (Fig. 1a). Genotypes BM-2, BM-
6, BM-7, BM-9, BM-10, BM-11, BM-12, BM-13, BM-14,
BM-15, BM-16 and BM-28 with higher PC1 and lower
PC2 (reduced sensitivity and improved yield) can perform
equally well under normalandstressed habitat, and also
exhibited higher scores for GY, BY and HI. Genotypes
BM-1, BM-3, BM-4, BM-5, and BM-18, having high PC1
and PC2 can perform better under normal environments
because of their sensitivity to late-season drought. These
genotypes showed high values for DH, PH, GPS, and MSY.
Genotypes BM-26, BM-29, BM-30, BM-31, BM-32, BM-
33, BM-34, BM-35, BM-36, WT1 and WT2 with reduced
PC1 and PC2, showed less sensitivity to stress, scored high
values for SPS; hence these would be preferred for drought
resistance in, breeding. Mwadzingeniet al., (2016)
emphasized the selection of genotypes with higher yield
under drought stress on the basis of yield components using
PCA analysis. Genotypes BM-8, BM-17, BM-19, BM-20,
BM-21, BM-22, BM-23, BM-24, BM-25, BM-26, and
BM-27, with lower PC1 and higher PC2, had decreased
yield with higher sensitivity to water stress at the end-of-
season, and scored higher values for DSI; hence their
cultivation is not recommended.
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Under a non-stress environment, PC1 showed the
importance of ofSL, BM, GY, and HI, explaining 38.1%
of the variation (Fig. 1b). However, PC2 accounted for
17.5% variation with more importance laid on DH, MSY,
and BY, indicating that these traits were associated with
drought sensitivity. Overall, PC1 and PC2 explained
55.6% of the variance for the traits.

PC1 (29.43% of the variance) showed the BM, GY,
and HI as productive variables. Therefore, PC1 was
related to drought tolerance. The PC2 (21.36% of the
variance) placed more importance on PH, SL, and SPS
indicated as drought-sensitive components. The first two
PCs explained about 50.79% of the total variability. This
suggests that the selection of mutants with elevated PC1
and smaller PC2 can be equally recommended for stress
and normal conditions (Fig. 1c¢). Mutants KM-1, KM-5,
KM-8, KM-10, KM-11, KM-14, KM-22, KM-23, KM-24
and KM-26 with elevated PC1 and decreased PC2 (less
stress-responsive and enhanced yield) can perform better
in both stressed and normal conditions, showed elevated
scores for BY, Gy and HI. However, genotypes KM-20,
KM-21, KM-25, KM-27, KM-28, KM-29, KM-30 and
KM-32 depicted high values for PC1 and PC2, therefore,
considered suitable for non-stress conditions because of
their sensitivity to terminal water stress, with high values
for PH. While, genotypes KM-2, KM-3, KM-4, KM-6,
KM-7, KM-9, KM-17, KM-33, with reduced PCI1 and
PC2 showing lesser stress sensitivity ¢ can be
recommended in breeding for water stress tolerance,
scored high values for GPS and MSY. Genotypes KM-13,
KM-14, KM-16, KM-17, KM-19, KM-20, and KM-32
WT1 and WT2 with reduced PC1 and elevated PC2
decreased yield and increased terminal stress sensitivity,
hence not proposed for cultivation. However, under
normal conditions, PC1 valued GPS, MSY, BM, GY, and
HI with 27.1% of total variation (Fig. 1d). While PC2
explained 21.6% variation with more importance placed
on SPS and MSY altogether, PC1 and PC2 demonstrate
48.7% of the variation for the studied traits.

Conclusions

The present study suggests that water stress had a
negative impact on yield and yield components. The
genotype x treatment interaction among the mutants of
both populations was highly significant for all the
treatments. The results depicted that Kiran-95 mutants
produced higher grain yield than Bhittai mutants. It is also
noteworthy that selection on the basis of biomass, harvest
index (%), optimum plant height, lower DSI value and
higher relative yield will be helpful to develop high
yielding genotypes for water-stressed environments.
Mutants from both groups depicted increased potential for
yield and stability under the water-stressed condition and
sustained yield over diverse irrigation treatments. Among
the Bhittai-mutants population, BM-14 was most stable in
yield performance for all the irrigation levels, having the
lowest DSI and higher relative yield under stress and
normal environment. PCA analysis also suggested BM -
14 for both stressed and non-stressed conditions.
Whereas, genotypes KM -26 and KM -27 were found
suitable for the stressed environment, having lower DSI

SAIMA MIR ARAIN ET AL.,

and higher relative yield. According to PCA analysis KM-
26 is recommended for both stressed and non-stressed,
whereas, KM-27 is recommended for well-watered
environments. These mutants will be backcrossed with the
wild-type (Bhittai/Kiran-95) to get rid of undesirable
mutations and will be studied further for wvarietal
evolution with better yield performance under water
deficit areas of Sindh province, Pakistan.
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