WHY ARE SOME PLANT SPECIES BECOMING EXTINCT WHILE OTHERS SPREADING?

ANDRZEJ URBISZ

Institute of Biology, Faculty of Natural Sciences, Biotechnology and Environmental Protection University of Silesia in Katowice, ul. Jagiellońska 28, 40-032 Katowice, Poland Corresponding email: andrzej.urbisz@us.edu.pl

Abstract

The research was carried out in the Kraków-Częstochowa Jurassic Upland (Southern Poland). Two groups of plants were distinguished in the vascular flora of this area, each consisting of 32 species: probably extinct and invasive. All species were described in respect of 33 traits related to their morphology, anatomy, reproduction biology, phenology, chorology, taxonomy, habitat requirements, life strategy and response to human impact. The objective of this study is to answer the question which traits of plant species determine their extinction or spreading. To demonstrate statistically significant differences between invasive and extinct species, Pearson's chi-square test was applied. The statistically significant differences were found for 16 traits. The compared groups of plants differed the most in terms of stem height, human use, the degree of hemeroby, urbanity, the number of sites, types of plant communities in which they occur, the nitrogen content in the substrate and the life strategy. Statistically significant differences were also determined for the pollination method, anatomical structure of leaves, dicliny, the type and weight of a diaspore, duration of the flowering period, taxonomic affinity with a family and the soil moisture value. It has been found that invasive species are mostly medium-sized plants (0.5–2 m high), often cultivated by man, abundant on anthropogenic habitats; they are nitrophilous, mesophilic, self-pollinating and C-strategists. On the other hand, extinct species are up to 0.5 m high. They are not crop plants and occur mostly on natural and semi-natural habitats, on substrates with low content of nitrogen and they are CSR-strategists.

Key words: Plant traits, Extinct species, Invasive species, Vascular plants, Poland.

Introduction

In recent years, many researchers have drawn attention to the declining biodiversity all over the world. Many species are not able to adapt to large-scale intensive environmental changes, caused mainly by human activity. On the other hand, some species referred to as invasive increase their range of occurrence, and often adapt to new habitats. They are defined as species of alien origin, established in an initially alien region, produce viable progeny, often in large numbers, and spread over a considerable distance from their parent plants (Pyšek et al., 2004). Invasive species pose a widely recognised threat to biodiversity (e.g. Sax et al., 2002; Gurevitch & Padilla, 2004; Sax & Gaines, 2008; Khan et al., 2010; Downey & Richardson, 2016; Bomanowska et al., 2017). Along with the use of biological resources, alien species have been identified as the most important cause of species extinction (Bellard et al., 2016). Even though the number of hitherto extinct plant species is not large on the global scale, it seems that the near future may witness its rapid growth (Gilbert & Levine, 2013). Many scientists have been trying to determine which traits cause the spread or extinction of species (e.g. Lodge, 1993; McKinney, 1998; McKinney & Lockwood, 1999; Moravcova et al., 2015). Results of this research are not always explicit and unambiguous (Kolar & Lodge, 2001). Successful colonisation of new areas results not only from various species traits related to their habit, taxonomic affinity, genetic variability, reproduction, habitat requirements, but also from the way they are used by man and the stage of their invasion (or extinction).

The objective of this study was to determine which of the 33 traits analysed (Tables 1 and 2) differentiate the extinct species from the invasive ones to the greatest extent.

Materials and Methods

Study area: The Kraków-Częstochowa Jurassic Upland, also known as the Polish Jurassic Highland, is a 2,615 km² macroregion, situated in southern Poland, between the city of Kraków and the city of Częstochowa – Fig. 1 (Kondracki, 1988).

The landscape features characteristic limestone rocks, deposited by the Upper Jurassic sea ca. 150 m years ago. The average altitude ranges from 300 to 450 m a.s.l., and the highest point is Mt Góra Zamkowa (Castle Mountain) (515 m a.s.l.).

The soil cover consists mainly of poor podzolic soils, developed from sand and loam. More fertile brown soils, formed on loess, dominate only in the central and eastern parts. Nutrient-rich calcareous rendzinas, associated mainly with limestone rocks, are also common here (Musierowicz, 1961).

The Kraków-Częstochowa Jurassic Upland is located at the border between watersheds of the Vistula and the Oder – the main rivers in Poland. There are no large water bodies in the study area, and the network of surface watercourses is relatively scarce.

The climatic conditions vary. The mean annual precipitation in the northern part is 600-700 mm, and 700-800 mm in the southern part of the study area. The average annual temperature is about 7.5° C; the coldest month is January (mean temperature -3° C) and the warmest – July (17° C). The average snow cover duration is about 80 days; the growing season lasts on average 210 days in the western part of the area and 200 days in the east (Kruczała, 2000).

No.Trait name χ^2 1.Life form16.74026df=9p=.052942.Stem height (cm)25.26654df=4p=.00004**3.Leaf persistence5.396364df=2p=.067334.Leaf anatomy19.82455df=9p=.01903*5.Leaf form13.31890df=11p=.272996.Life span10.85812df=5p=.054277.Pollination type23.39478df=10p=.00938**8.Seed dispersal type27.23861df=18p=.074639.Type of reproduction4.615385df=4p=.3290810.Dicliny9.904762df=4p=.04206*11.Fruit type19.76381df=8p=.01127*13.Diaspore type19.76381df=6p=.04361*14.Duration of flowering (months)12.96381df=6p=.04361*15.Basic chromosome number4.476191df=4p=.34538	
2.Stem height (cm) 25.26654 df=4 $p=.00004^{**}$ 3.Leaf persistence 5.396364 df=2 $p=.06733$ 4.Leaf anatomy 19.82455 df=9 $p=.01903^*$ 5.Leaf form 13.31890 df=11 $p=.27299$ 6.Life span 10.85812 df=5 $p=.00938^{**}$ 7.Pollination type 23.39478 df=10 $p=.00938^{**}$ 8.Seed dispersal type 27.23861 df=18 $p=.07463$ 9.Type of reproduction 4.615385 df=4 $p=.32908$ 10.Dicliny 9.904762 df=4 $p=.04206^*$ 11.Fruit type 14.46377 df=8 $p=.07045$ 12.Diaspore type 19.76381 df=8 $p=.01127^*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
3.Leaf persistence 5.396364 df=2 $p=.06733$ 4.Leaf anatomy 19.82455 df=9 $p=.01903^*$ 5.Leaf form 13.31890 df=11 $p=.27299$ 6.Life span 10.85812 df=5 $p=.05427$ 7.Pollination type 23.39478 df=10 $p=.00938^{**}$ 8.Seed dispersal type 27.23861 df=18 $p=.07463$ 9.Type of reproduction 4.615385 df=4 $p=.32908$ 10.Dicliny 9.904762 df=4 $p=.04206^*$ 11.Fruit type 14.46377 df=8 $p=.07145$ 12.Diaspore type 19.76381 df=8 $p=.01127^*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
4.Leaf anatomy 19.82455 df=9 $p=.01903^*$ 5.Leaf form 13.31890 df=11 $p=.27299$ 6.Life span 10.85812 df=5 $p=.05427$ 7.Pollination type 23.39478 df=10 $p=.00938^{**}$ 8.Seed dispersal type 27.23861 df=18 $p=.07463$ 9.Type of reproduction 4.615385 df=4 $p=.32908$ 10.Dicliny 9.904762 df=4 $p=.04206^*$ 11.Fruit type 14.46377 df=8 $p=.07445$ 12.Diaspore type 19.76381 df=8 $p=.01127^*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	*
5.Leaf form13.31890df=11 $p=.27299$ 6.Life span10.85812df=5 $p=.05427$ 7.Pollination type23.39478df=10 $p=.00938**$ 8.Seed dispersal type27.23861df=18 $p=.07463$ 9.Type of reproduction4.615385df=4 $p=.32908$ 10.Dicliny9.904762df=4 $p=.04206*$ 11.Fruit type14.46377df=8 $p=.07045$ 12.Diaspore type19.76381df=8 $p=.01127*$ 13.Diaspore weight (mg)9.538653df=4 $p=.04896*$ 14.Duration of flowering (months)12.96381df=6 $p=.04361*$ 15.Basic chromosome number4.476191df=4 $p=.34538$	
6.Life span 10.85812 df=5 $p=.05427$ 7.Pollination type 23.39478 df=10 $p=.00938^{**}$ 8.Seed dispersal type 27.23861 df=18 $p=.07463$ 9.Type of reproduction 4.615385 df=4 $p=.32908$ 10.Dicliny 9.904762 df=4 $p=.04206^{*}$ 11.Fruit type 14.46377 df=8 $p=.07045$ 12.Diaspore type 19.76381 df=8 $p=.01127^{*}$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^{*}$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^{*}$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
7.Pollination type 23.39478 df=10p=.00938**8.Seed dispersal type 27.23861 df=18p=.074639.Type of reproduction 4.615385 df=4p=.3290810.Dicliny 9.904762 df=4p=.04206*11.Fruit type 14.46377 df=8p=.0704512.Diaspore type 19.76381 df=8p=.01127*13.Diaspore weight (mg) 9.538653 df=4p=.04896*14.Duration of flowering (months) 12.96381 df=6p=.04361*15.Basic chromosome number 4.476191 df=4p=.34538	
8.Seed dispersal type 27.23861 df=18 $p=.07463$ 9.Type of reproduction 4.615385 df=4 $p=.32908$ 10.Dicliny 9.904762 df=4 $p=.04206*$ 11.Fruit type 14.46377 df=8 $p=.07045$ 12.Diaspore type 19.76381 df=8 $p=.01127*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
9.Type of reproduction 4.615385 $df=4$ $p=.32908$ 10.Dicliny 9.904762 $df=4$ $p=.04206*$ 11.Fruit type 14.46377 $df=8$ $p=.07045$ 12.Diaspore type 19.76381 $df=8$ $p=.01127*$ 13.Diaspore weight (mg) 9.538653 $df=4$ $p=.04896*$ 14.Duration of flowering (months) 12.96381 $df=6$ $p=.04361*$ 15.Basic chromosome number 4.476191 $df=4$ $p=.34538$	
10.Dicliny 9.904762 df=4 $p=.04206^*$ 11.Fruit type 14.46377 df=8 $p=.07045$ 12.Diaspore type 19.76381 df=8 $p=.01127^*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
11.Fruit type 14.46377 df=8 $p=.07045$ 12.Diaspore type 19.76381 df=8 $p=.01127*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
12.Diaspore type 19.76381 df=8 $p=.01127^*$ 13.Diaspore weight (mg) 9.538653 df=4 $p=.04896^*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361^*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
13.Diaspore weight (mg) 9.538653 df=4 $p=.04896*$ 14.Duration of flowering (months) 12.96381 df=6 $p=.04361*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
14.Duration of flowering (months) 12.96381 df=6 $p=.04361*$ 15.Basic chromosome number 4.476191 df=4 $p=.34538$	
15. Basic chromosome number $4.476191 \text{ df}=4 \text{ p}=.34538$	
16. Maximum ploidy level 4.411956 df=5 p=.49175	
17. Cultivation 29.09091 df=1 p=.0000***	
18. Hemeroby 60.00000 df=9 p=.00000**	*
19. Urbanity 41.72107 df=4 p=.00000**	*
20. Number of localities 60.12121 df=4 p=.00000**	*
21. Number of inhabited floristic zones (natural range) $9.683761 \text{ df}=6 \text{ p}=.13862$	
22. Family 42.23077 df=27 p=.03123*	
23. Number of species within the genus (in the world) $3.401399 \text{ df}=4 \text{ p}=.49303$	
24. Number of species within the genus (in the study area) 2.526316 df=4 p=.63993	
25. Plant sociology (class) 44.29139 df=16 p=.00018**	*
26. Light value (L) $7.730397 \text{ df}=7 \text{ p}=.35697$	
27. Temperature value (T) $10.00751 \text{ df}=5 \text{ p}=.07502$	
28. Continentality value (K) 2.839890 df=5 p=.72465	
29. Moisture value (F) $20.59024 \text{ df=9} \text{ p=.01460*}$	
30. Reaction of soil value (R) 12.45989 df=8 p=.13183	
31. Nitrogen value (N) 34.33485 df=8 p=.00004**	*
32. Salinity value (S) $4.105263 \text{ df}=2 \text{ p}=.12840$	
33. Life strategy 44.73693 df=6 p=.00000**	

Table 1. Values of chi-square distribution (χ^2) for the analysed traits of the extinct and invasive species in the study area (df – number of degrees of freedom, p – significance level).

Fig. 1. Location of the study area.

Data analyses: Two groups of plants were distinguished in the vascular flora of the Kraków-Częstochowa Jurassic Upland (Urbisz, 2004, 2008), each consisting of 32 species (Table 2): 1) probably extinct species in this area and 2) invasive species. Invasive species are listed after Tokarska-Guzik *et al.* (2012), whereas species whose presence in the study area has not been confirmed after 1980 are considered extinct (Urbisz, 2004, 2008).

All species were studied in terms of 33 selected traits (Frank & Klotz, 1990; Ellenberg *et al.*, 1992; Klotz *et al.*, 2002; Rutkowski, 2004; Urbisz, 2004; The Plant List, 2013) related to their morphology, anatomy, reproduction biology, phenology, chorology, taxonomy, habitat requirements, life strategy and response to human impact (Tables 1 and 2).

To demonstrate statistically significant differences between invasive and probably extinct species, Pearson's chi-square test was applied (StatSoft, 2014). The significance levels were defined as follows: * = p < 0.05, ** = p < 0.01 and *** = p < 0.001.

	l
traits.	
nalysed	
the a	
00	
based	
species	
e studied	
th	
of	
rentiation	
Diffe	
able 2.	
T	

Charles name															E	ait nu	Trait numbers	s														
	-	7	3	4	S	9	7	8	6	10	11	12	13	14	15	16]	17 1	18 1	19 20	0 21	1 22	2 23	3 24	1 25	26	27	28	29	30	31	32	33
															Ex	tinct	Extinct species	s														
Anacamptis pyramidalis	IJ	П	s	ш	lang	b	.1	M	s	SO	ka	s	n/a	2	IV		0 0	om		[3	or	r II		FB	8	7	2	З	6	7	0	CSI
Astragalus arenarius	Η	Ι	n/a	n/a	gefie	b		wev	S	SO	hu	S	n/a	2				om		1	fé	a V	П	SS		٢	7	5	7	1	0	cs
Bupleurum falcatum	Η	Π	s	ms	lang	b	is	ewhm	s	SO	spf	tf	N	3	Π	2	0 0	om		3	ap	p IV	II /	TG	9 1	9	9	б	6	З	0	CST
Carex arenaria	IJ	п	i	s	gras	b	M	wes	VVS	so	nu	fzb	Π	9	I	5	о о	omb	1	3	cy	۷ ۷	N	SS	7	9	2	б	7	2	1	cs
Catabrosa aquatica	Н	П	M	em	gras	d	M	we	SV	SO	nu	fzb	П	4	П	9	0 0	om		1	od	0 I	Ι	BT	~	S	5	6	7	8	1	cs
Cerastium brachypetalum	H,T	Ι	M	s	norm	а	is	wh	s	gm	ka	s	I	3	IV	5	0 01	dmo	2	3	са	a IV		I SS	6	2	4	ю	8	5	0	Sr
Dactylorhiza sambucina	IJ	Ι	s	ш	lang	b	. i	M	S	so	ka	S	n/a	3	IV	5	0 0	om		ŝ	or	r II	III	I FB	7	5	4	4	5	2	0	csr
Drosera anglica	Η	Ι	s	c	lang	d	sk	M	SV	SO	ka	s	Ι	2	п	4	0 8	ao		3	dr	r IV	П /	SC	8	4	ю	6	З	7	0	s
Eleocharis ovata	Т	Ι	M	e	rohr	а	M	we	s	so	nu	fzb	I	3	Ι	2	0 0	om		3	cy	y IV	III /	NI	8	9	4	8	n/a	5	0	r
Festuca altissima	Η	Π	M	ш	gras	b	M	we	s	SO	nu	fzb	Ш	2	П	2	0 0	om	1	1 2	od	0 V	N	QF	3	5	3	S	4	9	0	cs
Gentiana asclepiadea	Н	Π	n/a	n/a	norm	b	.1	M	SV	SO	ka	s	Ι	3	Π	4	0 1	ш		5	ge	e V	П	MA		n/a	4	9	2	2	0	c
Gratiola officinalis	Н	Ι	M	e	norm	b	.1	M	SV	so	ka	S	Ι	3	П	4	0 0	om		3	sc	п	Ι	MA		L	5	8	L	4	1	CSI
Hieracium echioides	Η	Π	M	ш	lang	b	isa	wea	S	SO	nu	fzb	Ι	2	п	4	0 0	uno		[3	as	s v	N	ss '		9	9	7	9	1	0	csr
Hydrocotyle vulgaris	Η	п	M	ey	voll	b	s		SV	SO	spf	f, tf	Π	2	Ξ	8	0 0	uno	-	[3	hy	y IV	I ,	SC	2	5	7	6	З	5	-	s
Lathyrus montanus	IJ	Ι	s	ш	gefie	d	. I	s	SV	SO	hu	s	>	3	П	5	0 0	uno	1	1 2	fa	a IV	III	I QF	n/a		2	5	З	5	0	csr
Lathyrus palustris	Н	Ш	s	ш	gefie	b	.1	s	SV	SO	hu	s	n/a	2	Π	9	0 0	uno		4	fa	a IV	III /	I MA	8	9	n/a	8	8	З	0	csr
Linosyris vulgaris	Η	П	s	ms	gras	d	is	we	NS	SO	nu	fzb	N	2	Π	4	0 0	om	1	[2	as	s I	Ι	FB	8	٢	5	7	8	2	0	CST
Montia fontana	H,T	Ι	M	e	lang	ap	s	S	SV	so	ka	S	IV	3	П	5	0 01	omb		8	por	N II	Ι	ZI	8	4	2	6	2	4	0	L
Orchis coriophora	IJ	Ι	n/a	n/a	lang	b	.1	M	s	SO	ka	s	n/a	2	IV	5	0 0	mo		[3	or	r II	Ξ	I MA	8	٢	4	٢	4	2	0	CST
Orchis palustris	IJ	П	n/a	n/a	lang	d	·I	M	s	SO	ka	s	Ι	2	>	5	0 0	om	1	[3	or	r II	Ξ	I SC	6	9	5	6	8	5	1	CSI
Orchis ustulata	IJ	Π	s	my	lang	b	.1	M	s	SO	ka	s	n/a	2	2	2	0 0	om		[2	or	r II	Ξ	[FB	7	5	5	4	n/a	З	0	CSI
Potamogeton acutifolius	Α	П	M	а	lang	ap	wh	h	SV	SO	sastf	fch	n/a	3	Π	2	0 n	n/a n	n/a I	2	pot	ot III	VI I	Р	L	9	4	11	2	9	0	n/a
Potamogeton nodosus	A	N	M	а	lang	d	wh	Ч	SVV	so	sastf	fch	n/a	ю	Ш	4	0 n	n/a n	n/a I	5	pot	ot III	VI I	P P	9	9	5	12	8	5	0	n/a
Pulsatilla pratensis	Н	Ι	S	sm	mgef	d .	-1	we	s	SO	sanu	fch	>	2	П	2	0 0	om		1 1	ra	a III	II I	FB	7	9	5	7	٢	2	0	CSI
Pulsatilla vernalis	Η	Ι	i	ms	gefie	b	·I	we	s	SO	sanu	fch	n/a	e	Π	5	0 0	om		3	га	a III	II I	ΡP	7	n/a		4	S	5	0	CSI
Rhynchospora fusca	H,G	Ι	s	e	gras	b	M	e	SV	SO	nu	fzb	Π	2	IV	2	0 8	a0	-	3	cy	V V	П	SC	8	5	2	6	1	2	0	s
Spiranthes spiralis	G,H	Ι	s	ms	schup	d u		M	SV	SO	ka	S	n/a	ŝ	Π	2	0 0	mo	_		or	r II	I	FB	8	9	2	4	5	2	0	csr
Thesium ebracteatum	IJ	I	n/a	n/a	lang	р		va	SV	so	nu	fzb	n/a	2	П	4	0 0	mo	_	1	sa	a IV	II /	SS	7	9	9	4	0	7	0	n/a
Traunsteinera globosa	ŋ	П	s	ш	lang	b		M	s	SO	ka	S	n/a	2	2	2	0 0	mo		1 2	or	г	Ι	SA	7	З	4	5	8	3	0	CSI
Veronica catenata	H,T	Π	n/a	n/a	lang	ap	is	whas	SV	SO	ka	s	n/a	5	П	4	0 OI	omb	_	[3	sc	N C	VI	BT	8	٢	Э	6	7	7	0	cs
Veronica praecox	Τ	Ι	M	sm	voll	а	is	wha	S	so	ka	S	I	3	П	5	0 0	om		. 3	sc	2	N	SS	8	8	5	0	8	-	0	SI
Zannichellia palustris	Α	п		а	graz	d	h	e	SV	mo	sastf	fch	n/a	5	Π	4	0 n	n/a n	n/a I	1	Za	I E	Ι	R	9	9	5	12	8	8	5	n/a

1											Ta	Table 2. (Cont'd.)	(Cont	.(-р.																	т
Species name	7	3	4	S	9	2	8	6	10	11	12	13 1	14 1	5 16	rait numbers 16 17	18	19	20	21	22	23	24 2	25 2	26 2	7 28	8 29	30	31	32	33	
														Inva	sive s	species															
Acer negundo P	>	S	Ш	gefie	e p	IW	M	SV	op	spf	tf	>	1 L	U 2	-	dm	4	\geq	m	ac	N		2F ()	5) 6	9 0	9	2	2	0	c	
Amaranthus retroflexus T	Π	S	Ш	llov		IW	we	S	om	ka	s	Π	3 I	V 2	0	mbcp	p 3	Ξ	-	am	Ξ	Ξ	U	8	9	4	2	2	-	CL	
Anthoxantum aristatum 1	-	M	Ш	gras	a	M	we	s	SO	nu	fzb	=	m	1	0	mbc	- ·	=	m	od	=	=	S	6	5	n/a	5	3	0	r	
Aster novi-belgii		S	Ш			18	we	SV	gm	nu	tzb	= :	2	1 6	1	pc	4	N	4	as	2		A	6	2	9	L	6	0	0	
	Ξ	S	em	00		IS	e	s	SO	nu	fzb	>	2 T	4	0	mpcp	p 3		2	as	\geq		3T	7	n/9	a	-	x	0	CL	
Bunias orientalis H,G	III E	S	Ш	fied	d	is	we	SV	SO	nu	f	>	4 I	1 2	0	mbc	3	Ш	2	br	I	I	A	7	5	S	8	S	0	c	
Conyza canadensis H,T	Γ III	S	Ш	lang	a	is	we	S	gm	nu	fzb	I	4	I 2	0	bcp	3	>	m	as	\mathbf{N}	I	υ	8	n/6	a 4	n/a	S	0	CT	
Echinocystis lobata T	>	S	n/a	cu	p a	- 1	>	S	om	be	f	>	3 1	I 4	1	mbcp	p 2	N	3	cu	I	I	A	7 8	8 n/8	a 9	8	8	0	CL	
Elodea canadensis A	VI	M	а	lang	d	n/a	sh	>	op	>	>	n/a	4 I	11 4	-	n/a	n/a	Π	3	hych	Ι	I	Р	7 6	5	12	2	2	0	n/a	
Epilobium ciliatum H	Ш	M	n/a		d	is	M	SV	SO	ka	s	I	4 I	V 2	0	mbcp	p 3	Ш	4	on	N	IV I	n/a	7 6	5 n/a	a 5	2	8	0	0	
	Ш	n/a		-	n bp	is	wea	s	gm	nu	f.fzb	n/a	4 1	1 3	-	qm	3	N	4	as	N	П	A	7 6	5 n/a	a 6	n/a	8	0	0	
		5				i.	wea	o va	SO	nu	fzb	-	6 1	1 4	0	co	m	2	-	as	I		C	9	4	4	9	2	0	CL	
Galinsoga parviflora		5	m v			s.s	wea		US	nu	fzh	. –	1 9	1	0	cD	(N	•	as	:=	: =		9	~	5	5	x	0	CL	
Holianthus tubevosus		0 0	4				HOOM .	-	00		~	0/0	2	1 6		2,4		E	10	36	H	- 1		. 04	o/u 1	9 0		o o	0	5 0	
		0		TO A			MCSIII		De o	2	> 4	II/a				20	0 0		1 -	45		- F	4			9	-1-	0 0		ינ	
Heracleum mantegazzianum H	1	A	E	gene	-	IS .	ewm		SO	spr	1	>:	1	10		OIII	n (Ħ	- (ap	III	==	n/a		n/a	900	11/4	0 1		0	
Impattens glandulijera	1	S	ye	norm			s	S	SO	ka	s	>;	7.	70	- (mpc	b o	H	10	ba	>;	= :	5	0.	11	× v		- `	0 0	c	
Impatiens parviflora	Ξ	S	Y	norm	n a	1	S	S	SO	ka	s	>	4 L	1 2	0	mbc	2	>	2	ba	>	=	CF.	4	0	S	n/a	9	0	SI	
Juncus tenuis F	Π	M	Ш	rohr	r p	M	e	SSV	SO	ka	s	I	4 I	V 4	0	bc		\mathbf{N}	2	'n	>	N	Ы	9	3	9	S	S	0	CSI	
Lolium multiflorum H,T	L III	S	ш	gras	s abh	M	We	S	SO	nu	fzb	>	3 1	1 2	1	bc	m	\mathbf{N}	2	od	I	Ш	U		3	4	2	8	0	c	
H Tupinus polyphyllus	N	n/a	n/a		a u		S	S	SO	hu	S	>	3 II	4	-	dm	2	N	3	fa	N	I	A	5	4	S	4	n/a	0	c	
	N	9					2	NS	US	he	۔ ب	e/u	4	C 1	-	mhc	4	E	"	SO	N	1	OF		2	Ŷ	L	4	0	0	
lia		0 0	-		2 4			5 0	00	hud	ب	N		T T	•	hm	. –	E	00	ę.	IN	, <u>–</u>	, e		2) (1	X	. "	0) (
		0 0		Softer	2 5) (0	00	1ro					- 0	200	- 0		10	DI NO	1	- =			0 0	n v	e v	n u) ;	
		0	2	gen	ч.	<u>a</u>	n ;	10	00	Na	n 4	-1-		t	- 0	ch T	n c	11	1 -	YO I	> =	= =				о ч	0	01		- (
4	1	n 1				2	>		2	115	11	11/4		+ 0		ollin	4 0	11	t (101	= -			6		0 0 0	E/II	11/4		יכ	
		S	em		d u	NIS	wem	-	bg.	nu		n/a	2 C			mpc	n c	2:	1.	pol	-, ,	==		20	10	×	0 0	- 0	0 0	ပ	
SISU	1	S	em			WIS.	wem		op	nu .	IZD	= ;	5 T	11 • •	- •	mbc	b v	=;	- (pol	_ ,	- 	n/a		7.	× ×		× o	0	ပ	
2		S	Ξ	00	b e		MA		so	hu	s,tt	> ;	2	1 2		mbc	3	>	2	ta	- ;	-	1/a (6	4	4	n/a	× I	0	o	
		S	me			1S .	weas		so	nu	tzb	> •	1	4	- ,	pcp	5	II	n.	as	=;	- #	ς.	-	0	×		- `	0 0	ပ	
SIS		M	н	lang		IS	wea	SV	gm	nu	tzb	_	3	1 6	-	mbc	3	>	4	as	N	Ξ	A	8	0	n/a	n/a	9	0	C	
Solidago gigantea H,G		M	Ш	lang		IS	wea		gm	nu	fzb	-	2	4	-	mbe	0	\mathbf{N}	4	as	2		A	8	5	9	n/a	2	0	c	
olia		M	ш	lang		is	wea	SV	gm	nu	fzb	I	4	1 2	1	pcp	5	I	m	as	N	Ξ	A	8	n/8	a 7	2	2	0	c	
	П	M	Ш	voll	la	is	wha		SO	ka	s	Ш	12 I	I 4	0	cb	m	N	4	SC	>	N	0	5 n/	a 3	S	2	2	0	CT	
Explanations to table 2: 1. life form (Frank & Klotz, 1990): A – hydrophyte, G – geophy	1 (Fran	k & K	lotz, l	.:(066	A - hy	droph	rte, G-	- geoph	Ate, H	- hemi	cryptor	hyte, l	N-nan	ophane	erophy	 hemicryptophyte, N –nanophanerophyte, P – phanerophyte, 	phanet	ophyte	F	heroph	ivte: 2.	 therophyte; 2. stem height in cm (Rutkowski, 2004); 1 	ieight i	n cm (Rutkov	wski, 20	004): I	-<25.	<25, II - 2	25-50	
III – 51-100, IV – 101-200, V – >200; 3. leaf persistence (Klotz et al., 2002): i – persisten	0; 3. lea	af per	sistenc	e (Klo	tz et ai	1., 200.	2): i - t	versister	it greet	l, S - Sl	ummer	green,	W-0	verwin	tering	t green, s - summer green, w - overwintering green; 4. leaf anatomy (Klotz et al., 2002): a - hydromorphic, c - succulent, e - helomorphic, m	4. leaf	anator	ny (Kl	otz et a	ú., 200	12): a -	hydroi	norphi	c, c - 5	succule	ent, e-	helom	orphi	c, m-	e n
mesomorphic, s – scleromorphic, y – hygromorphic; 5. leaf form (Klotz et al., 2002): fied	- hygro	morph	nic; 5.	leaf fo	rm (K	lotz et	al., 20)2): fiel	1 - pini	natifid.	pinnatifid, gefie -	- pinnate,	te, gefi	gefin - palmate,	mate,	gelap -	gelap - lobate, gras -	e, gras	- grass	s-like, l	ang -	grass-like, lang - long-leaf, mgef - bipinnate, norm - simple, rohr - tubular	af, mg	ef-bij	pinnate	e, norm	Imis - I	ple, rol	n - tu	ibular	
schup – scale-like, voll – full: 6. life span (Klotz et al., 2002): a – annual. b – biennial. h –	span (k	Clotz e	al.	2002):	a - ant	ual. b	- bien	nial. h -	plurier	mial-h	naxant	thic. p	- pluri	ennial-	pollaka	pluriennial-hapaxanthic. p - pluriennial-pollakanthic:		inatior		Frank	& Klot	7, pollination type (Frank & Klotz, 1990): a - apogamy, h - hydrophily, i	0): a -	apogal	nv. h-	- hvdro	i vlida	i – ento	- entomophilv.	hilv. k	
- cleistogamy. s - self-pollination. w - anemobhily: 8. seed dispersal type (Frank & Klotz	- aner	indon	lv: 8.	seed di	spersa	type	Frank	& Klot	1990): a – r	1990): a – myrmecochory, e	vochory	v. e – e	Dizooc	horv.	- enizoochory. h - hydrochory. m - anthronochory. s - autochory. v - endozoochory. w - anemochory. 9, type of	Irochor	v. m -	anthro	pocho	-S .V	autoch	OLV. V	- endo	zoochc	-W.VIC	- anem	rochory	v: 9. t	vbeo	4
remoducinon (Kfotz et al. 2002): s - hv seed/hv snore. sv - mostly hv seed and vesetatively. v - vesetatively. v v sectatively. rarely by seed. [0, dicliny (Klotz et al. 2002): do - dioecious.	hv see	1/bv si	pore.	SV -m	ostlv b	v seed.	rarelv	vegetat	ivelv.	v-hv	seed at	nd veg	etative	V. V -	vegetat	tively.	VVS-T	nostlv	vegeta	tively.	rarely	by see	1:10.0	iclinv	(Klotz	et al.	2002):	do – di	oecio	US. PC	
- evnodioecious. en - evnomonoecious. no - monoecious. so - hemanhroditic: 11. fruit type (Klotz et al., 2002); be - berry, hu	ious. m	m - 0	onoec	ious. se	o - her	maph	oditic:	11. fru	ttype	Klotz	et al. 2	002):1	be - be	irry, hu	- leg	legume, ka – capsule, nu –nut. Po –	a - cat	sule. 1	un-nut	- Po -	pome.	pome, sanu – aggregate nutlets, sastf – aggregate drupelets, sp	aggre	zate nu	itlets. s	astf-a	Iggrega	tte drui	pelets.	spf-	
schizocam stf_dnine v_veretativ	P CI	iousei.	ampt a	(Klots	of al	cuuc	. f _ f	it foh	finitle	finitlet fzh	finit o	with an	nendac	0 - 0 - d	t hee	- fruit with anondare s - seed. If - maricam v - variative: 13. diasona weight in markhotz at al. 2000; 3.	uneor	V - NPC	retative	. 13 4	-uousei	To low e	t in m	n (Klot	T of al	CUUC		<0.75 II - 0.75-0.5	00-	20-2	
$\Pi = 0.51 \pm 10$ IV $= 1.012 + 200$ V $= 2.0 \cdot 14$ duration of flowering in months (Klotz et al.	0.14	durati	on of	flower	ino in	month	s (Klot	z et al	2002	2002): 1-12: 1	15 has	sic chr	losourc	ne nun	nher ()	5 hasic chromosome number (Klotz et al. 2002): 1	t al 2	1.000	- <6	-<6 II $-6-10$ III $-11-1$	10 III	- 11-1	5 IV -	- 15-20	$V - \gamma$	5 IV - 15-20. V - >20: 16 maximum holidy leve	6 maxi		vbiolo	/ leve	
(KIAra at al. 2000). 2. dialoga at the local at the locat	trinloid	1 4	increte t	S Pie	- Guine	hiolog	ed A	vanloid	$\frac{1}{2}$	tobloit	1. 17 0	territin territin	(D) uni	thome	11 200	octonicid-17 cultivation (Dutbourshi 2000). 0 no	1 -		18 ho	horem	IN OK IN	vise: 18 hemeroby (Klotz at al	2000		hamar	2000): a - ahamarohio h - h anhamarohio	hand		cider		
(NJULZ <i>et al.</i> , z_{002}). $z = uplotted, 3 = 1$	Jioidin	-++	icuap	c 'nio	- penu	apioid,		vapioic	0	inidon.	1.1.4	UV1-1-1	V) HOL	SWOND		- n · (+n	- 1	- yes,	10.110		y (Nuo	רד בו מו	, 2002). a - c		0010, 0	- 0-cr		UUIC,		
euleriteroolc, III – Incooleriteroolc, $0 - 0$ igoneriteroolc, $p - polynemetoolc, l - inclainenundersondelles 20 minuders of localities (1146) 1 - 11 - 11 - 20 - 11 - 21 - 21 - 00 - 11 - 21 - 2$		lianog	ICLODI	7 h	1 II	11 20	(-1°)	netanel 21 00		1 270	V V	JOIN)	z el al.	refools; 19. urbanny (Notz et a_1 , 2002): V 01 270 V \sim 270: 21 mmbor of i) – T . (- uroanopnooic, 2	phoone	1-7	noueral	un dian	Idouron	- moderately urbanophobic, 3		- uroanoneuural,	t cc	DOILI -	- moderately urbanophilic, 3	uroan	illudo	c, 0 -	
urbanoprinte, zu. number of localities (Urbisz, zuu-4): $I = \times 11$, $II = 11-30$, $III = 31-30$,		152, 2	(+00).	11	1, 11 -	a	- III ,	'n6-10	> 1	·0/7-1	1 1	2,012	Imu .I	IO IOI	IUIIIAU	-91-20, $V = -20$, 21. humber of infraotice noise zones in framer large (NOZ <i>et al.</i> , 2002): 1-5, 22. family (NUEK 111, 2002); ac	IIISUC 2	Olics I		IIII IIII	Sc (NI	Duck t	11., 200	2). 1-C	1.22 %	amuy		1 III.,	(7007	- ac	
Acetaceae, all $-$ Antar annuceae, ap $-$ Aplaceae, as $-$ Asteraceae, ba $-$ Dataminuceae, $H_{Monorhlaroace}$ by $-$ Hydrochaminuceae, $m - h_{Monorhlaroace}$ on $-$ Oncorresponse or $-$ O	vitacon	a in	- cp (NJJICH	cene,	Omana	minem	ananni	- IU	01 – Drussicuceue,	ane'	e, ua - curyo	(udokur)	nymuce Do	ue, uu	ca - Curyopriyitaceae, cu - Cucuronaceae, cy - Cyperaceae, ui - Droseraceae, calidaceae no - Doracea nol - Dohronaceae nor - Dortrilococeae not - Dota	Doho	n'ana	y - cy	ponud	tulacar	Portulacacaaa pot -	ot D	te, 1d -	- L'uUU	eue, la – ruvuceue, go – Dotamocotonacoao 🕶 – l		- Pannandeue, IIY	anann	, uy	
Decompliance in the second	ruucu	ní 'a	MINC	und nu	TIO	Smin	T	of the line	nnin i	, ana	Jo or	minun	cue, p	01-0	urcue,	Ind .	Shin I	The Di	ind 's	100 +	D). I	VII I		III OC	2 1 C	DO NI		TO VI	-un	0.04	
Rosaceae, sa - Samataceae, sc - Scrophutaraceae, so - Solamaceae, za - Zamicrettuc	nudou	ariact	sae, st	100-1	anaced	1e, Za-	- Zann	chella	ceae; z	unu .c	ID TOT	specie	uniw s	in une g	genus 1	zere; 25. number of species within the genus in the world (The Flant List, 2013): 1 – <11, II	MOTIO	I ne r	ant Li	St, 201	-1:(c	<11,1	1 1	- 11-50, 111	- 21-90, 10	- NI 'N	7-16 -	- A '0/7-16	21/0; 24	0, 24	
number of species within the genus in the study area (Urbisz, 2004): $I - I$, $II - 2-3$, $III -$	in the :	study .	area (Urbisz,	2004)	-1-1	, II - 2	-3, III -		IV - 10-27,	-27, V	->27	; 25. p.	ant so		>27; 25. plant sociology (Ellenberg et al., 1992): A	nberg 6	t al., 1	:(266	1.3	temisit	Artemisietea, BT	I - Bi	dentete		- Bidentetea tripartiti, C	- Che	- Chenopodietea, EA	lietea,	EA-	1
Epilobietea angustifolii, FB – Festuco-Brometea, IN – Isoëto-Nanojuncetea, MA – Molin	co-Broi	metea,	-N-	Isoëto-	Nanoj	uncete	a, MA	- Moli		henath	io-Arrhenatheretea, P	P-Pc	ntamog	 Potamogetonetea, Pl 		 Plantaginetea, PP – Pulsatillo-Pinetea, QF 	aginete	a, PP.	- Pulse	utillo-F	"inetea.	, QF-	- Querco-Fagetea, R	o-Fage		- Ruppietea, S	pietea,	S-Sec	 Secalietea, SA 	a, SA	
– Seslerietea alhicantis. SC – Scheuchzerio-Caricetea. SS – Sedo-Scleranthetea. TG – T	chzerio	-Cari	cetea.	SS-S	edo-Se	leran	hetea.	TG - 7		Geran	ifolio-Geranietea sanguinei: 26.	monim	ei: 26.			light value (Ellenberg	rg et a	199	2): 1(d	een shi	e-(apt	et al., 1992): 1(deep shade)-9 (full light): 27	pht): 2'		erature	temperature value (Ellenberg et al., 1992)	(Ellen	berg e	t al.	(266)	
I(alnine-sulmival)-9 (Mediterranean): 78 continentality value (Ellenhero et al. 1992):	1. 28	ontin	entalit	v valn	• (File	nhero	pt al	10001	·	eanic)	9 (enc	ontine	ntal)	0m 60	sture	(enoceanic)-9 (encontinental): 29 moisture value (Ellenhero et al	Fllenh	ero <i>pt</i>		1 .100	(strone	1992). 1(strong soil drvness)-12(inderwater): 30 reaction	Irvness		nderwa	ater): 3	0 reac	tion o	of soil value	value	
(Ellenherr of al 1003). It extremely acidiched (alkaline): 31 mitroren value (Ellenherr of	acidic	1-0 (al	Iraline	1. 31 v	nitroae	ulav n	e (Elle	o hero		1.000	Teact)_	O leve	ecivia	vinnis	. 37 6	are accounted to exercise sumbly 23 calinity value (Fillenberr et al. 1722). General 2014 areas returned as ou al. 1007. (Heast-D (secsective sumbly) 23 calinity value (Fillenberr et al. 1007). (AnoD (setteme calinity) 33 life strateary (Ferri & 3	value	(Fllen)	nero of	al 10	0.00	0-104	(extrem	ne calin	nitv). 3	13 life	ctrated	v (Fran	nk &	Klot7	
1000 · competitors cr competitions	hin /su	ample	00-00	month.	ore/etre	an var	anatore	Strun		oreletr.	ectole	matore/	molera	le r-r	inderal	c c - ct	rece-to	lerator	oug cr	ctrace_t	olerato	re/mide	n .alere	ap - da	ta not a	Idelieve	auaivg. Ia	0 (1 1 m	3	TION	
1990). C - competitors, cr -competitors, trateaus, cs -competitors sucess-totations, csr - competitors sucess-totations ruterals, r	UIN IUU	ICIAIS,	CS LC	modille	DIS/SIL	101-550	CIMINIS	CSI - C	omben	112/210	NICO1-SSO	clauda	Iuuua	12,1-1	nuclar	- IUUCIAIS, S - SUCSS-WICIAWIS, SI	n-sean	ICIAIUI		SUC55-4	UICIAN	- SUESS-tolefators/fuderals, II/a - data flot available	clais, 11	d – ua	ld IUU a	avallau	<u>c</u>				

Results and Discussion

Of the 33 analysed traits of extinct and invasive species, statistically significant differences were determined for 16 traits (Table 1). The largest differences (p<0.001) between the compared groups of plants were found for the stem height, the human use, the degree of hemeroby, urbanity, the number of sites, types of plant communities in which they occur, the nitrogen content in the substrate and the life strategy.

Extinct species rarely reach a height of more than 0.5 m (e.g. Bupleurum falcatum, Festuca altissima, Gentiana asclepiadea), which is the almost lower limit of invasive species, only one invasive species (Anthoxantum aristatum) has a stem less than 25 cm high. None of the 32 species that are probably extinct in the study area is commonly cultivated, while as many as 20 of the 32 invasive species are (or were recently) planted by man. Extinct species are mainly oligo- and mesohemerobic - those are mostly urbanophobes. Invasive species, on the other hand, are meso- and euhemerobic, mostly urbanoneutral. The largest number of localities, at which currently extinct species occurred in the past is 6, while 18 invasive species occur at least at 100 sites, and only one species (Solidago graminifolia) has fewer than 10 sites. All extinct species belong to natural or seminatural phytosociological classes, while as many as 19 invasive species are classified into syntaxa comprising anthropogenic communities and another 6 invasive species (Epilobium ciliatum, Heracleum mantegazzianum, Padus serotina, Reynoutria japonica, R. sachalinensis and Robinia pseudacacia) do not show any definite phytosociological affinity. The compared groups of species very clearly differ in their requirements regarding the nitrogen content in the substrate. Almost all extinct species are confined to nitrogen-poor habitats, while invasive species are nitrophilous. An important trait that differentiates extinct from invasive species is the type of life strategy. While the former group (15) is dominated by CSR-strategists, most of the species (20) in the latter are C-strategists (Table 2).

Statistically significant differences between the compared groups of species were also found for the pollination method (p<0.01), anatomical structure of leaves, dicliny, the type and weight of a diaspore, duration of the flowering period, taxonomic affinity with a family and the soil moisture value (p<0.05) – Table 1.

Most of the extinct species were pollinated exclusively by insects. While invasive species can be pollinated by insects, but are self-pollinated also (e.g. *Bidens frondosa, Conyza canadensis, Helianthus tuberosus, Heracleum mantegazzianum, Padus serotina, Solidago canadensis, S. gigantea*). Among the invasive species, plants with mesomorphic leaves (17 spp.) dominate, while extinct species are more diverse in this respect. Almost all extinct species (30 spp.) have bisexual flowers, while 8 invasive species have unisexual flowers. A seed is the dominant type of diaspore in extinct species, while in invasive species it is a piece of fruit connected with other parts of the plant (e.g. corolla, calyx or stipules). Diaspores were found to weigh more than 2 mg in the case of 12 invasive species, and in only 2 extinct ones (*Lathyrus montanus*, *Pulsatilla pratensis*). On the other hand, a short flowering period (up to 2 months) occurs in as many as 15 extinct species, and in only 7 invasive species. Most of the extinct species belong to the family Orchidaceae, while invasive species belong to Asteraceae. While invasive species occur most frequently on habitats with medium moisture content (F=5–8), nine extinct species occur on dry habitats (F=2–3) and 10 species occur on very humid habitats or are aquatic plants (F=9–12) – Table 2.

When trying to answer the question what traits cause one plant species extinct while another become invasive, it should be considered that it is not a single trait but their entire complex. Furthermore, the analysed traits are very diverse. Some of them are closely related to the morphology and anatomy of a given species and the way it propagates, while others are related to its habitat, life strategy, taxonomic affinity, frequency of occurrence or the use by man.

The obtained results confirm that invasive species are statistically taller than the extinct ones. Most of the former are 0.5-2 m tall, allowing them to compete effectively with most of the native herbaceous species. This relationship is also confirmed by other authors (Moravcova et al., 2015; Pyšek et al., 2015). According to Williamson & Fitter (1996), invasive species are also characterised by a larger leaf surface area, higher proportion of phanerophytes and species with the height greater than the width. Although statistically no significant difference was determined in the present research for life forms between the compared groups of species, the obtained p value (0.05294) is only slightly higher than that required for its determination. Four phanerophytes were identified in the group of invasive species (Acer negundo, Lycium barbarum, Padus serotina and Robinia pseudacacia) and none in the group of the extinct ones. Lavergne et al. (2004) compared pairs of species from the Mediterranean region of France belonging to the same genera, one endemic and one widespread species. Endemic species were found in the vegetation layers of a lower height, smaller vegetation cover and with a smaller number of co-occurring species. They were also characterised by a lower height of the leaf and inflorescence layer. Of the leaf traits analysed in this study, a statistically significant difference between the compared groups of plants was found only in the case of anatomical structure of leaf lamina - mesomorphic leaves occurred more often in invasive species than in the extinct ones. This proves that the latter generally avoid both extremely dry and wet habitats.

When comparing the extinct and invasive species in the study area, no significant difference was found in relation to the number of species that reproduce vegetatively, even though some authors (Richardson *et al.*, 1990; Reichard & Hamilton, 1997) suggest that invasive species tend to propagate this way. However, this applies mainly to species from aquatic or waterlogged habitats (Rejmánek *et al.*, 2005). Compared to extinct species, invasive species are more likely to develop entomophily (insect pollination) or

self-pollination and unisexual flowers. Williamson & Fitter (1996) reported a higher contribution of entomophilous species among species of alien origin domesticated in the UK, compared to native species. On the other hand, according to the aforementioned authors, unisexual flowers are more common among native species. The self-pollination seems to be one of the most important traits that differentiates the compared groups of plants - it is present in as many as 20 invasive and in only 9 extinct species (Bupleurum falcatum, Cerastium brachypetalum, Drosera anglica, Hieracium echioides, Hydrocotyle vulgaris, Linosyris vulgaris, Montia fontana, Veronica catenata, V. praecox). Diaspores of invasive species are not usually seeds alone, but fruits that are often connected with other parts of the plant. Analysis of the diaspore weight in both groups of plants revealed that diaspores heavier than 2 mg were more common in invasive species (Table 2). Whereas the research carried out on the genera Pinus and Banksia has shown that their invasive species have lighter seeds than non-invasive ones (Richardson et al., 1990; Rejmánek & Richardson, 1996). Moravcova et al. (2015) observed that invasive species mostly had seeds (diaspores) lighter than 80 mg. Other authors did not find statistically significant differences in seed weight between endemic and widespread species (Lavergne et al., 2004). It appears that the optimal weight of diaspores in invasive species ranges from a few to several dozen milligrams, but the colonisation success is determined mostly by their shape. The question whether the duration of the flowering period differentiates the extinct species from the invasive ones cannot be answered unambiguously. This is indicated by the results of the presented research, which show that it lasts up to 2 months in as many as 15 extinct species, and only in 7 invasive ones (Acer negundo, Aster novi-belgii, Bidens frondosa, pseudacacia, Impatiens glandulifera, Robinia Rudbeckia laciniata, Solidago gigantea). However, no such correlation was found by other authors (Williamson & Fitter, 1996; Kolar & Lodge, 2001).

The obtained results showed no statistically significant difference between the compared groups of species as regards the basic number of chromosomes and the level of ploidy (Table 1). It is likely that selected DNA sequences should be analysed for the presence of specific genes that determine the traits of invasive or extinct species.

One of the most important factors that helps invasive species to succeed is the impact of human activity on the spreading of their diaspores. Because they are often relocated, transported and cultivated, they can colonise new areas considerably faster and compete more effectively with other species. The strong influence of this phenomenon on the expansion of species distribution is also indicated by other authors (Lodge, 1993; McKinney, 1998; McKinney & Lockwood, 1999). Obviously, the fact that a given species is used by man is not sufficient to classify it as invasive, but it makes it much easier to increase its prevalence in a new area. On the other hand, none of the analysed extinct species was

widely cultivated and it can be assumed that this significantly accelerated the disappearance of their sites in the study area. Extinct species - are hardly found on artificial habitats and differ from invasive species also in terms of hemeroby and urbanity. Human activity is also associated with another characteristic, i.e. incidence of species (expressed as a number of species' sites), which was also confirmed by Williamson & Fitter (1996). It is obvious that very rare species are more likely to become extinct compared to common species, which in many cases become invasive (McKinney & Lockwood, 1999). On the other hand, the size of the natural range of a species, expressed in a number of vegetation zones in which it occurs seems to be of lesser importance. No statistically significant difference was found between the compared groups.

It is interesting to compare extinct and invasive species based on their taxonomic affinity. Some authors indicate that certain families, e.g. Poaceae, comprise a larger number of invasive species compared to other families (Daehler, 1998; Pyšek, 1998). Taxonomic affinity, i.e. taxonomic position of the compared groups of species in a given family is statistically significant also on a regional scale. The family of Asteraceae proved to be particularly abundant in invasive species, while Orchidaceae are represented by the largest number of extinct species (Table 2). This is confirmed by the fact that most of the invasive species belong to families represented by species that prefer habitats created by man (McKinney & Lockwood, 1999). No clear difference was found between extinct and invasive species for the number of species within a specific genus. Also according to Moravcova et al. (2015), the taxonomic affiliation of species is of minor importance in predicting their invasiveness.

On the other hand, the type of vegetation preferred by the analysed species is very important. Extinct species occurred on grasslands, meadows and on aquatic and littoral habitats, while invasive species were mostly found in anthropogenic communities (*Artemisietea*, *Chenopodietea*). This confirmed the results of other authors who found that communities with medium moisture were more susceptible to invasion compared to dry or wet communities (Rejmánek, 1989; Rejmánek *et al.*, 2005).

Of the seven analysed habitat parameters, statistically significant differences between extinct and invasive species were found only in the case of nitrogen content and the soil moisture value. Other authors also reported the importance of soil fertility as a factor differentiating invasive species from the native ones (Williamson & Fitter, 1996).

The next difference relates to life strategies. The obtained results showed that invasive species were usually C-strategists, while extinct species were CSR-strategists. Other authors state that stress-tolerant species (S) are unlikely to become invasive due to their slow growth (Pyšek *et al.*, 2015).

Based on the available literature data, it is not possible to list universal traits that distinguish extinct species from invasive ones. Most authors search for specific traits of a species that can be used to predict their invasive nature. They compare invasive with non-invasive species of alien origin (Kolar & Lodge, 2001; Moravcova *et al.*, 2015), native (Williamson & Fitter, 1996), endemic (Lavergne *et al.*, 2004) or vanishing ones (McKinney & Lockwood, 1999). Due to the fact that the listed groups of plants vary in terms of ecological characteristics and the number of species, the obtained results are not always explicit. Nevertheless, it can be assumed that the traits of invasive species that enable them to increase their range of occurrence and to colonise new habitats are most often contrasting with those of extinct species. The survival success of species is mainly supported by traits that enable these plants to survive in an environment transformed by human activity.

In conclusion, it has been found that invasive species are mostly medium-sized plants (0.5–2 m high), usually cultivated by man, abundant on anthropogenic habitats, nitrophilous, mesophilic, self-pollinating and C-strategists. On the other hand, extinct species are up to 0.5 m high; they are not crop plants, often occupy extreme habitats (mainly natural or semi-natural), on a substrate with low content of nitrogen and they are CSR-strategists.

References

- Bellard, C., P. Cassey and T.M. Blackburn. 2016. Alien species as a driver of recent extinctions. *Biol. Lett.*, 12: 20150623. http://dx.doi.org/10.1098/rsbl.2015.0623.
- Bomanowska, A., A. Rewicz, G.J. Wolski and K. Krasoń. 2017. Invasive alien plants in protected areas within city borders, Łódź, (Poland). *Pak. J. Bot.*, 49(1): 311-316.
- Daehler, C.C. 1998. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. *Biol. Conserv.*, 84: 167-180.
- Downey, P. and D. Richardson. 2016. Alien plant invasions and native plant extinctions: a six-threshold framework. *AoB Plants*, 8:plw 047.
- Ellenberg, H., H.E. Weber, R. Düll, V. Wirth, W. Werner and D. Paulissen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa [Indicator values of plants in Central Europe]. *Scripta Geobot.*, 18: 3-258.
- Frank, D. and S. Klotz. 1990. Biologisch-ökologische Daten der Flora der DDR. [Biological-ecological data to flora of GDR].Wissenschaftliche Beiträge Martin-Luther-Universität Halle-Wittenberg, 32: 1-167.
- Gilbert, B. and J.M. Levine. 2013. Plant invasions and extinction debts. *Proc. Natl. Acad. Sci. U.S.A.* 110: 1744-1749.
- Gurevitch, J. and D.K. Padilla. 2004. Are invasive species a major cause of extinctions? *Trends Ecol. Evol.*, 19: 470-474.
- Khan, M.A., R.A. Qureshi, S.A. Gillani, M.A. Ghufran, A. Batool and K.N. Sultana. 2010. Invasive species of federal capital area Islamabad, Pakistan. *Pak. J. Bot.*, 42(3): 1529-1534.
- Klotz, S., I. Kühn and W. Durka (Eds.). 2002. BIOLFLOR -Eine Datenbank zu biologisch-ökologischen Merkmalen zur Flora von Deutschland [BIOLFLOR - a database on biological and ecological traits of vascular plants in Germany]. Schriftenreihe für Vegetationskunde 38: 1-333. (Bundesamt für. Bonn, Bundesamt für Naturschutz).
- Kolar, C.S. and D.M. Lodge. 2001. Progress in invasion biology: predicting invaders: *Trends Ecol. Evol.*, 16: 199-204.

- Kondracki, J. 1988. Geografia fizyczna Polski [Physical geography of Poland]. Wydawnictwo Naukowe PWN, Warszawa. Polish.
- Kruczała, A. 2000. Atlas klimatu województwa śląskiego [Climate Atlas of the Silesia Province]. Instytut Meteorologii i Gospodarki Wodnej Oddział w Katowicach. Polish.
- Lavergne, S., J.D. Thompson, E. Garnier and M. Debussche. 2004. The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. *Oikos*, 107: 505-518.
- Lodge, D.M. 1993. Species invasions and deletions: community effects and responses to climate and habitat change. In: (Eds.): Kareiva, P. *et al.* Biotic Interactions and Global Change. Sinauer, p. 367-387.
- McKinney, M.L. 1998. On predicting biotic homogenization: species-area patterns in marine biota. *Glob. Ecol. Biogeogr. Lett.*, 7: 297-301.
- McKinney, M.L. and J.L. Lockwood. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. *Trends Ecol. Evol.*, 14: 450-453.
- Moravcova L, P. Pyšek, V. Jarošik and J. Pergl. 2015. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. *PLoS ONE* 10(4): e0123634. doi:10.1371/journal.pone.0123634.
- Musierowicz, A. (Ed.) (1961) Mapa gleb Polski [Soil map of Poland]. Opracowanie w Instytucie Uprawy Nawożenia i Gleboznawstwa. Skala 1:300 000, Wydawnictwa Geologiczne, Warszawa. Polish.
- Pyšek, P. 1998. Is there a taxonomic pattern to plant invasions? Oikos, 82: 282-294.
- Pyšek, P., A.M. Manceur, C. Alba, K. Mcgregor, J. Pergl, K. Štajerová, M. Chytrý, J. Danihelka, J.T. Kartesz, J. Klimešová, M. Lučanová, L. Moravcová, M. Nishino, J. Sádlo, J. Suda, L. Tichý and I. Kühn. 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. *Ecology*, 96(3): 762-774.
- Pyšek, P., D.M. Richardson, M. Rejmánek, G.L. Webster, M. Williamson and J. Kirschner. 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. *Taxon*, 53: 131-143.
- Reichard, S.H. and C.W. Hamilton. 1997. Predicting invasions of woody plants introduced into North America. *Conserv. Biol.*, 11: 193-203.
- Rejmánek, M. 1989. Invasibility of plant communities. In: (Eds.): Drake, J.A. *et al. Biological Invasions*. A Global Perspective. John Wiley & Sons, Chichester, p. 369-388.
- Rejmánek, M. and D.M. Richardson. 1996. What attributes make some plant species more invasive? *Ecology*, 77: 1655-1661.
- Rejmánek, M., D.M. Richardson and P. Pyšek. 2005. Plant invasions and invasibility of plant communities. In: (Ed.): Van der Maarel E. Vegetation ecology. Blackwell Science, Oxford. Copyright (c) Blackwell Publishing Ltd., p. 332-355.
- Richardson, D.M., R.M. Cowling and D.C. Le Maitre. 1990. Assessing the risk of invasive success in *Pinus* and *Banksia* in South African mountain fynbos. *J. Veg. Sci.*, 1: 629-642.
- Rutkowski, L. 2004. Klucz do oznaczania roślin naczyniowych Polski niżowej [The key to determining the Polish lowland vascular plants]. Wydawnictwo Naukowe PWN, Warszawa. Polish.
- Sax, D.F. and S.D. Gaines. 2008. Colloquium paper: Species invasions and extinction: The future of native biodiversity on islands. *Proc. Natl. Acad. Sci. U.S.A.* 105(Suppl 1): 11490-11497.

- Sax, D.F., S.D. Gaines and J.H. Brown. 2002. Species invasions exceed extinctions on islands worldwide: A comparative study of plants and birds. *Amer. Natural.*, 160: 766-783.
- StatSoft. 2014. STATISTICA (data analysis software system), version 12. Kraków: StatSoft. www.statsoft.com.
- The Plant List. 2013. Version 1.1. Published on the Internet; http://www.theplantlist.org/ (accessed 1st January).
- Tokarska-Guzik, B., Z. Dajdok, M. Zając, A. Zając, A. Urbisz, W. Danielewicz and C. Hołdyński. 2012. Rośliny obcego pochodzenia w Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych [Alien plants in Poland with particular reference to invasive species]. Wyd. Generalna Dyrekcja Ochrony Środowiska, Warszawa. Polish.
- Urbisz, A. 2004. Konspekt flory roślin naczyniowych Wyżyny Krakowsko-Częstochowskiej [Synopsis of the vascular plant flora of the Kraków-Częstochowa Upland]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach 2240. Polish.
- Urbisz, A. 2008. Różnorodność i rozmieszczenie roślin naczyniowych jako podstawa regionalizacji geobotanicznej Wyżyny Krakowsko- Częstochowskiej [Diversity and distribution of vascular plants as basis for geobotanical regionalisation of the Kraków-Częstochowa Upland]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach 2630. Polish.
- Williamson, M.H. and A. Fitter. 1996. The characters of successful invaders. *Biol. Conserv.*, 78: 163-170.

(Received for publication 5 November 2019)