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Abstract 

 

Agricultural development and rapid human population growth are among the key prevalent factors that have caused soil 

degradation in several terrestrial ecosystems. Soil quality is being increasingly affected by water and wind-related erosion, 

aridity, salinity due to misuse, and erroneous agrarian practices. Evaluating soil quality is an essential tool for crop 

management and soil sustainability; this is exclusively unique in semi-arid and dry regions where the observation of soil 

quality offers a prospect to gauge land management systems. Here, we evaluated the soil quality in the agricultural district 

Toba Tek Singh, Punjab, Pakistan. For this purpose, the Integrated Quality Index (IQI) model was executed through Total 

Dataset (TDS) and Minimum Dataset (MDS) methods of data selection. TDS shows the soil quality results of all the selected 

indicators (i.e., EC, pH, CaCO3, OM, P, K, SP). To select the MDS, the Principal Component Analysis was used and three 

indicators were selected including pH, EC, and OM. Among the two indices (IQITDS and IQIMDS), moderate and low soil 

quality were recognized as a leading grade for soil quality of the study area. The reason for low-quality soil was a 

considerably low percentage of OM, a lower amount of CaCO3 in soil, a high rate of pH and EC, and a lesser amount of 

Phosphorous and K in the soil of the study area. The results for TDS and MDS were found to be appropriate to each other as 

confirmed by the Geographically Weighted Regression (GWR) model (Adjusted R2 0.81). Thus, this approach might be used 

as a helpful tool for the development of quantitative techniques to estimate soil quality. This is helpful to identify areas 

where soil quality is low and can be improved with better management practices and maintain a suitable amount of 

fertilizers in the soil. 

 

Key words: Soil quality, Agriculture, IQI, MDS, TDS, Geographical information systems (GIS), Geographically 

weighted regression (GWR). 

 

Introduction 

 

Soil quality is considered an essential component 

besides water and air quality, playing a critical role in 

sustaining environmental quality (Bünemann et al., 2018). 

Agricultural sustainability also greatly relies on the 

quality and health of soil (Lal, 1998; Vasu et al., 2020). 

Soil quality is defined as “the capacity of soil to function 

to sustain plant and animal productivities, to maintain or 

enhance water and air quality, and to support human 

health and habitation” (Karlen et al., 2003). Soil is the 

major contributor to the earth’s biosphere. It tends to 

provide purification of water, cycling of nutrients, and 

providing habitats for biodiversity to maintain the 

environmental quality at a global scale. Soil health is 

affected by different factors that are related to soil 

management and also by soil formation factors (Rinot et 

al., 2019). Soil quality is particularly essential to maintain 

the sustainability of an agricultural country. 

Soil quality assessment is considered an inevitably 

necessary process to observe the quality of the soil (Li et 

al., 2019) such as the production of agriculture, forest, 

nature protection, and recreational sites, or urban 

development. It is broadly recognized that; the concept of 

soil quality is most valuable in a global context, 

specifically in the evolving agro-ecosystems. In the 

evaluation of soil quality, it is necessary to respond to two 

questions. First, how does the soil function, and second, 

what procedures are suitable for making the assessment? 

After this assessment procedure, a range of parameters is 

to be taken into account, which indicates that the soil 

functions can be calculated using characteristics of 

landscapes, understanding the occurrence of dynamic 

processes in soil, and the knowledge of pedogenesis (De 

la Rosa & Sobral, 2008; Vasu et al., 2020). 

Soil quality parameters are used to determine soil 

functions. Soil attributes will vary by selection, and they 

depend on the capacity of soil under consideration. 

Classification of the characteristics of soil is based on 

three groups: physical indicators, biological indicators, 

and chemical indicators (Marzaioli et al., 2010; Brejda et 

al., 2000). Attribute selection of indices must be 

established on land use, functions of soil, measurement of 

consistency, spatiotemporal variations, changes in the 

management of soil, and required skills for interpretation 

(Nortcliff, 2002). To date, several methods for the 

evaluation of soil quality are developed including card 

design, testing kits, soil quality indexing, and other 
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geostatistical methods (Sun et al., 2003; Qi et al., 2009). 

However, the most widely used method is soil quality 

indices owing to its quantitative flexibility and easy 

handling. It also has the additional benefit of validation of 

soil quality assessment and management with spatial-

temporal evidence while analyzing the soil quality from 

regional or local levels (Andrews & Carroll, 2001; Qi et 

al., 2009). Previously, researchers have used soil quality 

assessment and quality indices to estimate the influence of 

crop production, litter management, agricultural practices, 

and regional scale soil management (Karlen et al., 2003; 

Andrews et al., 2002). The soil quality index is developed 

by following the indicator’s selection, scoring of assigned 

indicators, and then making a composite index by 

integrating all the indicators. For indicators selection, two 

well-adopted methods include Total Dataset (TDS) and 

Minimum Dataset (MDS). TDS-based indicator collection 

is performed according to particular soil features, and in 

the MDS technique, indicators are selected as per 

association within indicators and simplicity of 

measurement (Gómez et al., 2009). Various addition, 

multiplication, and weighted-mean protocols make it 

possible to integrate the normalized indicators into a 

quality index (Andrews et al., 2002). The best examples 

of such calculations are the Integrated Quality Index (IQI) 

and Nemoro Quality Index (NQI). The NQI-based model 

exploits the minimum and average indicator scores and 

does not consider the respective weights. On the other 

hand, IQI indexing is based on combining the chosen 

indicators and weights using a simplified scoring equation 

to make an index. The NQI and IQI models based on TDS 

followed by MDS analysis were utilized in agricultural 

land of different provinces in China and Iran, where 

researchers recognized the blend of the IQI analysis 

model. This is proved to be an excellent tool to evaluate 

soil quality (Qi et al., 2009; Rahmanipour et al., 2014). 

Over-exploitation of ecosystems with land-use 

changes from natural pastures and forests to croplands 

have negatively influenced soil quality. Inappropriately, 

with the agricultural advancement, degradation in soil 

health is increasing by the water and wind-related erosion, 

aridity, and salinity due to misuse and erroneous agrarian 

practices. Soil fertility decreases day by day due to 

continuous crop cultivation in the soil, and it also affects 

soil nutrients. Therefore, soil quality assessment is crucial 

for better crop and soil management. In this context, the 

present study assessed the soil quality in the agricultural 

district Toba Tek Sigh, Punjab, Pakistan-an agrarian 

country in South Asia, using IQI indices model with TDS 

and MDS methods. 

 

Methodology 

 

Study area: The study area for this study is Tehsil Toba 

Tek Singh located in District Toba Tek Singh, central 

Punjab. The study area is situated between 30°34' to 31°3' 

N, and 72°07' to 72°47' E, and on 152 meters elevation 

above mean sea level (Fig. 1). The total land area of tehsil 

Toba Tek Singh is 2,240 km² and the topography is flat 

and plain. The study area has an arid or desert sort of 

climate. According to the Köppen climate classification, 

this region falls in BWh climate.  

 

 
 

Fig. 1. The study area of the Tehsil Toba Tek Singh. 
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June is the hottest month and January is the coldest. 

The average temperature in the hottest months is 40.7 °C 

and the average temperature of the coldest months is 

6°C. The average annual maximum temperature is 35 °C 

with annual precipitation of 254 to 381 mm (Rehman et 

al., 2011; Khan et al., 2010). This area is of great 

importance in terms of agriculture. The main crops 

cultivated in the region are wheat, oilseed, sugarcane, 

cotton, and maize (Supplemental Appendix 1). The yield 

per acre for most cultivated crops in the area is given in 

Supplemental Appendix 1. 

Keeping in view the importance of this agriculturally 

important area and its land usage (Supplemental 

Appendix 2), the present study was designed to 

investigate the soil quality, a critical issue faced by the 

study area, by utilizing statistical and geo-statistical 

methods. Firstly, the most influential parameters were 

chosen through a comprehensive literature review and 

then modeled as a TDS and MDS using IQI. The detailed 

workflow of the methods is provided in (Fig. 2).  

 

Soil sampling and measurements: The first step in data 

collection was the feasibility survey with the help of 

experts, agricultural farmers, environmentalists, and soil 

scientists, by asking questions about the soil quality of 

the study areas. The feasibility survey was performed 

within every 5 km of the study area. It is observed that 

in some areas, the soil is fertile while in others, the 

quality of the soil is poor, and in the rest of the areas, the 

soil is moderate. As per these locational observations, 

samples were collected. There are more samples from 

the areas with poor and moderate soil as compared to the 

fertile soil locations. 

A handheld GPS device was used to obtain the 

absolute location (Lat./Long.) of the sampling points, 

which was later used to generate the spatial points in 

ArcGIS 10.7 software. These GPS readings were taken on 

a notebook and also on the soil sample bags. Soil samples 

were taken by a special soil augur, which was designed 

for the collection of soil samples. Soil samples were taken 

from different crop cultivated areas, (e.g., maize, wheat, 

tobacco, sugarcane, and cotton) within every 2500 m
2
. All 

the samples were collected in daylight and each sample 

was 250 g in terms of weight. A total of 235 samples were 

collected from the study area with absolute geographical 

location. Each sample was taken from upper 0-30 cm soil 

depth during April 2019 and preserved in plastic airtight 

bags (Fig. 3). 

 

 
 

Fig. 2. The adopted methodology to assess the soil quality. 

 

 
 

Fig. 3. A glimpse of different phases of soil sampling from Toba Tek Singh Tehsil. 
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Selected parameters to test the soil quality: The soil 

samples were sent to the Soil and Water Testing 

laboratory, Toba Tek Singh Ayub Agricultural Research 

Institute, for the determination of the selected parameters 

to ascertain the soil quality. Seven parameters reflecting 

the physical, chemical, and biological quality of the soil 

were selected. The selected parameters for physical soil 

quality were soil texture and saturation percentage (SP), 

for soil biological quality, soil organic matter (OM), and 

for the Soil chemical quality, soil reaction (pH), electrical 

conductivity (EC), phosphors (P), potassium (K), and 

calcium carbonate (CaCO3). Soil fertility/ quality 

standards according to the Soil and Water Testing 

Laboratory are given in (Table 1). These seven soil 

indicators were selected based on their sensitivity to soil 

quality assessment. These indicators are widely suggested 

by many researchers as they affect soil productiveness, 

nutrients supply, soil porosity, root development, soil 

structure, and soil aggregation stability (Dodd & 

Sharpley, 2015; Garnaik et al., 2020; Khasawneh et al., 

1980; Nabiollahi et al., 2018; Ok et al., 2011; 

Rahmanipour et al., 2014). The soil samples were allowed 

to air dry and then were crushed. After sample grinding, 

the samples were passed through a 2mm sieve for 

physical and chemical examination (Table 1). These all 

indicators based on their sensitivity towards soil quality 

assessment were incorporated into TDS analysis. 

Particularly, it is crucial to check the soil pH levels as it 

reflects the plant growth condition, biological activity in 

the soil, and nutrient recycling. Besides the soil, EC 

merely tells you about plant growth yet it is useful in 

determining the salinity in soil and the availability of 

nutrients for the uptake of plants (Liebig et al., 2017; 

Thapa et al., 2018). Soil OM greatly influences the 

stability status of soil in terms of structure, pH, soil’s 

reaction to fertilizer, and the availability of nutrients 

(Corwin & Yemoto, 2020). OM reduces the threat of 

erosion, improves the soil quality, fertility, cations 

exchange capacity, supply, and storage of nutrients 

(Kilmer, 2018). These selected indicators are deliberated 

as good gauges to determine the soil quality for crop and 

soil management practices (Liebig et al., 2017; Thapa et 

al., 2018). Therefore, for better characterization of the soil 

of the study area, these indicators were selected and TDS 

was employed on all the indicators. 
 

Assessment and scoring the soil quality index: The 

Standard Scoring Function was used for assigning scores 

to indicators. According to soil quality indicator 

sensitivity, three types of functions that are associated 

with values i.e., high, low, and intermediate were applied. 

(i) More is better, (Andrews et al., 2002) (ii) Optimal 

range, and (iii) Less is better (Liebig et al., 2001). 

Indicator perimeter and their functions are described in 

Table 2. According to indicators, more is better function, 

was applied to organic matter, because soil organic matter 

plays a vital role in soil fertility, and fertility affects crop 

production. The greater amount of soil organic matter, 

increases crop production, soil fertility, and structural 

ability (Marzaioli et al., 2010). Function for the optimal 

range was applied to saturation percentage, electrical 

conductivity, potassium, phosphorus, and pH. 

Table 1. Soil Fertility Standards. 

Soil quality Poor Medium Fertile 

OM (%) <0.86 0.87-1.29 >1.29 

P (ppm) <7.0 7-21 >21.0 

K (ppm) <80 80-180 >180 

EC (dSm-1) >16-8 8--4 <4 

pH >8.5-8.0 8.0-7.0 <7.0 

SP (%) <19 20-45 >45 

CaCO3 % <0-2.0 2.0-4.0 >4.0 

 

Table 2. Scoring the soil quality index. 

Indicator Function type Lower limits Upper limits 

SP% Optimal range 19 60 

EC (dSm-1) Optimal range 0.2 4 

OM% More is better 0.86 5 

P (ppm) Optimal range 7 21 

K (ppm) Optimal range 80 250 

CaCO3 % Less is better 2 9.5 

pH Less is better 7.0 14 

 

The optimal range is defined for the indicators, 

ranging between less is better, or more is better. 

Moreover, the electrical conductivity’s optimal range is 

0.2 to 2dSm
-
¹. The range for saturation percentage is 30 to 

45, for phosphorus is 14 ppm, and for potassium is 180 

ppm (Marzaioli et al., 2010). Since the soil in the studied 

area is calcareous in nature, so lower pH and CaCO₃ 

content are chosen as less is better because the lower 

values of both of these indicators are better for crop 

production and fertility (Bashir et al., 2019). 

 

MDS selection for data reduction: The evaluation of 

soil quality indicators was executed through the MDS. 

The soil quality parameters must be connected to the 

functions of soil. For the selection of MDS, the 

application of principle component analysis (PCA) was 

employed (Qi et al., 2009) to reduce the data (Minitab 18 

software). Principal components axes are shortly called 

PCs showing eigenvalues >1 are measured in the 

indicator’s selection; when less than three principal 

components axes had the eigenvalue >1, PCs, explaining  

>5% variation in the soil data. Variables received weight 

in each PC to represent their role in the alignment of the 

PC (Andrews et al., 2002; Rahmanipour et al., 2014). 

Each variable in a PC was assigned a weight showing its 

contribution to the formation of the principal component. 

The variables with an absolute weight value within the ten 

percent of the highest factor in each PC were retained to 

outline MDS. In the case of more than a single variable 

selection from each PC, the multivariate-correlation 

coefficient was executed to abolish the redundant 

variables in the minimal data sets. 

 

Weight assignment for TDS/MDS: For TDS and MDS, 

Factor analysis (FA), (IBM SPSS 20 software), was 

employed to assign the values of the weights by 

considering the respective communality values (CV) of 

every selected parameter. CV considers the estimated 

factor model and represents the degree of variance 

explicated by each indicator. Its values lie between 0 to 1 
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and the indicator communality with higher values show 

the higher contribution of that indicator to illustrate the 

examined phenomenon. Here in the present study, weight 

values are the resultant of the ratio between every 

indicator’s communality to the cumulative communalities 

of the indicators (Rahmanipour et al., 2014).  

 

Soil quality index: For the index calculation, The 

Integrated Quality Index (IQI) was used for all indicators 

i.e., TDS and MDS methods, and all sample points 

scoring and weighting were applied (Doran, 1994). 

According to, Qi et al., (2009), the formula of IQI is,  
 

𝐈𝐐𝐈 = ∑ 𝑾𝒊𝑵𝒊

𝒏

𝒊=𝟏

 

Where,  

IQI is the integrated quality index, 

𝒏 is the number of indicators, 

𝑾𝒊 is the weight of each indicator, 

𝑵𝒊 is the score of each indicator 

1 

 

Soil quality classes: According to Jenk’s optimization 

method, five classes were assigned to each indicator of 

soil quality. Data were organized into classes, and each 

class was minimized by the sum of variance. Quality 

grades were assigned to each indicator shown as follows: 

I (Very high), II (High), II (Moderate), IV (Low), V (Very 

low) soil quality in the study area. 

The geo-statistical analysis was used (ArcGIS 10.7 

software) to map the soil quality classes through spatial 

interpolation techniques to check the spatial distribution 

of these generated soil qualities. These methods are only 

valid for nonrandom or spatially dependent data. This 

method estimates the variable values from its neighbor 

values (Belkhiri & Narany, 2015; Xie et al., 2011). The 

geostatistical analysis is vital in the geo-visualization of 

soil quality classes because it has various interpolation 

methods that help in predicting the unknown values (at 

unsampled locations) through known (sampled locations) 

values (Rahmanipour et al., 2014). In this paper, we 

compared extensively used interpolation methods in soil 

investigations, i.e. Inverse Distance Weighting (IDW), 

Radial Basis Functions (RBFs), and Kriging (K). These 

methods estimate the respective model accuracy via 

cross-validation. This useful technique enables us to opt 

for an optimal model of variogram between different 

candidates and also lets us optimize the parameters (all 

required such as; range, sill, maximum, minimum 

neighbors) considered essential for achieving maximum 

possible accuracy. Cross-validation is quite helpful in 

accurately estimating the comportment of the analytical 

model. The cross-validation in multiple iterations 

presented the variograms in two sets that were used for 

building and validating the model (Huang et al., 2019; 

Rahmanipour et al., 2014; Robinson & Metternicht, 

2006). Afterward, the variances between the predicted 

and measured (unknown vs known) data were tested 

through correlation coefficient (r) and Root Mean Square 

Error (RMSE). The methods showing the high r-value 

and less RMSE were kept. Accordingly, if the RMSE 

values were closer to 0 and the r-values tending to be 1, 

then the correctness of that interpolation method was 

considered higher (Rahmanipour et al., 2014; Robinson 

& Metternicht, 2006). 

Index validation: Previously, simple linear regression was 

used by many researchers for IQIMDS (independent 

variable) versus IQITDS (dependant variable) (Zhou et al., 

2020). We argue that such relationships should be 

represented geospatially as there are advanced methods 

available in spatial statistics to show such spatial 

heterogeneous associations. There are two main types of 

spatial multivariate linear regression methods. The first one 

is global linear regression (e.g., ordinary least squares 

(OLS)), which gives an overall statistical correlation 

between dependant and explanatory variables through a 

single equation. The second method is the local linear 

regression approach, (e.g., geographically weighted 

regression (GWR)), which is considered superior 

(evidently) to OLS. In the global regression method, the 

regression coefficients are considered as constants without 

regional or local disparity, which confuses the possible 

associations among significant local differences. However, 

GWR considers spatial heterogeneity and computes 

differentiated (local scale) estimations of regression 

parameters throughout the spatial locations. The GWR can 

be calculated through the following equation; 

 

TDS = 𝜷𝟎(𝑿𝒊 , 𝒀𝒊) + 𝜷𝟏(𝑿𝒊 , 𝒀𝒊) MDS + 𝜺𝒊 2 

 

TDS is a dependant variable; 𝑖 shows regions of the 

study area; (𝑋𝑖  , 𝑌𝑖) represents the locations of 𝑖th 

observed region; 𝛽1(𝑋𝑖  , 𝑌𝑖) shows regression parameter at 

the location of observation; MDS is an independent 

(explanatory) variable and 𝜀𝑖 is the error term (Ansong et 

al., 2015; Li et al., 2019). The GWR is used here for 

computing the possible relationships among TDS 

(dependant variable) and MDS (explanatory variable) at 

varied locations (locally). 
 

Results 
 

TDS method-based evaluation: Measured values of mean, 

standard deviation (±), coefficient of variation (CV) %, 

minimum, maximum, and range of the studied (seven) soil 

quality indicators (at each sampling point) are shown in 

(Table 3). pH values are higher than 8 to 8.5, and in some 

areas, they exceed from 9 to 9.5, indicating soil nature as 

alkaline and sodic. A very low soil electrical conductivity 

(EC) is found in the northwestern side of the study area, 

whereas the southeastern side contains very high EC. Overall 

EC values remained between 1.4 to 14.3. Moreover, high soil 

organic matter (OM) is found in the south and west of Toba 

Tek sigh’s area, however, the north and east sides show lesser 

OM. Its overall variability lies between 0.41 to 1.14 in the 

study area. As a reference, more than 1% amount of OM in 

the soil refers to good soil quality. 

The amount of phosphorus is very high on the 

southern side of the study area and moderate in (almost) 

the rest of the study area because Low phosphorus is 

covering only a small area. Phosphorus is less soluble, 

slowly available to plants, and remains in the soil for a 

long time. It is absorbed quickly into soil particles after its 

application in chemical fertilizer form. It becomes highly 

available in soils that have a pH below 7. Like other 

nutrients, phosphorus is also available in abundance in 

that soil which contains a high amount of organic matter.  
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Table 3. Measured values of samples. 

Indicator Mean values Standard. Deviation CV % Min. Max. Range 

pH 8.425104603 0.2377182 2.821546611 8 9.4 1.4 

EC (dSm -1) 706589:.; 706:=;.98 5.50;598; 1.4 14.3 12.9 

OM % .0;:;<9;;8 .05:=5<: 660.759695 0.41 1.14 0.73 

P (ppm) =0:98=7; 50<5=65< 5<0<867: 1.03 14.1 13.7 

CaCO3% 80:7=565 505.;;8 670<;<66 2.9 7 4.1 

K (ppm) 5990757< 7:0.<;:7 6706797 70 360 290 

SP% 790<<6<9 6075:555 :0898:8: 30 44 31 

-pH (Soil Reaction), -EC (dSm -1) (Deciemens per meter) (Electrical conductivity), -OM% (Organic Matter), -P (ppm), (Phosphorus, 
parts per million), -CaCO3% (Calcium carbonate), -K (ppm), (Potassium, parts per million), -SP% (Saturation percentage) 

 

Table 4. Weight and communalities. 

Indicators 

TDS MDS 

Commun

alities 

Weight 

values 
Communalities 

Weight 

values 

pH 0.616 0.138 0.544 0.354 

EC 0.261 0.058 0.322 0.210 

O.M 0.61 0.136 0.667 0.435 

P 0.779 0.174   

K 0.718 0.16   

CaCO3 0.789 0.176   

SP 0.687 0.154   

 

Most of the high amount of CaCO3 was present on 

the north and western sides. Moreover, a moderate 

amount is available in (almost) the rest of the area, and a 

very low amount is available on the southern side of the 

study area. An only a small area on the southern side had 

a high amount of potassium because most of the area 

showed a moderate level of potassium, and a small area 

was covered by a lower amount of potassium. The 

higher amount of SP was located in northeastern and 

some of the western sides and the moderate SP level was 

in most of the areas but the lower amount of SP% was in 

the southern and middle of the study area. Based on 

estimated communality analysis, CaCO3, SP, and OM 

showed considerable variability in the study area (Table 

4). Moreover, P, pH, CaCO3, SP, and OM contained the 

highest weights (176 to 136). K, OM, and EC had 

comparatively low weight values (0.16 to 0.058). 

The Integrated Quality Index (IQI) for Total Data 

Set (TDS) is classified into five soil quality classes. The 

soil quality classes are defined as per Jenk’s 

optimization method. The soil quality classes (TDS) are 

ranging from Very high > 0.696 to Very low <0.431 after 

IQI computation (Table 5). 

RMSE and r were utilized for the comparison of 

different interpolation techniques as stated in previous 

methodological discussion. We identified RBFs as the 

most proper interpolation technique relative to other 

methods. Specifically, two RBFs were considered 

optimal for applying to IQITDS and IQIMDS, i.e. CRS for 

TDS and Inverse multiquadric (IM) for MDS (Table 8). 

The resultant geostatistical maps (as presented in Fig. 4a 

& b) for soil quality showed that around 30% (446.9 

km
2
) of the study area has mainly very low quality 

(Grade V). An area of 48% lies as low (Grade IV) which 

covers an area of 727.1 km
2
 (Table 5). 17% of the area 

showed Grade III, and only 3% area falls with Grade II 

(high) soil quality. Less than 1% of the total area was 

designated as Very High quality or Grade I soil. 

MDS method-based evaluation: Principal 

component analysis (PCA) was used as a data reduction 

tool, for the selection of indicators of soil quality. 

Highly weighted indicators, which have the eigenvalues, 

≥ 1 were selected for the minimum data set. Three 

indicators ranging from 1.3264 to 2.2585 were selected 

for the minimum data set (Table 6). Highly weighted 

variables from seven PCs were reflected. If >1 factor has 

a higher weight, a direct relationship was employed. The 

OM, EC, and pH factors were considered after 

communality analysis (Factor Analysis) because they 

showed high eigenvalues ≥ 1. 

The IQI for MDS (Yu et al., 2018) classified soils of 

the studied area into five quality classes. The soil quality 

classes were defined by “de Paz et al., (2006)” as Jenk’s 

optimization technique. The soil quality classes ranged 

from Very high > 0.665 to Very low <0.431 (Table 7). 

Soil quality geospatial map of IQIMDS indicated an 

almost similar pattern to the TDS method and exhibited 

that 30.6% of the studied area is of Grade V (Table 7 and 

Fig. 4b). On average, 29 % of the studied area accounted 

for moderate and low-quality soil (Grade IV and III). 

MDS analysis showed that 9.6 % of the area (143.5 km
2
) 

is of Grade III and with a similar trend to TDS, less than 

1% study area accounts for Very High-Grade soil (Grade 

I). The IQIMDS displayed a reduction in soil quality from 

the south to the northwestern quadrant. 

 

Table 5. TDS analysis for grading of soil quality. 

Index 
Indicator 

method 

Grades 

I(Very high) II(High) III(Moderate) IV(Low) V(Very low) 

IQI 
TDS >0.696 0.624–0.696 0.534–0.624 0.431-0.534 <0.431 

Area (km
2
) 5.4 54.5 256.1 727.1 446.9 
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Table 6. Principal component analysis principal component analysis: pH, EC, O.M, P, K, CaCo3, SP 

eigen analysis of the correlation matrix. 

Eigenvalue 2.0297 1.5672 1.3264 0.7865 0.5192 0.4443 0.3267 

Proportion 0.290 0.224 0.189 0.112 0.074 0.063 0.047 

Cumulative 0.290 0.514 0.703 0.816 0.890 0.953 1.000 

Eigenvectors 

Variable 
PCs 

1 2 3 4 5 6 7 

pH -0.581 0.171 0.043 0.145 0.154 -0.623 -0.445 

EC -0.315 0.240 0.473 -0.592 -0.472 0.196 -0.082 

O.M 0.615 0.004 0.039 0.027 -0.350 -0.160 -0.686 

P 0.239 0.633 0.118 0.260 -0.290 -0.390 0.474 

K 0.326 0.058 0.613 -0.237 0.660 -0.149 0.016 

CaCo3 0.038 0.685 0.164 -0.154 -0.296 -0.543 0.311 

SP -0.140 0.201 0.596 0.693 -0.154 0.279 -0.054 

 

Table 7. Soil quality grades for MDS. 

Index 
Indicator 

method 

Soil quality grades 

I II III IV V 

IQI 
MDS >0.665 0.600–0.665 0.514–0.600 0.431-0.514 <0.431 

Area (km
2
) 9.24 143.55 317.57 563.33 456.34 

 

Table 8. Spatial interpolation for enhanced parameters. 

Index 
Indicator 

method 

Optimal 

Interpolation method 
Parameter 

Max. 

Neighbors 

Min. 

Neighbors 
RMSE r 

IQI 
TDS CRS

b
-RBF

a
 1.0302 15 10 0.221 0.76

**
 

MDS IM
c
-RBF

a
 102.1960 15 10 0.196 0.78

**
 

a RBF = Radial basis functions; b CRS = Completely regularized spline; c IM = Inverse multiquadric 
**p<0.01 

 

 
 

Fig. 4. (a & b) Final Geo-statistical maps showing the distribution of soil quality grades based on IQI TDS and IQI MDS indices in Tehsil 

Toba Tek Singh lands. (c) GWR analysis showing agreement between IQITDS and IQIMDS via local R2. 
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GWR presented a clear relationship between IQI TDS 

and IQI MDS (Fig. 4c and Table 9). This reveals that MDS 

can be used with high confidence to measure the soil 

quality because MDS variables strongly influence TDS 

variables and have local statistical significance. Overall 

model performance is significant with Adjusted local R
2
 

0.81. Mainly, in the top northwestern and extreme 

southeastern areas, the relationships are the least (R
2
 0.37 

and R
2
 0.49) however nearby regions of these 

significances present higher to highest significances (R
2
 

0.58 to R
2
 0.87). Both models are comparable and can be 

used alternatively however MDS is suggested here as an 

optimal option to evaluate the soil quality. 

 

Table 9. Results from the GWR model for grid-based analysis. 

Variable 
Grid-based 

Intercept MDS 

Mean of βs 0.471 0.488 

SD of βs 0.072 0.080 

Minimum  0.237 0.288 

Maximum 0.698 0.732 

Median 0.469 0.483 

SE 0.023 0.047 

Adjusted R2 0.81 

 

Discussion 

 

Soils are classified as neutral, acidic, strong, or 

alkaline based upon their pH. The variation of EC values 

differentiates soils from no-saline to highly saline soils. 

Higher pH and EC values of soil in the study area 

represented the alkalinity and salinity of the soil. Another 

component of soil, organic matter is considered an 

essential characteristic of soil quality. OM provides 

essential nutrients to the soil, regulates the soil water 

availability, increases the infiltration of water in the soil, 

and affects the aggregate size, bulk density, and supply 

oxygen to the roots of plants. Soil organic matter 

increases soil fertility and crop production. A large 

amount of organic matter implies healthy soil, and the 

lower amount of soil organic matter in soil reflects poor 

soil quality (Rahmanipour et al., 2014). In the process of 

identification of soil quality, the soil organic matter is 

valuable; therefore it may be informative as a minimum 

data set that is used to assess the soils of the world. For 

the characterization of organic matter, a separate 

minimum data set is required for some salient functions 

such as biological activity, the structure of the soil, and 

storage of nutrients in the soil (Gregorich et al., 1994). 

In the present study, levels of phosphorous and 

potassium were recorded in a lesser amount. The soil 

phosphorus (P) after nitrogen is a very significant nutrient 

component that its shortage has restricted agricultural 

production in many regions like Australia and other parts 

of the world. Phosphorus decline in the soil dramatically 

affects the soil quality. Therefore monitoring of soil 

phosphorous is required to maintain a healthy balance of 

phosphorous. Excessive P is also dangerous as it leaks 

into the water and can make it contaminated. Larger P 

concentration in lakes and streams leads to algal growth, 

which may discharge destructive toxins (Corwin & Lesch, 

2005). Islam et al., (2016) narrated that potassium is 

absorbed in large amounts by plants than other nutrients 

and it is the third major nutrient element. It is described 

that the presence of potassium in soil augmented crop 

production and grain yield, and improved the exchange of 

potassium and nitrogen from the stem. However, in Asia, 

farmers usually do not prefer potassium fertilizer 

application as compared to nitrogen and phosphorus. 

Many researchers reported the negative balance of K in 

rice soils. These days, 18.43% of soils lack K and due to 

insufficient K fertilizer application, this figure is 

increasing day by day. K erodability is also found to be 

responsible for the erosion of agricultural lands and soil 

degradation (Vaezi et al., 2008; Khormali et al., 2009). 

The indices of IQITDS and IQIMDS revealed that 

overall 17 and 21% of the total agricultural land area in 

Toba Tek Singh exhibited moderate level soil quality 

(Grades III). Whereas, less than 1% area showed high 

quality/ Grade I soil quality. Both MDS and TDS 

techniques showed that most of the study area has low-

quality soil from Grade III, IV, and V. The EC recorded 

was also high in the study area. The reason can be 

explained as the area of Toba Tek Singh is one of the hot 

semi-arid climatic zones of Pakistan. Rainfalls mostly 

happen during the monsoon from July to August. Winters 

have (mostly) very little rain, thus the irrigation of crops 

relies on groundwater or canal system which leads to 

salinity and waterlogging problems (Karim & Hussain, 

2012). The use of stored groundwater for irrigation in the 

cultivation areas can increase the salts concentration in 

the soil, therefore increasing the soil EC (Smedema & 

Shiati, 2002). The issue of soil salinity also increases due 

to the intensive farming practices in the area leading to a 

low level of OM and higher pH levels rendering poor soil 

quality. Low levels of OM, high levels of EC, and pH 

negatively affect the soil quality and ultimately the plant 

growth (Marzaioli et al., 2010). 

The PCA technique has been applied in several 

other studies to reduce the datasets (Andrews et al., 

2002; Qi et al., 2009; Rahmanipour et al., 2014). This is 

a useful tool that reduces data redundancy during soil 

indicator selection in addition to minimizing the cost 

and time of laboratory analysis. The latter feature of 

PCA is essentially important for developing countries 

like Pakistan and other Asian countries, which have a 

marginal infrastructure and low budgets to measure the 

indicators. For MDS analysis, organic matter, EC, and 

pH used in our study have been employed in other 

studies as MDS indicators to monitor the soil quality (Qi 

et al., 2009). Organic matter is also included in MDS 

and suggested as a good indicator for the evaluation of 

spatial changes in soils of urban and cropping areas of 

Province Tehran, Iran (Nosrati, 2013). 

The IQI index employed in this study both for MDS 

and TDS is a method of choice as previously used by 

many researchers and offers an improved estimation of 

the soil quality. The usage of a few indicators for soil 

assessment is due to the lack of any data about Toba Tek 

Singh and generally for Pakistan. Our results with the 

use of a few indicators are in corroboration with 

previous studies in China and Iran (Qi et al., 2009; 
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Rahmanipour et al., 2014). Another study on soil 

assessment recommended that a small number of 

carefully selected indicators could effectively provide 

the assessment of soil quality (Andrews & Carroll, 

2001). We here also suggest (for future inquiries) to 

further incorporate the toxic heavy metals in soil quality 

assessments because their presence affects plant growth 

which could lead towards loss of the agricultural 

productively in any crops (Mahalel et al., 2021). 

Moreover, the effects of fertilizers should also be 

considered because the presence and variations of 

different fertilizers may alter the vital nutrients’ 

composition and soil contents that affect plant root 

growth, overall yield, and quality of important crops 

(Zhang et al., 2021). 

Unlike conventional index validation procedures, we 

here employed GWR as a novel approach to check 

whether both of these models (IQITDS and IQIMDS) have 

any degree of agreement with each other. To the best of 

our knowledge, this is the first attempt in such studies. 

This study has local and nationwide policy implications 

where soil degradation is a common cause of less 

agricultural productivity. We here strongly recommend 

that extensive national surveys for soil quality evaluation 

should be conducted as the evidence is reported in this 

alarming study. We also recommend working on farmers’ 

education/knowledge, attitudes, and practices towards 

essential fundamentals. Finally, This study can also be 

adapted for other areas of the world for effective soil 

quality evaluation. 

 

Conclusion 

 

In this study, two sets of indicators, TDS, and MDS 

are compared under Integrated Quality Index (IQI), for 

the evaluation of soil quality in agricultural lands in Tehsil 

Toba Tek Singh. It is observed that the selected indicators 

were suitable for the evaluation of soil quality. TDS 

shows the soil quality results of all selected indicators 
including EC, pH, CaCO3, OM, P, K, and SP. For the 

selection of MDS, the PCA was used and three indicators 

were selected for MDS i.e. pH, EC, and OM. For the 

quality indices from both approaches (IQITDS and IQIMDS), 

Low and Moderate soil quality classes were recognized as 

leading grades (for soil quality) in the study area. The 

reason for low quality in the study area was identified as a 

low percentage of organic matter, a lower amount of 

CaCO3, a high rate of pH and EC, and less amount of P 

and K in the soil of the study area. The results for TDS 

and MDS also appropriate to each other, soil quality is 

respectively low and moderate in these areas according to 

TDS and MDS results. Geostatistical interpolation helped 

in mapping the spatial distribution of soil quality grades. 

The best fit was the Radial Basis Function interpolation 

method (RBFs) for both IQITDS and IQIMDS. Moreover, 

two of the sub-methods of RBFs were chosen after cross-

validation including RBFs- Completely Regularized 

Spline (CRS) for TDS and RBFs- Inverse multiquadric 

(IM) for MDS. The IQI index was also validated as a 

whole based on spatial heterogeneity through the GWR 

technique, which is the first attempt in such studies. The 

GWR results clarify that IQITDS and IQIMDS have a 

significant agreement with each other. However, we 

recommend MDS as an optimal option due to its time-

saving and cost-effectiveness. The IQIMDS approach might 

also be used as a helpful tool for the development of 

quantitative techniques to estimate soil quality. This kind 

of a research must be conducted from time to time for the 

monitoring of soil quality, and it could be helpful to 

identify areas where soil quality is low. This can be 

important information for better management practices to 

maintain the suitable amount of fertilizers in the soil. The 

MDS approach might be helpful to test the selected 

indicators in soil, and help to improve the soil quality, to 

keep a record of infertile areas. If the number of 

indicators reduces, then the sampling density could be 

increased to evaluate the soil quality in terms of a 

statistical point of view. The results are useful for 

practitioners, to improve soil fertility, better irrigation, 

land management practices, and appropriate use of 

fertilizers in the studied area. The mentioned research 

methods can be helpful for future researches in Pakistan. 

Because this sector is often neglected by governments 

(i.e., national and sub-national), there is an immediate 

need to reevaluate the soil quality in Pakistan at national 

and sub-national levels for better crop production and 

land management practices. To our knowledge, this 

manuscript is the first of its kind effort in the country 

towards the geospatial perspective of soil quality 

evaluation and we anticipate improvements in our 

methods - left for future studies. 
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