CLONING AND EXPRESSION OF FLORAL ORGAN IDENTITY GENES IN PAEONIA OSTII 'FENGDAN'

SHUANG ZHOU, CHAO MA, SHUANGCHENG GAO, DIANYUN HOU, PENG SONG, ZHENZHU GUO, YI ZHANG AND GUOAN SHI^*

College of Agriculture/Mudan, Henan University of Science and Technology, Henan 471000, People's Republic of China *Corresponding author's email: gashi1963@163.com

Abstract

Tree peony is the most popular and important ornamental plant in China and has many different flower types. Although many studies about tree peony cultivation have been published, the regulatory mechanism of floral organ identity has not been explored. *Paeonia ostii* 'Fengdan' is a typical single-flower variety, and many important tree peony cultivars in China originated from homoploid hybridization between 'Fengdan' and other Paeonia species. Peony tea made from 'Fengdan' has already been introduced to the market, and the quality and price of peony tea are closely related to the flower type of 'Fengdan'. This research cloned six floral organ identity genes in 'Fengdan', namely, *PsAP1fd*, *PsAP2fd*, *PsAP3fd*, *PsPIfd*, *PsACfd*, and *PsSEP1fd*. The bioinformatics analysis was performed, and results showed that all these genes encoded MADS-box proteins, except *PsAP2fd*, and *PsAP2fd* encoded an AP2 protein. Five MADS-box proteins encoded by these genes contained two conserved motifs: MADS-MEF2 and K-box domain. PsSEP1fd was hydrophilic and stable, whereas the other five proteins were hydrophilic and unstable. The results of qRT-PCR displayed that *PsAP1fd* was mostly observed in the petals and sepals, and *PsAP2fd* was observed in the petals, followed by that in the stamens. The highest expression level of *PsAGfd* was observed in the petals, followed by that in the stamens. The highest expression level of *PsAGfd* was observed in the flower type formation of 'Fengdan'. Our work would help reveal the molecular mechanism underlying flower type formation in 'Fengdan' and promote quality control for peony tea products.

Key words: Cloning, Floral organ identity, Gene expression, MADS-box gene, Paeonia ostii 'Fengdan'.

Introduction

Flower development is strictly regulated. In 1991, the ABC model was proposed according to researches on Arabidopsis and Antirrhinum (Coen & Meyerowitz, 1991). The ABC model indicated that the flowers of Arabidopsis and Antirrhinum have four whorls, referred to as sepals, petals, stamens, and carpels, and flower organs are determined by A-, B-, and C-class genes (Coen & Meyerowitz, 1991). Sepal formation is controlled by A-class genes, while petal formation is regulated by A- and B-class genes. Stamen formation is controlled by B- and C-class genes, whereas the formation of carpel is determined by Cclass genes (Coen & Meyerowitz, 1991). Furthermore, Aand C-class genes are antagonistic (Bowman et al., 1991). The mutations of A-class gene resulted in sepals to change into pistils, as well as petals to change into stamens. B-class gene mutations resulted in petals and stamens to change into sepals and pistils, respectively. The mutations of C-class gene promote the transition of stamens into petals and transition of pistils into sepals (Bowman et al., 1991; Coen & Meyerowitz, 1991; Weigel & Meyerowitz, 1994). APETALA1 (AP1) and AP2 in Arabidopsis are A-class genes, whereas AP3 and PISTILLATA (PI) in Arabidopsis, GLOBOSA (GLO) and DEFICIENS (DEF) in Antirrhinum, pMADS1, pMADS2/FBP3 (FLORAL BINDING PROTEIN3) and FBP1 in petunia are B-class genes (Riechmann & Meyerowitz, 1998; Eckardt, 2003; Pařenicová et al., 2003). PLENA in snapdragon, AGAMOUS (AG) in Arabidopsis, and pMADS3 in petunia are C-class genes (Eckardt, 2003).

ABC model had been comprehensively studied and extended to ABCDE model. *FBP7* and *FBP11* in petunia (Angenent *et al.*, 1995), *SHATTERPROOF1* (*SHP1*), *SHP2*, *SEEDSTICK* (*STK*) in *Arabidopsis* (Favaro *et al.*, 2003) are all D-class genes, which determine ovule development and have redundant effects similar to C-class genes (Colombo *et al.*, 1995; Jack, 2004).

The discovery of E-class genes is a significant improvement for the ABC model. These genes were first found in tomato MADS box gene no.5 (TM5) (Pnueli et al., 1994), as well as petunia FBP2 (Angenent et al., 1994; Ferrario et al., 2003). Some researchers attempted to change the expression levels of ABC genes to induce the transition of leaves into floral organs, but they were unsuccessful (Mizukami & Ma, 1992; Krizek & Meyerowitz, 1996; Pelaz et al., 2000). ABC genes are significant to floral organs formation, and another class of floral organ identity genes are also essential to the transition of vegetative organs into floral organs. In Arabidopsis, the formation of the complexes of ABC proteins and SEP proteins is sufficient for converting vegetative organs into floral organs (Pelaz et al., 2000; Honma & Goto, 2001; Pelaz et al., 2001b). Therefore, the ABCE model was updated according to the ABC model. The ABCE model indicated that A+E regulates sepal formation (Pelaz et al., 2001a), A+B+E regulates petal formation, B+C+E regulates stamen formation (Honma & Goto, 2001; Pelaz et al., 2001b; Ferrario et al., 2003), C+E regulates pistil formation (Fan et al., 1997; Pelaz et al., 2000).

Tree peony (*Paeonia suffruticosa* Andrews) has a long history of cultivation in China, which belongs to section *Moutan* DC of the genus *Paeonia* and family Paeoniaceae. It is called "king of flowers" for its beautiful and bright colors and large and diverse flowers. *Paeonia ostii* 'Fengdan' is a popular ornamental, medicinal and oil-seed tree peony variety in China (Liu *et al.*, 2019). In 2011, the seeds of 'Fengdan' were identified as novel sources of edible plant oil in China. Seed oil extracted from 'Fengdan' was found to be rich in unsaturated fatty acids, especially the proportion of α -linolenic acid in peony seed oil is extremely high (Li et al., 2015). In 2013, the flowers of 'Fengdan' were identified as a new food resource in China and found to be rich in flavonoids (Zhang et al., 2017). 'Fengdan' was used in genetic map construction and OTL analysis (Guo et al., 2017; Zhang et al., 2019). The callus, direct somatic embryogenesis, and shoot organogenesis were induced in 'Fengdan' (Du et al., 2020; Ren et al., 2020). Some peony MADS-box genes were identified, and the expression patterns of these genes were analyzed, which are involved in flower organ formation (Wang et al., 2019). However, the regulation mechanism of flower organ formation in tree peony has not been fully clarified. The flower of P. ostii 'Fengdan' has typical four whorls: sepals, petals, stamens, and pistils, and many important peony cultivars in China originated from homoploid hybridization between P. ostii and other Paeonia species. Consequently, studies on 'Fengdan' will increase the understanding of floral organ identity in tree peony and provide basic knowledge of cultivar breeding.

This research used RT-PCR to clone *PsAP1fd* and *PsAP2fd* (A-class genes); *PsAP3fd* and *PsP1fd* (B-class genes); *PsAGfd* (C-class gene); and *PsSEP1fd* (E-class gene) in 'Fengdan'. These genes are involved in flower type formation. Bioinformatics analysis and expression patterns of these genes in different flower organs were carried out. This research will serve as a foundation for the study of the mechanism of flower type formation in tree peony.

Materials and methods

Plant materials: All the plants were grown in Henan University of Science and Technology, Luoyang, Henan Province, China. 'Fengdan' flowers at the bloom stage were collected in April 2017. The flowers were divided into sepals, petals, stamens, and pistils for further analysis.

RNA extraction and reverse transcription: A MiniBEST Plant RNA Extraction Kit (TaKaRa, Japan) was used for RNA Extraction of 'Fengdan'. Then, the samples were measured using a Multiskan Go microplate spectrophotometer (Thermo Scientific, USA). The A_{260}/A_{280} values ranged from 1.8 to 2.0. From each sample, 1000 ng of RNA of each sample was used as the template and a PrimeScriptTM RT reagent Kit with gDNA Eraser (TaKaRa, Japan) was used for reverse transcription.

Isolation of genes: According to transcriptome sequencing performed in our laboratory (unpublished), Primer Premier 5.0 (Premier Biosoft, Palo Alto, USA) was used for primer pair design (Table 1). PCR reactions were carried out using *TaKaRa Ex Taq*® (TaKaRa, Japan). PCR reactions were performed using three-step cycling conditions: *PsAP1fd*, *PsAP3fd*, *PsP1fd*, *PsAGfd*, and *PsSEP1fd*: 94°C for 5 min, then 35 cycles of 94°C for 30 s, 52°C for 30 s, and 72°C for 1 min with a final extension of 72°C for 10 min; *PsAP2fd*: 94°C for 5 min, 35 cycles of 94°C for 30 s, 52°C for 30 s, and 72°C for 10 min. Then, 1.5% agarose gel electrophoresis was used for the detection of PCR products. A gel extraction kit (CoWin Biosciences, China)

was used in purifying the incised gels. PMD18-T vector, as well as *E.coli* DH5 α Competent Cells (TaKaRa, Japan) were used in cloning the extracted products. Recombinant plasmids were selected, then sequenced by Shanghai Sangon Biological Engineering Technology & Services (Shanghai, China).

Sequence analysis: DNAMAN6.0 software was used in analyzing *PsAP1fd*, *PsAP2fd*, *PsAP3fd*, *PsPIfd*, *PsAGfd*, and *PsSEP1fd* sequences. ORF search was carried out according to the NCBI ORF Finder (<u>https://www.ncbi.nlm.nih.gov/orffinder/</u>), as well as conserved domain analysis performed using NCBI Conserved Domains Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?). The properties of these proteins were analyzed on ExPASy (http://us.expasy.org/tools/protparam.html). MEME (http://meme-suite.org/tools/meme) was used in identifying the conserved protein motifs of the proteins. Homology search was investigated according to NCBI-BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Gene expression analysis: The expression patterns of PsAP1fd, PsAP2fd, PsAP3fd, PsPIfd, PsAGfd, and PsSEP1fd were detected through qRT-PCR. LightCycler 96 (Roche, Germany) was used. P. suffruticosa GAPDH (according to transcriptome sequencing performed by our laboratory) was used as the internal control. Primers of qRT-PCR were designed as above (Table 2). The TB GreenTMPremix Ex TaqTMII (Tli RNaseH Plus) (TaKaRa, Japan) was used for qRT-PCR. The amplification was performed as this conditions: 94°C for 30 s, 40 cycles of 94°C for 5 s, and 60°C for 30 s. The relative expression levels of the detected genes were computed according to the methods described by Schmittgen and Livak (Schmittgen & Livak, 2008). The expression level in the petals was used as the control. Triplicate reactions were analyzed. Statistical analysis was carried out using Microsoft Excel, and data were analyzed using one-way ANOVA test.

Results

Morphological description of flower in 'Fengdan': *P. ostii* 'Fengdan' is a typical single-flower variety, with only two whorls of petals, which are broad and flat (Fig. 1a). The sepals, petals, stamens, and pistils of 'Fengdan' developed normally (Fig. 1b) and were thus good materials for studying the mechanism of flower type formation in tree peony.

Isolation of floral organ identity genes in 'Fengdan': The full-length cDNAs of *PsAP1fd*, *PsAP2fd*, *PsAP3fd*, *PsP1fd*, *PsAGfd* and *PsSEP1fd* were successfully identified from 'Fengdan' through RT-PCR (Table 3). The cDNAs of *PsAP1fd*, *PsAP2fd*, *PsAP3fd*, *PsP1fd*, *PsAGfd* and *PsSEP1fd* were 799, 1697, 815, 791, 925, and 869 bp, respectively, containing ORFs of 729, 1533, 666, 639, 777, and 735 bp, respectively, and encoding proteins of 242, 510, 221, 212, 258, and 244 aa, respectively.

The isolated genes were deposited in the GenBank, and the accession numbers were MT822685 (*PsAP1fd*), MT822686 (*PsAP2fd*), MT822687 (*PsAP3fd*), MT822688 ((*PsP1fd*), MT822689 (*PsAGfd*), and MT822690 (*PsSEP1fd*; Table 3).

I able 1.	Table 1. Primer sequences used for floral organ identity genes isolation in "Fenguan".				
Gene	Forward primer (5'-3')	Reverse primer (5'-3')			
PsAP1fd	TTGTCTGTTTGGGTGGTGGGA	CATAACAGTCCGAAGGAGTGC			
PsAP2fd	GAGTCTCATAGAGTAATCAGC	GAAGAAAGAATCTCACAAGC			
PsAP3fd	CCATTGGAGGTGATTGCTA	ATTGGACCATGGGTTGAGTTG			
PsPIfd	TTGTGGCTAGACTTGAAGAGA	TCACACAAACCAAGTTCAT			
PsAGfd	CCTGCTCAGATTTTGTGGGA	CCGCAGAATTTGATGACAG			
PsSEP1fd	AGATCAGCTGGTTCCCAAGAG	GTTACAAATTCCAAGCAAGC			

Table 1. Primer sequences used for floral organ identity genes isolation in 'Fengdan'.

Table 2. Gene-specific primer sequences for detection by qRT-PCR.

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
GAPDH	TGTTCACTCCATCACTGCTAC	ACATCCACAGTAGGAACACGA
PsAP1fd	GGAGAACCAACAGAAATGAG	ATACACCAAAGCACCCAAG
PsAP2fd	TATACAAGTGAGGCAAACG	GAGATGGAACAATGTGAAG
PsAP3fd	GGAGAATGAGGGAGACTATG	CATGACTCAAGAGAGGTGC
PsPIfd	ATGGAATTTCCCAAGAGGC	GGAAGGCGTAAGGAATCAG
PsAGfd	CAAATGAACTTGATGCCAG	ATTGAAGAGCGATTTGGTC
PsSEP1fd	GTTCAGACCAAATGACGGC	ACTCAGAGCATCCATCCAGG

Table 3. Gene seq	uences of floral	organ identity	genes in	'Fengdan'.

		ODE				
Gene	Full length	ORF	5'-UTR	3'-UTR	Amimo	Accession
Gelle	(bp)	(bp)	(bp)	(bp)	acid	number
PsAP1fd	799	729	35	35	242	MT822685
PsAP2fd	1697	1533	51	113	510	MT822686
PsAP3fd	815	666	36	113	221	MT822687
PsPIfd	791	639	28	124	212	MT822688
PsAGfd	925	777	113	35	258	MT822689
PsSEP1fd	869	735	79	55	244	MT822690

Table 4. Physical and chemical parameters of proteins related to floral organ identity in 'Fengdan'.

Protein	Formula	Molecular weight	Theoretical	Instability index	GRAVY value
	~ ~ ~ ~ ~ ~ ~	0	<u>pl</u>		
PsAP1fd	$C_{1217}H_{1976}N_{360}O_{375}S_{11}$	28003.92	9.01	50.47	-0.788
PsAP2fd	$C_{2461}H_{3794}N_{740}O_{793}S_{18}$	57012.76	6.66	51.93	-0.911
PsAP3fd	$C_{1122}H_{1803}N_{325}O_{341}S_{12}$	25686.35	9.30	43.17	-0.822
PsPIfd	$C_{1068}H_{1745}N_{319}O_{334}S_{10}$	24719.14	8.65	48.67	-0.850
PsAGfd	$C_{1268}H_{2057}N_{391}O_{403}S_{10}$	29548.26	9.47	52.98	-0.914
PsSEP1fd	$C_{1220}H_{1960}N_{354}O_{375}S_{10}$	27907.73	8.78	29.76	-0.654

Sequence analysis of floral organ identity genes in 'Fengdan': Conserved domain analysis confirmed that all proteins encoded by the genes contained MADS-MEF2like and K-box domain, except PsAP2fd (Fig. 2). PsAP2fd contained two typical AP2 domains, which belong to the AP2 family (Fig. 2b). The Molecular weight varied from 24.72 KDa to 57.01 KDa, and the theoretical pI varied from 6.66 to 9.47. Only the instability index of PsSEP1fd was less than 40, and it was stable. The other five proteins detected were considered unstable. The GRAVY values of the proteins were all less than 0, and thus they were all predicted to be hydrophilic (Table 4).

BLAST analysis showed that PsAP1fd shared 75.20-99.59% identity with AP1 from *Paeonia suffruticosa*, *Paeonia lactiflora*, *Vitis riparia*, *Herrania umbratica*, *Durio zibethinus*, and *Rhamnella rubrinervis*. PsAP2fd shared 66.67-100.00% identity with AP2 from *Paeonia suffruticosa*, *Paeonia lactiflora*, *Vitis vinifera*, *Vitis riparia*, *Theobroma cacao*, *Nyssa sinensis*, and *Durio zibethinus*. PsAP3fd shared 70.97-100.00% identity with AP3 from *Paeonia suffruticosa*, *Paeonia lactiflora*, *Vitis vinifera*, *Cephalotus follicularis*, *Nyssa sinensis*, and *Mercurialis annua*. PsPIfd shared 71.70-99.06% identity with PI from Paeonia suffruticosa, Paeonia lactiflora, Mercurialis annua, Vitis vinifera, Vitis riparia, Manihot esculenta, and Jatropha curcas. PsAGfd shared 78.93-97.29% identity with AG from Paeonia suffruticosa, Cercidiphyllum japonicum, Vitis riparia, Prunus serotina, Manihot esculenta, and Tripterygium wilfordii. PsSEP1fd shared 77.46-97.13% identity with SEP1 from Paeonia lactiflora, Carica papaya, Vitis riparia, Vitis vinifera, Theobroma cacao, and Durio zibethinus (Table 5).

Conserved domain analysis showed that the proteins detected were MADS-box proteins, except PsAP2fd, which belongs to the AP2 family (Fig. 2). To examine the common feature of 'Fengdan' MADS-box proteins, the MEME suite was used in identifying their conserved motifs and sequence logos. Five conserved motifs (called Motif 1-5) were identified, and only three motifs were usable (the E-values of Motif 4 and Motif 5 were larger than 0.05; Fig. 3b). The motifs were then matched to two different domains. Motif 1 and 3 at the N-terminus were in the MADS domain, and Motif 2 was in the K-box domain. A less-well-conserved I (intervening) domain, as well as a variable C-terminal region were found in these proteins (Fig. 3a).

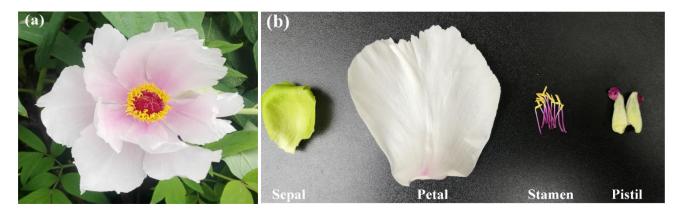


Fig. 1. Phenotype of *P. ostii* 'Fengdan'. (a) The flower of 'Fengdan'. (b) Different floral organs of 'Fengdan'.

Protein	Species	GenBank accession no.	Indentity (%)
PsAP1fd	Paeonia suffruticosa	AJO68022.1	99.59
	Paeonia lactiflora	AGH61290.1	97.11
	Vitis riparia	XP_034699499.1	81.74
	Herrania umbratica	XP_021292999.1	78.19
	Durio zibethinus	XP_022776709.1	77.78
	Rhamnella rubrinervis	KAF3431618.1	75.20
PsAP2fd	Paeonia suffruticosa	AEK33829.1	100.00
	Paeonia lactiflora	AGI61068.1	96.75
	Vitis vinifera	NP_001267881.1	71.80
	Vitis riparia	XP_034691428.1	71.61
	Theobroma cacao	XP_007047337.2	68.33
	Nyssa sinensis	KAA8547120.1	68.27
	Durio zibethinus	XP_022740198.1	66.67
PsAP3fd	Paeonia suffruticosa	AEK33828.1	100.00
	Paeonia lactiflora	AGH61291.1	91.86
	Vitis vinifera	NP_001267937.1	73.27
	Cephalotus follicularis	GAV72187.1	72.35
	Nyssa sinensis	KAA8531940.1	71.69
	Mercurialis annua	QER90709.1	70.97
PsPIfd	Paeonia suffruticosa	QCQ84555.1	99.06
	Paeonia lactiflora	AGH61293.1	96.23
	Mercurialis annua	ALK01328.2	76.89
	Vitis vinifera	NP_001267875.1	76.53
	Vitis riparia	XP_034676852.1	76.06
	Manihot esculenta	XP_021601944.1	73.71
	Jatropha curcas	XP_012078322.1	71.70
PsAGfd	Paeonia suffruticosa		97.29
	Cercidiphyllum japonicum	ASY97759.1	83.56
	<i>Vitis riparia</i>	XP_034696943.1	81.70
	Prunus serotina		80.69
	Manihot esculenta	XP_021599035.1	79.57
	Tripterygium wilfordii	KAF5736281.1	78.93
PsSEP1fd	Paeonia lactiflora	AQM56645.1	97.13
	Carica papaya	ACD39982.1	79.67
	<i>Vitis riparia</i>	XP_034705766.1	79.51
	Vitis vinifera		79.18
	Theobroma cacao	XP_007032865.1	78.28
	Durio zibethinus	XP_022727577.1	77.46

Table 5. Comparisons of deduced floral organ identity proteins in 'Fengdan' with other plants.

(b)

1

61 21

121 41

181 61

241 81

130 GAAGATEGAI E D G

70 80 90 100 110 AGGGETAAAGGTETTEAATGACTATEGAATGAGAATTCAAGTTETTEGETG

190 200 210 220 2 AGCAAGATATTIGOCITITICTOTGACDOCAAATGAAGAAGAGAGACITG S K I F G F S S T P

250 260 270 280 290 GACCETETETAACCEGECACTETETETECGEECGAGGETETAGAAATGG

(a)	
(4)	, 10 20 30 40 50 60
1 1	AYSGEAAGAGEMEGETYEMACYGAAGEXTYYGGAAADAADAADAYCAYCXGCAADTGAC M <mark>G R G R V Q L K R I E N K I N R Q V T</mark>
61 21	70 50 00 100 110 120 тестеммерозизоватоствалейместем тектом теттотой Р S K R R G G L L K K A H E I S V L C D
	130 140 150 160 170 180
121 41	GCTGAGGTTGCTTTGCTTGTCTCTCTCTACAGGGASGCTGTTTGAGTACTACAGAT <mark>A B V A L I V F S T K G K L F B Y S T D</mark>
181 61	190 200 210 220 230 240 TCTASCATEGASAGATACTOSACCETTADIAGCSATATTCTATTECDAGEGACAACTS <mark>S S M E K T L D R Y E R Y S</mark> T A E R Q L
241 51	250 260 270 280 280 300 GTREGGAACEREATCACAGEAACTRETOCTAGATACTICAACTAGEGCIAAS V G E P G S <mark>Q C N W S L E Y S K L R A X</mark>
301 101	310 320 330 340 360 360 Atagagetettacaangaaaccaangegetettatorgagaagatettgategetege <mark>I K L L Q R N Q R X F Q G E D L D S L S</mark>
361 121	370 380 290 400 410 420 ССТАМАЛТСТСТАЛАЛТАТОБАССИЛСКАГТГОНСТИАЛАЛЛАТАОЛТКА РКДІЧХИ ВООСІЛУ SLXNIR <mark></mark>
421	430 440 450 465 470 480 4684A4AAATCAACTAATHIATGAGTCAATTIC5G8027TCAG4AGAAG665A4G663ATC
481	<u>ККЛЦЦЛУК SISКЦЦККЕ КА</u> 490 - 500 - 510 - 520 - 530 - 540 Сморарскаласкаяттостарскаларскал торскала
481	<mark>o e o n n l l a ko i k</mark> e ke kit ha o
541 181	550 550 570 580 500 580 500 CAGGEDEGATUGGGEGGGAATTCATCATCATCATCATCATCA Q A Q W B Q Q I H H G P N A S A Y L L S
601 201	610 620 630 640 650 660 CCTCATGAACTTACTACTCTAAACAT65GT66CAATTAOCAA65A6AACGAAACGAAAT5 P B E L T T L N V G 6 N Y Q G B P T B M
661 221	670 680 800 700 710 720 АббАбдалозастскаюстскостобалскалтятятастотокостобобтостт R R X E L D L T L E P I Y T C H L G C P
721 241	GETERATER G & *
(d)	
1	10 20 30 40 50 60 АГСССАНДСТАНСКІСТАЛСКІСТІ ЛАЛІСТАЛАТАЛСЯССКІСТСКО М <mark>С R C K I E I K R I E S S N N R Q V T</mark>
61 21	70 80 90 100 110 120 ТАСТСАА БАЕБАСТОВБАТСТВА ЕФА ОКОЛОВИЕТТА МАЙЕТТСТВСТВАТ У S K R R T G I L K K A T E I T V L C D
121	130 140 150 160 170 180 67154167111010115115010010064545441650354130001165
41	A H V S L V I F A T S F K N H E Y C S P 190 200 210 220 230 240 TOLKCHOGOTIGATATOTIGATACITICAAGOATCTACAAGOATGG
61	STTVIDICOCK AND AND A CONTRACT AND
241 81	GATICITAASCATGAGAATCITCHECAATGANTGGANTGGANTGAAGAAAGAAAAGAAAAGAAAA
301 101	310 320 330 340 350 360 Atgenerations for the state of th
361 121	370 380 390 400 410 420 CTCATAGOCTAGAGGAAGCCTTCAGAATOGTCTTCGGAGAGCAGCAGCTC LIALEETLENGLASVRDX000000000000000000000000000000000000
421 141	430 440 450 460 47D 48D GAATITCCCMARAGETTAARAAAGCTTGAMATTGGAMATGAGAACAGCMCCC <mark>K F P K R L K K R V D K L E D K N X Q L</mark>
481 161	490 500 510 520 530 540 ΑCTOCAT DOGASTCANTA DOGASTCANDECASCICATOC T C I A S Q Y E X D M E D N V R E N C T
541 181	350 500 570 580 590 000 664747CATCAGA6666C0TTAG66666ACTACAATIOCCA6AATCCTTAG6C0CTTAG6CCTTAG6 G Y III Q R A Y R G D Y N S Q T P Y A F R

610 620 530 GTGCAGCCTATCCAGCCASATTTACAGCACAGCATATAG VQPIQPNLQDRI*

 $\frac{601}{201}$

101 301	310 320 340 350 380 GETGETEGENERGENE DESETTECEMBERCIENCESCETENAMETTERENE A B G K F P R H W G K F C Q
361 121	370 380 390 400 410 420 ТОБАЛОСТПИТАТОБАЛАКСКАЛОБТКАЛСПТИТАКСИТТКАЛАЛ SEPLYPGNGKSVEVSQPLKK
421 141	400 440 450 460 470 480 Accodigade Techara technic technic SRRGPRSRS <mark>0 TRG TRG TPTRR</mark>
481 161	490 500 510 520 530 540 Altigicologiacticical Altificada Alacticaticaticatica C G R N B S III V D C G K Q V V L G G R
541 181	550 560 570 580 590 600 сасадарсасаторастороссалорараарсарс сосратсала тор сосората <mark>р т л н л л л г л г л г л л г к р г с л</mark>
601 201	1610 E20 630 640 650 680 Gaggenanattickfretigagataogagataagagataagagataa <mark>B A D T N F S L E D Y E E</mark> D L K Q H T X
061 221	670 680 690 700 710 720 ТГАНХААЫБААБАНТІБТІХАТСТАЛТІССКОВАСААБТАЛТІБССТІССААБАХБА І.ТКЕЕГУНКL RRQSTGLPRG
721 241	730 740 750 760 770 780 Agendealathangedetean tegangedegaan tegangetegangege S S <mark>K Y R G Y T L II K C G R V C A R M G</mark>
781 261	750 806 810 826 830 840 CAATTTINGCCAAAATINITITINIGCCITTITINIGCCAATTGAACTULA D F L G K K Y Y L G L F D T K L K A 4
841 281	850 860 870 880 890 900 Aggegetangagaale dixeathastgegatgegetagegetetereadaactiteget <mark>8 a y d k a a t k c n 6 k d a v t n f b</mark>
901 301	910 920 930 940 950 980 Сосноститерала Голастска с боласт с 450 980 <mark>Р S T Y R N</mark> R L N S T D G S R K S G D II
961 321	970 980 990 1000 1010 1020 Алестисантискостилаютаетискосантисколителерали N L D L S L G N S T S E S S S B L G D
1021 341	НОЗО НОНО НОТО НОВО НОГО НОВО Антибносотитетскоснатвантабосалтости советскато своетскате антика NSPYYTMN6FISLQPTPAEAD
1081 361	1090 J100 JJ10 L120 J130 L140 TEGREGARGARGTRAGECEARCTRAGECEATATAGARGTRAG WR X X S G F R P K L N L H Q G P X T S E
1141 381	НБО НБО Н7О НВО Н190 1200 GCMARCGMANCTATGCASCTTTTGGGCCMACCACTATGAMCTOCTAATGAMCTAA ANETMQ1. I. GQTHYQTPNEMY
1201 401	1210 J220 L230 L240 J250 L280 Agata nogocasti taggas toggagaada de tagata nogocasti tagta sa toggas de tagata de tagata de tagata de tagata R Y G Q F R R L G E T Q N L II T Y P S Q
1261 421	1270 1280 1290 1300 1310 1320 ТТСАЛСТСКИСКАЛСКАТСКАТСКАТСКАССКАССКАССКАЛОБСКАВССКАЛБ РNSSNVQMNQPPSXSNGSRN
1321 441	1330 1340 1330 1360 1360 1380 A TOBERETERATIONERGENERGENERGENETETTATACTRONOMICARCHARCH M 6 V N 6 G R 6 G D P C L V T R P Q Q Q
1381 461	1190 1400 1410 1420 1430 1440 Тереласкарскартостостоастаттерала поста ТЕР Q P G P P Q L F A T A A A S S G F P
1441 481	I480 I480 I470 I480 I490 I580 Texedertaatikutoecketaatactigecaatikkaaactogecaadaaatoge SQTTSPSNTSQXQXVQQRNG
1501 501	1510 1520 1530 ТПССИСТИЛСИТСКАТЬКАВАССКИТИСКАТАА РПУSLM КРSР∗
(f)	10 20 30 40 50 60
1	ATGGGGAGGGGAGGGTGGAGGAGGAGGAGGAGGAGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGTGGAGG M <mark>6 R G R V E L K R I E Y K I N R Q V T</mark> 70 50 90 100 110 120
61 21	TTTGCAAAGAAAGGAATGCACTOCTCAAGAAAGCTTATGAGCTCTCTCTCTGTGA FAKRRNGLLKKAYBLSVLCO
121 41	130 140 150 160 170 180 Gengatergesterlateatetterteataagenetateagenttergegac <mark>& D V & L I I F S N R G K L V B F C S N</mark>
181 61	190 200 210 220 238 240 Техарсатоварскаасаюттоватальство алагосаюттоссяттерсатова <mark>S N M V K T L J K Y Q K C S Y G</mark> A V B V
241 81	250 250 270 280 290 300 Anctempi caacagaaan tiganan sir tircemaas "Actigaan tigaaa acta S R <mark>P N R B L E N S Y R K Y L K L K T K</mark>
301 101	310 329 350 340 359 360 TTIGAGGTTIMIAMAATTICKIGAGAAGATTIGGGGAGGTTIAGAT <mark>F B A L Q Q S Q R H L L G B D L G P L D</mark>
361 121	370 380 390 400 410 420 Texaggagetagagetagagetagetagetagetagetageta
421 141	430 440 450 460 470 480 Асалабастолагаталостося телестрополостиса акадамскостата <mark>р к т о у м l d q l a d l o x k b h v l</mark>
481 161	490 500 510 520 530 540 ATGGAATGTAACAATGCTTTAGCAAGAAAGCTGGATGGAAGTTAATGCTAAGAAAGCAGCTC W E S N N A L A R K L D E L N A K N H L
541 181	550 566 570 580 590 600 Geteraacategegegegegegegegegegegegegegegegegegeg
601 201	610 620 630 640 640 660 660 General States State
661	6 Q 6 L F Q R L D C N P T L Q I G Y N A 670 659 690 700 710 720 ATARETIXARCEARTGROECACCACCACCEACCACCACCACCACGETTTYDUCT
221	IGSDQNTATTPAQQTSGFIP 730 Gevreconteleteter
241	B₩ %L +

(c)		
	10 20 30 40 50	e
1	ATGGEACGTEGGAAGATCGAGATTAAGAAGATAGAGAATCCCCACAAACAGGCA	
1	M <mark>G R G K I E I K K I E N P T N R Q</mark>	1 1 1
	70 80 90 100 110	12
61	TACTCAAAGOGTOGCAATGGCATCTTCAAGAAGGCTCAAGAACTCACTGTTCT	
21	Y S K R R N G I F K K A Q E I T V L	. с р
	130 140 150 160 170	18
121	GCTAAGGTTTCTCTCATCATGATTTCTAATADGEGGRAARTCCATGAATACAT	
41	A KYSLINISNTGKIHEYI	- 5-1
	190 200 210 220 230	24
181	ACCACTACAACGAAAAAGATATATGATCAATATCAAAAGGTTATGAAGACOGA	
61	ΤΤΤΤΚΚΙΥΟΨΥΘΚΥΜΚΤΟ	
	250 260 270 280 290	34
241	AAATCTCACTACEAGAAAATECTAGATADCTTGAAAAGACACAAEGAGGTCAA	
81	K S H Y K K N L D T L K R H K E V N	נאו
	310 320 330 34D 350	36
301	CTGAGAAGABAGATCAAGEAAAGAATGGETGAAGATTTAAAECATCTGAGTTA	
101	L R R E I K Q R M B E D L N H L S Y	9 H
	370 380 390 400 410	42
361	TISCICAFI CITIFAGLAAAATATSGASGELTR/IFTOBCCATAATACHXGAACS	
121	I. R. S. I. E. Q. N. H. E. S. V. A. I. I. R. E.	: К 1
	430 440 450 460 470	48
421	CAUMAGETCAAAACCUMGACTGATACUTACAUXAGAAAGETGAATGGTGTAGA	
141	нкі ктотртутвку моў в	(Q)
	490 500 510 520 530	51
481	ATTGAAAATCICATGETAGGCITTGAGGEGAAATGTBGGGATCCACATTATGE	
161	<mark>I E N L N L</mark> G F E A K C G D P H Y A	
	550 560 570 580 590	60
541	GAGAATGAGGGAGACTATGAATCTGCAGCTGCATTTBCAAATGGGGCCTCTAA	
181	ENEGDYESAAAFANGASN	
	510 620 630 640 550	68
601	GCTTTCCSCCTGDATTCGAGDCADCATGGAGAAGGTTACATGATGTGCACCTC	
201	A F R L H S S H H B E G Y N N C T S	5 L I
661	TCATEA	
221	S *	
1		
e)		
	10 20 30 40 50	60
	ATGAAAACTTEGGATCTTEGCACAGGAAAGCCAACAACCAGTTTEGCATCCATGG	
	Ν ΚΤ Ψ D L A T G K P T T Q F A S M	B L
	70 80 90 100 110	120

1	Ν ΚΤ Ψ D L A T G K P T	TQFASMEL
	70 80 90	100 110 120
61	AGGAATGATCUTTUAABGGAGGAATUTUUAGAGAB	
21	TNDPSREESPQR	K N <mark>G R G K I E</mark>
	130 140 150	160 170 160
121	ATCAAGEOGATCEAGAACACAAATAATEGCEAAGT	
11	IKRIENTNNRQV	TFCKRRNG
	190 200 210	220 230 240
181	TTACTCAAAAAGGIZTATGAATIGTUTGTUTTIG	
61	LLKKAYELSVLC	
01		0 8 6 7 8 6 1 7
	250 260 270	250 230 300
241	TECTCAACCECTGCAEGCETTTTTGAGTATGCTAA	CARCAGEGETTAGAGGAAGAATTGAG
81	FSTRGRLFEYAN	NSVRATIE
	310 320 330	340 350 360
301	AGGUATAAAAAAGGUAAGIGUAGATTIDZUUDGGUAG	TG6GTETGFFTETGAGGDCAATGET
101	<mark>R Y K K A S A D S</mark> S G T	G S V S <mark>E A N A</mark>
	370 380 390 CAGTATTACCACCAGAAGCCTCAAAACTGCGTGC	400 410 420
361 121	0 Y Y O O E A S K L R A	
121		
	420 440 450	460 470 480
121	AACAGGCAAATGTTGGGTGAGADCATAAGCTCTAD	GARTCOCAARGARCTCAARAATCTG
141	вкци свкт с SS и	NPKKLKNL
	490 500 510	520 530 540
481	GAGTETAAAATAGAGAAAGGAATTAGAAATATCEG	
161	ESKIEKCIRNIR	SKKNELLF
	550 560 570	580 590 600
541	TECERGATEGAAGACATECAAAAGAEGGAAATEGA	
181	SEIED NOKREID	
	610 620 630	640 650 660
601	CHAGEAANAATTGETGAGAACGAAAGAGECCAGCA	AATGAACTEGATGCEAGGTGGAM:A
201	RARIA ENERAQQ	инсирост.
	670 680 690	700 710 720
661	AACTATGAGCTCTTACCATCTCAACCATTCGACTC	
221	NYELLPSQPFDS	кирраура
	730 740 750	760 770
721	TISCAGECEGA ICATAACTATICICECCAAGACCA	
241	L Q P N H N Y S R Q D Q	

Fig. 2. ORF sequences of *PsAP1fd* (a), *PsAP2fd* (b), *PsAP3fd* (c), *PsP1fd* (d), *PsAGfd* (e), *PsSEP1fd* (f) and their deduced amino acid sequences. Yellow: MADS-MEF2-like domain; Blue: K-box domain; Green: AP2 domain.

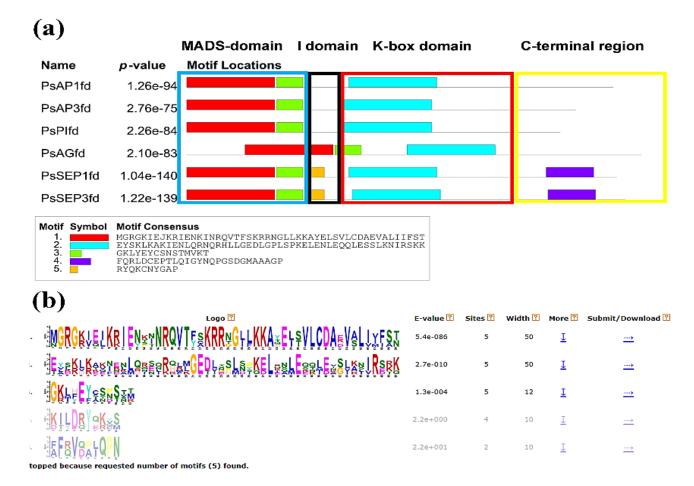


Fig. 3. Distribution of conserved motifs in MADS-box proteins in 'Fengdan'. (a) Motif distribution in each MADS-box protein in 'Fengdan'. Motif 1 and 3 were in MADS domain at N-terminus, followed by Motif 2 in K-box domain. A less-well-conserved I domain and a variable C-terminal region were also found. (b) Only 3 motifs were usable because the E-values of Motif 4 and Motif 5 were larger than 0.05.

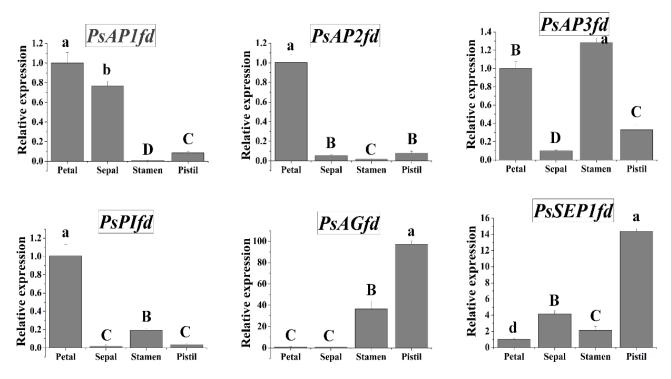


Fig. 4. Expression analysis of floral organ identity genes in the different floral organs of 'Fengdan'. The values are mean \pm SD and the bars with different letters indicate significant differences at p<0.05 (lower case letters) or p<0.01 (capital letters), respectively (based on the one-way ANOVA test).

Expression patterns of floral organ identity genes in 'Fengdan': The expression patterns of these genes were investigated through qRT-RCR. The expression levels of the genes considerably varied among different floral organs. PsAP1fd was predominantly observed in the sepals and petals, as well as the highest expression level of PsAP2fd was found in the petals. By contrast, PsAP3fd had strong expressions in the petals and stamens, but had low expressions in the sepals and pistils. The highest expression level of *PsPIfd* was observed in the petals, followed by the stamens, but the gene was hardly detected in the sepals and pistils. PsAGfd was predominantly expressed in the stamens and pistils, and its highest expression level was found in the pistils. The expressions of *PsAGfd* were hardly detected in the sepals and petals. PsSEP1fd was observed in all the whorls of the flower organs, and the highest expression level of PsSEP1fd was found in the pistils, followed by the sepals (Fig. 4).

Discussion

MADS-box genes encoded transcriptional regulators that are active in diverse plant development processes, such as floral transition, flowering time regulation, and floral organ identify (Becker & Theißen, 2003; Dornelas et al., 2011). Our results showed that in 'Fengdan', the floral organ identity genes examined were all MADS-box family, except *PsAP2fd*, which belongs to the AP2 family. This result is consistent with previous research (Pařenicová et al., 2003; Wang et al., 2019). The proteins encoded by these MADS-box genes had two conserved domains: which were MADS-box and K-box domain, respectively. A less-well-conserved I domain, as well as a variable C-terminal region were also found. Therefore, the proteins were MIKC-type proteins (type II MADSdomain proteins). The MADS-box domain is important to many functions, such as DNA binding, nuclear localization, accessory factor binding and dimerization (Theissen et al., 2000; Ng & Yanofsky, 2001; Immink et al., 2002). The K-box domain is important for dimerization, while the I domain is involved in regulatory determinant for the selective formation of DNA-binding dimers, as well as the C-terminal region is associated with functional specificity, formation of ternary or quaternary complexes, and transcriptional activation protein (Riechmann & Meyerowitz, 1997; Egea-Cortines et al., 1999; Honma & Goto, 2001; Lamb & Irish, 2003). The genomic DNA sequence and coding sequence of the Bclass genes PsTM6 from 23 different tree peony cultivars were obtained and analyzed, and the results showed that the electronic charge and polarity of PsTM6 paralogs varied because of amino acid substitution leading to functional differentiation, which significantly affected stamen petalody and caused variations in flower shapes in tree peony (Shu et al., 2012). Different selection forces generated the different regions of PsTM6, especially in the K-box domain (Shu et al., 2012).

The ABCE model is closely related to flower type formation, and this relationship has been confirmed in many species (Wagner *et al.*, 1999; Lenhard *et al.*, 2001; Lohmann *et al.*, 2001; Krizek & Fletcher, 2005). Previous research showed that the MADS-box proteins related to

flower organ identity often function as complexes: A+E regulates sepal development (Pelaz et al., 2001a), A+B+E regulates petal formation, B+C+E regulates stamen development (Honma & Goto, 2001; Pelaz et al., 2001b; Ferrario et al., 2003), C+E regulates pistil development (Fan et al., 1997; Pelaz et al., 2000). Furthermore, protein complexes comprising AG, SEP, STK or AG, SEP, SHP both control ovule development in Arabidopsis (Favaro et al., 2003). Flower type is a valuable ornamental characteristic, and tree peony has 10 flower types, including lotus, crown, chrysanthemum, rose, globular, and crown-proliferation (Wang & Yuan, 2003). Increase in petals, stamen petalody, pistil petalody, and flower overlapping generate different flower types in tree peony (Wang & Yuan, 2003). Diverse flower types are one of the most significant characteristics for cultivar classification (Wang & Yuan, 2003; Shu et al., 2012). Nevertheless, the molecular mechanism underlying floral organ identity in tree peony remains unclear. Some ABCE genes in tree peony and herbaceous peony have been studied (Shu et al., 2012; Ge et al., 2014; Gong et al., 2017; Wang et al., 2019), but further functional research is needed. Ge et al. isolated ABE genes in herbaceous peony and detected their expression patterns in the three cultivars, which had different flower types. The results suggested that the expression levels of A- and E-class genes increased, while these of B-class genes reduced with the depth of stamen petaloidy. This study focused on stamen petaloidy rather than on floral organ identity (Ge et al., 2014). According to our study in 'Fengdan', PsAP1fd (A-class gene) and PsSEP1fd (E-class gene) had strong expressions in the sepals. PsAP1fd, PsAP2fd (A-class genes), as well as PsAP3fd, PsPIfd (B-class genes) had high expressions in the petals. PsAP3fd, PsPIfd (B-class genes), as well as PsAGfd (C-class gene) had strong expressions in the stamens. PsSEP1fd (E-class gene) had normal expression. The highest expression levels of PsAGfd (C-class gene) and PsSEP1fd (E-class gene) were detected in the pistils. These results were consistent with those of the ABCE model and previous studies (Wang et al., 2019).

In Arabidopsis, there are 4 E-class genes named SEP1, SEP2, SEP3 and SEP4, respectively, which have specific expression levels in diverse flower organs (Pelaz et al., 2000: Honma & Goto, 2001: Pelaz et al., 2001a. 2001b; Ditta et al., 2004). In tree peony 'Ziluo Lan', SEP1 is primarily expressed in the sepals, stamens, and pistils; SEP3 is detected in all the whorls of the flower organs; SEP4 has high expression levels in the sepals, as well as stamens (Wang et al., 2019). PISEP3 had extremely high expression in the sepals of P. lactiflora 'Hangshao' (Ge et al., 2014). In our study, the highest expression level of *PsSEP1fd* was found in the pistils, followed by the sepals. These results indicated that ABC genes play the same role in flower organ formation in 'Fengdan' and the expression patterns of E-class genes varied among cultivars, exhibiting a significant role in flower type formation.

In 2013, the flowers of 'Fengdan' were identified as new food resource in China and were found to contain abundant flavonoids (Zhang *et al.*, 2017). Peony tea made by 'Fengdan' has been introduced to the market, and the quality and price of peony tea are closely related to the flower type of 'Fengdan'. This research will serve as a foundation for the mechanism of the flower type formation in tree peony, as well as promotion of quality control for peony tea products.

Conclusion

Genes in the four floral organs of *P. ostii* 'Fengdan' were isolated through RT-PCR and identified: *PsAP1fd* and *PsAP2fd* (A-class genes); *PsAP3fd* and *PsP1fd* (B-class genes); *PsAGfd* (C-class gene); and *PsSEP1fd* (E-class genes). They are all MADS-box family except *PsAP2fd*, which belongs to the AP2 family. The six genes played different roles during floral organ development. *PsAP1fd* was primarily observed in the sepals and petals. *PsAP2fd* was primarily found in the petals. *PsAP3fd* was significantly expressed in the petals, as well as stamens. The highest expression level of *PsP1fd* was observed in the space of *PsAGfd* was predominantly detected in the stamens and pistils, and its highest expression levels were found in the pistils. *PsSEP1fd* was mainly expressed in the pistils.

Acknowledgments

This study was funded by National Key R & D Projects of China (2018YFD1000400), National Natural Science Foundation of China (31372098), Natural Science Foundation of Henan Province (162300410075, 222300420430), Key Scientific Research Foundation for University of Henan Province (22A210003), and Training Program for University Young Key Teachers in Henan Province (2021GGJS050).

References

- Angenent, G. C., J. Franken, M. Busscher, D. Weiss and A.J. van Tunen. 1994 Co-suppression of the petunia homeotic gene *fbp2* affects the identity of the generative meristem. *Plant. J.*, 5(1): 33-44.
- Angenent, G.C., J. Franken, M. Busscher, A. van Dijken, J.L. van Went, H.J.M. Dons and A.J. van Tunen. 1995. A novel class of MADS box genes is involved in ovule development in petunia. *Plant. Cell*, 7: 1569-1582.
- Becker, A. and G. Theißen. 2003. The major clades of MADSbox genes and their role in the development and evolution of flowering plants. *Mol. Phylogen. Evol.*, 29: 464-489.
- Bowman, J.L., D.R. Smyth and E.M. Meyerowitz. 1991. Genetic interactions among floral homeotic genes of *Arabidopsis*. *Development*, 112: 1-20.
- Coen, E.S. and E.M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. *Nature*, 353: 31-37.
- Colombo, L., J. Franken, E. Koetje, J. van Went, H.J.M. Dons, G.C. Angenent and A. J. van Tunen. 1995. The petunia MADS box gene *FBP11* determines ovule identity. *Plant. Cell*, 7: 1859-1868.
- Ditta, G., A. Pinyopich, P. Robles, S. Pelaz and M.F. Yanofsky. 2004. The *SEP4* gene of *Arabidopsis thaliana* functions in floral organ and meristem identity. *Curr. Biol.*, 14: 1935-1940.
- Dornelas, M.C., C.M. Patreze, G.C. Angenent and R.G. Immink. 2011. MADS: the missing link between identity and growth? *Trends. Plant. Sci.*, 16(2): 89-97.

- Du, Y.M., F.Y. Cheng and Y. Zhong. 2020. Induction of direct somatic embryogenesis and shoot organogenesis and histological study in tree peony (*Paeonia sect. Moutan*). *Plant. Cell. Tiss. Org.*, 141: 557-570.
- Eckardt, N.A. 2003. MADS monsters: controlling floral organ identity. *Plant Cell*, 15: 803-805.
- Egea-Cortines, M., H. Saedler and H. Sommer. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in *Antirrhinum majus*. *EMBO. J.*, 18(19): 5370-5379.
- Fan, H.Y., Y. Hu, M. Tudor and H. Ma. 1997. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. *Plant. J.*, 12(5): 999-1010.
- Favaro, R., A. Pinyopich, R. Battaglia, M. Kooiker, L. Borghi, G. Ditta, M.F. Yanofsky, M.M. Kater and L. Colombo. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. *Plant. Cell*, 15: 2603-2611.
- Ferrario, S., R.G. Immink, A. Shchennikova, J. Busscher-Lange and G.C. Angenent. 2003. The MADS box gene *FBP2* is required for SEPALLATA function in petunia. *Plant. Cell*, 15: 914-925.
- Ge, J.T., D.Q. Zhao, C.X. Han, J. Wang, Z.J. Hao and J. Tao. 2014. Cloning and expression of floral organ developmentrelated genes in herbaceous peony (*Paeonia lactiflora* Pall.). *Mol. Biol. Rep.*, 41: 6493-6503.
- Gong, P.C., X. Ao, G.X. Liu, F.Y. Cheng and C.Y. He. 2017. Duplication and whorl-specific down-regulation of the obligate AP3-PI heterodimer genes explain the origin of *paeonia lactiflora* plants with spontaneous corolla mutation. *Plant Cell Physiol.*, 58(3): 411-425.
- Guo, Q., L.L. Guo, L. Zhang, L.X. Zhang, H.L. Ma, D.L. Guo and X.G. Hou. 2017. Construction of a genetic linkage map in tree peony (*Paeonia Sect. Moutan*) using simple sequence repeat (SSR) markers. *Sci. Hortic-Amsterdam.*, 219: 294-301.
- Honma, T. and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. *Nature*, 409: 525-529.
- Immink, R.G., T.W. Gadella, Jr, S. Ferrario, M. Busscher and G.C. Angenent. 2002. Analysis of MADS box proteinprotein interactions in living plant cells. *P. Natl. Acad. Sci.* USA., 99(4): 2416-2421.
- Jack, T. 2004. Molecular and genetic mechanisms of floral control. *Plant Cell*, 16: S1-S17.
- Krizek, B.A. and E.M. Meyerowitz. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122: 11-22.
- Krizek, B.A. and J.C. Fletcher. 2005. Molecular mechanisms of flower development: an armchair guide. *Nat. Rev. Genet.*, 6: 688-698.
- Lamb, R.S. and V.F. Irish. 2003. Functional divergence within the *APETALA3/PISTILLATA* floral homeotic gene lineages. *P. Natl. Acad. Sci. USA.*, 100(11): 6558-6563.
- Lenhard, M., A. Bohnert, G. Jürgens and T. Laux. 2001. Termination of stem cell maintenance in *Arabidopsis* floral meristems by interactions between *WUSCHEL* and *AGAMOUS. Cell*, 105: 805-814.
- Li, S.S., L.S. Wang, Q.Y. Shu, J. Wu, L.G. Chen, S. Shao and D.D. Yin. 2015. Fatty acid composition of developing tree peony (*Paeonia* section *Moutan* DC.) seeds and transcriptome analysis during seed development. *BMC*. *Genom.*, 16: 208.
- Liu, P., L.N. Zhang, X.S. Wang, J.Y. Gao, J.P. Yi and R.X. Deng. 2019. Characterization of *Paeonia ostii* seed and oil sourced from different cultivation areas in China. *Ind. Crop. Prod.*, 133: 63-71.

- Lohmann, J.U., R.L. Hong, M. Hobe, M.A. Busch, F. Parcy, R. Simon and D. Weigel. 2001. A molecular link between stem cell regulation and floral patterning in *Arabidopsis*. *Cell*, 105: 793-803.
- Mizukami, Y. and H. Ma. 1992. Ectopic expression of the floral homeotic gene *AGAMOUS* in transgenic Arabidopsis plants alters floral organ identity. *Cell*, 71: 119-131.
- Ng, M. and M.F. Yanofsky. 2001. Function and evolution of the plant MADS-box gene family. *Nat. Rev. Genet.*, 2: 186-195.
- Pařenicová, L., S.D. Folter, M. Kieffer, D.S. Horner, C. Favalli, J. Busscher, H.E. Cook, R.M. Ingram, M.M. Kater, B. Davies, G.C. Angenent and L. Colombo. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. *Plant Cell*, 15: 1538-1551.
- Pelaz, S., C. Gustafson-Brown, S.E. Kohalmi, W.L. Crosby and M.F. Yanofsky. 2001a. APETALA1 and SEPALLATA3 interact to promote flower development. *Plant J.*, 26(4): 385-394.
- Pelaz, S., G.S. Ditta, E. Baumann, E. Wisman and M.F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405: 200-203.
- Pelaz, S., R. Tapia-López, E.R. Alvarez-Buylla and M.F. Yanofsky. 2001b. Conversion of leaves into petals in *Arabidopsis. Curr. Biol.*, 11(3): 182-184.
- Pnueli, L., D. Hareven, L. Broday, C. Hurwitz and E. Lifschitz. 1994. The *TM5* MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. *Plant Cell*, 6: 175-186.
- Ren, X.X., Y. Liu and B.R. Jeong. 2020. Callus induction and browning suppression in tree peony *Paeonia ostii* 'Fengdan'. *Hort. Environ. Biotech.*, 61: 591-600.
- Riechmann, J.L. and E.M. Meyerowitz. 1997. MADS domain proteins in plant development. *Biol. Chem.*, 378(10): 1079-1101.

- Riechmann, J.L. and E.M. Meyerowitz. 1998. The AP2/EBEBP family of plant transcription factors. *Biol. Chem.*, 379: 633-646.
- Schmittgen, T.D. and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C_T method. *Nat. Prot.*, 3(6): 1101-1108.
- Shu, Q.Y., L.S. Wang, J. Wu, H. Du, Z.A. Liu, H.X. Ren and J.J. Zhang. 2012. Analysis of the formation of flower shapes in wild species and cultivars of tree peony using the MADSbox subfamily gene. *Gene*, 493: 113-123.
- Theissen, G., A. Becker, A.D. Rosa, A. Kanno, J.T. Kim, T. Münster, K.U. Winter and H. Saedler. 2000. A short history of MADS-box genes in plants. *Plant Mol. Biol.*, 42: 115-149.
- Wagner, D., R.W. Sablowski and E.M. Meyerowitz. 1999. Transcriptional activation of APETALA1 by LEAFY. *Science*, 285: 582-584.
- Wang, L.Y. and T. Yuan. 2003. Classification of varieties and flower types. In: (Eds.): Wang, L.Y. and T. Yuan. *Peony*. China Architecture Publishing, Beijing, pp. 45-47.
- Wang, S.L., J. Gao, J.Q. Xue, Y.Q. Xue, D.D. Li, Y.R. Guan and X.X. Zhang. 2019. De novo sequencing of tree peony (*Paeonia suffruticosa*) transcriptome to identify critical genes involved in flowering and floral organ development. *BMC. Genom.*, 20: 572.
- Weigel, D. and E.M. Meyerowitz. 1994. The ABCs of floral homeotic genes. *Cell*, 78: 203-209.
- Zhang, H.F., X.F. Li, K. Wu, M.K. Wang, P. Liu, X.S. Wang and R.X. Deng. 2017. Antioxidant activities and chemical constituents of flavonoids from the flower of *Paeonia ostii*. *Molecules*, 22: 5.
- Zhang, L., D.L. Guo, L.L. Guo, Q. Guo, H.F. Wang and X.G. Hou. 2019. Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of *P. ostii* 'Fengdan Bai' and *P. suffruticosa* 'Xin Riyuejin'. Sci. Hort.-Amsterdam., 246: 190-200.

(Received for publication 20 January 2021)