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Abstract 

 

Taxonomy language is challenging to comprehend and automated knowledge is required to identify the plant species. 

The study focused on developing an improved deep neural network: Residual Neural Network-ResNet & and Densely 

Connected Convolution Network (DenseNet) for the plant identification with plant leaf vein architecture. There was a total 

of 44 species. Each species had 64 images, each of which was further divided into 52 images for the training data and 12 

images for the test data. The Canny edge detection method was deployed to detect the vein architecture of the leaves. For 

ResNet and DenseNet, the 224 x 224 binary image was used. The size of the feature maps in 4 dense blocks was: 56 x 56, 28 

x 28, 14 x 14, and 7 x 7, respectively. MalayaKew (MK) data set was used for the experiment. There was a total of 44 

classes and images were divided into the training set and the test set. The training set contained 2288 images, with each class 

having 52 images. Test class contained 528 images, with each class having 12 images. After preprocessing these images, 

they were fed to various networks of ResNet and DenseNet. Two algorithms, Stochastic gradient descent (SGD) and Adam 

optimization, were used in each network. Through SGD, the model ResNet, had 26, 34, 50, 101, and 152 layers. The best 

accuracy achieved was 89.24% using 50 layers. DenseNet had 121, 169, and 201 layers. The best accuracy achieved was 

94.20% using 169 layers. In Adam optimizer, the ResNet model had 26, 34, 50, 101, and 152 layers. The best accuracy 

achieved was 89.50% using 101 layers. DenseNet had 121, 169, and 201 layers. The best accuracy achieved was 95.72% 

using 169 layers.  Overall, the best performance was achieved using Adam optimizer using the DenseNet model with 169 

layers and came out to be 95.72%. This also surpassed the accuracy that was achieved using D-leaf architecture. The 

proposed deep learning (DL) methods were very accurate in identifying plants. 
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Introduction 

 

Conservation of plant species requires plant 

identifications. There is a strong need to develop a rapid and 

robust identification system to identify the plant species that 

help monitor the conservation and sustainability of the 

ecology. The rate at which plant species are becoming extinct 

has a severe threat to the biodiversity of this planet. 

Conservation of plant species is getting inevitable and 

requires plant identification skills that are acquired over a 

while. Furthermore, the taxonomy language is challenging to 

comprehend. The study focused on developing an improved 

deep learning model for plant identification using plant leaf 

vein architecture. The organic life on Earth is diverse and 

huge (Darwin & Bynum, 2009). In biological terms, a taxon 

is a formal class of a living organism with its name and 

description. Assigning foreign species to an already defined 

taxon or class is called identification (Remagnino et al., 

2016). This study deals with plant identification. An 

unknown plant was assigned to a known taxon based on its 

affinity with other species by resembling different plant 

characters to assign it to a specific species name finally. The 

plant characteristics that were used to identify could be 

qualitative and quantitative. The quantitative characteristics 

or features can be measured or counted like the plant's 

height, the flower's width, the number of leaflets in the 

compound leaves, etc. Whereas, qualitative characteristics or 

features include the shape of leaves, the color of the flower, 

the position of the ovary, etc. There may be many plants that 

may belong to the same species but can have a different 

name. The intra-species plants can have many common 

characteristics. Each plant looks different. Therefore, there is 

a need to generalize the characteristics to assign any plant 

organism to the species (Govaerts, 2001; Mora et al., 2011). 

Plant identification is a very complicated and complex task 

for a human being, even having good knowledge about the 

domains. Plant species identification is essential to monitor 

the ecology and conserve and maintain biodiversity 

(Farnsworth et al., 2013). There are many avenues such as 

analyzing biodiversity in a specific area, checking the 

population of the species on the verge of extinction, 

evaluating the impact of changing climate conditions, 

environmental controlled services, and controlling the weed 

actions. These actions severely depend upon the correct and 

reliable plant identification (Elphick et al., 2008). As 

biodiversity is impacting continuously (Ceballos et al., 

2015), the need for plant species identification has been 

increased (Hopkins & Freckleton, 2002). Considering all the 

limitations, taxonomists must be too demanding to move 

efficient and convenient methods for plant identification.  

Gaston & O'Neil (2004) have suggested that digital 

image processing and artificial intelligence (AI) will make 

plant identification autonomies and tangible with the help of 

digital images. The research in the avenue of image 

processing and machine learning (ML) has brought a lot of 

attention in the area of plant identification. Much research 

has been conducted where different image processing 

methodologies have been used to extract the features. These 

features are used to train ML models that can classify the 

plant species (Kumar et al., 2012; Joly et al., 2016; 
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Wäldchen & Mäder, 2018; Cope et al., 2012). In most recent 

times, the dawn of deep learning (DL) has changed the 

course of model learning in both supervised and 

unsupervised mechanisms. Artificial Neural Networks 

(ANN) such as Convolution Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) gave a noticeable 

breakthrough in the field of machine learning. These deep 

learning (DL) models were found remarkably well in object 

detection and classification. Recent studies that have used 

these DL models achieved remarkable improvements in 

identifying the plants (Pawara et al., 2017a; Barré et al., 

2017; Pawara et al., 2017a; Liu & Kan, 2016; Xie et al., 

2017). Traditionally, a key is used to identify the species of 

unknown plants. A key is a set of rules formulated to have 

the next statements, and by following the correct statements, 

one can find the correct name of the unknown plant. This key 

plays an important part in the flora for correctly identifying 

the families, genus, and species. The keys that are used in the 

modern age are constructed in the form of paired choices 

called dichotomous keys (Cope et al., 2012). Each choice is 

divided into two parts and each part is a statement. Also, 

there are cases in which there are multiple choices, and some 

could be true or false. Initial efforts in plant identification 

were focused on automating these keys. Artemov (2010) and 

Lobanov (2007) proposed a solution of using multiple entry 

points rather than the single point entry points with the help 

of a computer program. The goal was to identify the plant 

species even in the absence of some of its organs. The results 

of the program were found accurate. They provided a good 

description of the features. However, some of the 

disadvantages were also reported in the form of missing 

pictures of the qualitative features. Wei Tan et al., (2018) 

investigated the problem of plant species identification using 

vein morphometry. A deep learning CNN model called D-

leaf was proposed. It was an alternation of AlexNet. A 

similar problem is addressed in (Huixian, 2020), where plant 

identification is performed using leaves' shape and texture 

features. K nearest neighbors, support vector machines, and 

neural networks are used to classify plants. Some other deep 

learning applications for various plant-related tasks include 

plant disease detection and identification of plant leaf stress. 

A comprehensive review of both these tasks is presented in 

(Agaraju & Chawla, 2020; Noon et al., 2020). 
 

Materials and Methods 

 

This section presents an overview of the proposed 

methodology for plant species identification. The deep 

residual networks (DRN), dense convolutional network 

(DCN) architectures, and plant leaf vein architecture 

(LVA) were used for plant identification. Previously, 

ResNets have been used for plant identification by using 

images of the whole plant. The current research 

investigated plant identification via plant leaves using 

deep neural networks. Plant leaves can be effectively 

used for plant identification as they are readily available 

and remain consistent throughout the year. Furthermore, 

the vein architecture of the leaves was used as a critical 

feature for training and classification. The flow diagram 

of our proposed model and details of different deep 

networks used for classification are shown in (Figs 1 and 

2), respectively. 

Datasets: The data was obtained from the University of 
Malaya, Kuala Lumpur, Malaysia. This data set is 
commonly known as MalayaKew (MK). The locations 
were from the Varsity Lake (VL), main library (ML), and 
Dewan Tunku Canselor (DTC) hall. The images were the 
leaves of tropical trees that were readily available in the 
region. There were a total of 44 species. Each species had 
64 images, each of which was further divided into 52 
images for the training data and 12 images for the test 
data. The images were collected with the Nikon D750 
model of the DSLR camera. The background of the 
images was black. The original images that were collected 
had the 6016 x 4016 resolution. 

 

 
 

Fig. 1. Flow Diagram of Proposed Method. 

 

 
 

Fig. 2. (right): Deep Networks used for Classification. 

Key: conv (convolution layer), fc (fully connected layer), SGD 

(Stochastic gradient decent) 
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Fig. 3. Image Preprocessing Steps. 
 

Preprocessing: Raw images were not suitable for training 

the network. Therefore, the resolution of the images was 

converted to 224 x 224. The Canny edge detection 

method is used to detect the vein architecture of the 

leaves. First, the images were converted to grayscale 

images from RGB images; then, canny edge detection 

was applied. Finally, the images were skeletonized to 

make sure of a clean vein architecture. An example of all 

these preprocessing steps is illustrated in (Fig. 3). 
 

Network architectures: The following network 

architectures were used for plant identification. 

 
Deep residual network (DRN)- Resnet: The ConvNet 
Convolutional neural networks (CNN) have drastically 
improved accuracy compared to other machine learning 
(ML) algorithms. To enhance its accuracy, more layers 
were stacked with the notion that a deeper network can 
extract more enriched features. After a certain number of 
layers, the issue of vanishing gradient appears that explodes 
the convergence from the start of the training. As the 
network goes deep, the accuracy starts to saturate and then 
starts dropping. Overfitting is not the reason for this 
degradation, but adding more layers can cause higher 
training errors. To counter this problem, He et al., (2016) 
proposed a solution by adding layers that have residual 
mapping. These networks are known as Deep Residual 
Neural Networks (DRNN). These networks use VGG nets, 
a baseline model, which add a residual block for each 
convolutional layer. The convolutional layer mostly uses 3 
x 3 filter. Later, it down-samples the convolutional layers 
by keeping its stride to 2. At the end of the network, the 
global average pooling layer is applied with a Softmax 
layer that is equal to the number of classes. To make its 
residual counterpart, we added a skip connection between 
two consecutive convolutional blocks. 

In this study, a 224 x 224 binary image was used. 
First, the input image was convolved with 7 x 7 filter, and 
an average pooling of 2 x 2 was applied. Then, for 
different network depths, there were different residual 
paths and architectures. These are mentioned in (Table 1). 
After each convolutional layer, batch normalization was 
applied. Another architectural change in the network 
named Bottleneck architecture is only used for ResNet26 
and has already been used for plant identification on a 
different dataset. This model used less training time. The 
basic building block was modified to bottleneck the 
building block. For each residual block, rather than 

stacking up two layers, we used three layers with 1 x1, 
3x3, and 1 x 1 convolution. The initial 1 x 1 convolution 
was responsible for reducing dimensions. 
 

Densely connected convolutional networks (DenseNet): 

Huang et al., (2017) introduced DenseNet, a densely 

connected convolutional network, which is an improvement 

on ResNet. Unlike ResNet's building block, where the input 

of one layer is bypassed and concatenated with the output of 

the next layer, DenseNet has dense blocks. In each layer of 

the dense block, the feature maps of all preceding layers are 

used as input, and their feature maps are fed as input to all 

subsequent layers of the block. After concatenation, each 

block has a different output; therefore, a Pooling layer is 

used after each block to keep the size consistent for 

concatenation. Before this pooling layer, there were layers 

of batch normalization, i.e., rectified linear unit (ReLU) and 

convolution layer. This network ensures the maximum flow 

of information between the layers within a block as all 

layers are connected. As the number of connections in 

DenseNet is way more than a traditional convolution neural 

network, these networks are termed Densely Connected 

Convolutional Networks. 

The data used in our experiments had a 224 x 224 

image size; therefore, we used 4 dense blocks. This choice 

was made because the same number of dense blocks on the 

ImageNet data set with similar image dimensions have 

successfully been used. The initial layer had around 2000 

feature maps were obtained by applying 7 x 7 convolutions 

with stride 2. Feature map'' size in all the other layers can 

be controlled by setting k. Further, for convolution layers 

with size 3 x 3, zero paddings were applied to keep fixed 

feature map size. In the transition layer, we used 1 x1 

convolution followed by 2 x 2 average pooling between 

two dense blocks. The global average was applied at the 

very end of the dense block. The sizes of the feature maps 

in 4 dense blocks were: 56 x 56, 28 x 28, 14 x 14, and 7 x 

7, respectively. The detail of the networks used is 

mentioned in (Table 2). The first column in Table 1 and 

Table 2 specifies the types of layers. Each layer is one of 

these: conv (convolution layer), pooling layer, transition 

layer, or dense block. The second column mentions the 

output size of each layer, and the remaining columns give 

details of the block of layers for each network architecture, 

including the size of the convolution filter, number of input 

channels, and number of such layers. Finally, fc represents 

the fully connected layer. 
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Table 1. Network Architecture for ResNet. 

Layer 

name 

Output 

size 
26-Layer 34-Layer 50-Layer 101-Layer 125-Layer 

Conv1 112x112 7x7, 64, stride 2 

Conv2_x 56x56 

3x3 max pool, stride 2 

[
1𝑥1 64
3𝑥3 64

1𝑥1 256
] × 2 [

3𝑥3 64
3𝑥3 64

] × 3 [
1𝑥1 64
3𝑥3 64

1𝑥1 256
] × 3 [

1𝑥1 64
3𝑥3 64

1𝑥1 256
] × 3 [

1𝑥1 64
3𝑥3 64

1𝑥1 256
] × 3 

Conv3_x 28x28 [
1𝑥1 128
3𝑥3 128
1𝑥1 512

] × 2 [
3𝑥3 128
3𝑥3 128

] × 4 [
1𝑥1 128
3𝑥3 128
1𝑥1 512

] × 4 [
1𝑥1 128
3𝑥3 128
1𝑥1 512

] × 4 [
1𝑥1 128
3𝑥3 128
1𝑥1 512

] × 8 

Conv4_x 14x14 [
1𝑥1 256
3𝑥3 256

1𝑥1 1024
] × 2 [

3𝑥3 256
3𝑥3 256

] × 6 [
1𝑥1 256
3𝑥3 256

1𝑥1 1024
] × 6 [

1𝑥1 256
3𝑥3 256

1𝑥1 1024
] × 23 [

1𝑥1 256
3𝑥3 256

1𝑥1 1024
] × 36 

Conv5_x 7x7 [
1𝑥1 512
3𝑥3 512

1𝑥1 2048
] × 2 [

3𝑥3 512
3𝑥3 512

] × 3 [
1𝑥1 512
3𝑥3 512

1𝑥1 2048
] × 3 [

1𝑥1 512
3𝑥3 512

1𝑥1 2048
] × 3 [

1𝑥1 512
3𝑥3 512

1𝑥1 2048
] × 3 

 1x1 Average pool, 44-fc, softmax 

Key: conv (convolution layer), fc (fully connected layer) 

 

Table 2. Network architecture for Dense Net. 

Layers Output size Dense Net-121 Dense Net-169 Dense Net-201 

Convolution 112x112 7x7, 64, stride 2 

Pooling 56x56 3x3 max pool, stride 2 

Dense Block (1) 56x56 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 6 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 6 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 6 

Transition Layer (1) 56x56 1x1 conv 

28x28 2x2 average pool, stride 2 

Dense Block (2) 28x28 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 12 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 12 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 12 

Transition Layer (2) 28x28 1x1 conv 

14x14 2x2 average pool, stride 2 

Dense Block (3) 14x14 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 24 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 32 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 48 

Transition Layer (3) 14x14 1x1 conv 

7x7 2x2 average pool, stride 2 

Dense Block (4) 7x7 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 16 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 32 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 32 

Classification Layer 1x1 7x7 global average pool 

 44-fc, softmax 

Key: conv (convolution layer), fc (fully connected layer) 

 

Results 
 

All experiments were conducted on Google's free 
Cloud platform, Colaboratory. It is a free Jupyter 
notebook environment. It doesn't need any setup. All the 
library was preinstalled including Keras, TensorFlow, and 
Pytorch. It provides a free tesla K80 GPU for developing 
deep learning applications. It gives 12 GB of shared 
RAM. The implementation has been done in Keras with 
the TensorFlow backend. 
 

Image preprocessing and skeletonization: The images 

were preprocessed using MATLAB. They were resized to 

224 x 224 resolution. Then these RGB images were 

converted into grayscale. To obtain the vein architecture 

of the plant leaves, the Canny edge detection method was 

used. Then the leave images were skeletonized to get a 

more refined version of them. We used MalayaKew (MK) 

dataset for the experiment. There was a total of 44 classes 

and images were divided into a training set and test set. 

Networks- ResNet and DenseNet: The training set 

contained 2288 images, with each class having 52 

images. Test class contained 528 images, with each class 

having 12 images. After preprocessing these images, 

they were fed to various networks of ResNet and 

DenseNet. For ResNet, 26, 34, 50, 101, and 152 layers 

were used. DenseNet model used 121, 169, and 201 

layers. The growth rate used in Dense Net was k=32. 

The batch size used in these experiments varied from 

model to model due to computational constraints and 

was taken as 16, 32, 64, and 128. Furthermore, two 

optimizers: Stochastic Gradient Descent with 

Momentum algorithm, decay, and Adam optimizer, were 

used in the following set of parameters: Decay=0.0001, 

Momentum = 0.9, and learning rate = 0.01. The 

classification accuracies of the networks using SGD 

(stochastic gradient descent) and adam optimizer are 

mentioned in (Tables 3 and 4), respectively. The bar 

charts of the same are shown in (Figs. 4 and 5). 
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Table 3. Accuracy using Stochastic Gradient Descent. 

Architecture 

layers 

Number of parameters 

(in millions) 
Accuracy Error 

Res Net 26 13.9 76.05% 23.95% 

Res Net 34 21.3 81.12% 18.88% 

Res Net 50 23.5 89.24% 10.76% 

Res Net 101 42.5 83.81% 16.19% 

Res Net 152 58.5 85.38% 14.62% 

Dense Net 121 6.9 91.01% 8.99% 

Dense Net 169 12.5 94.20% 5.8% 

Dense Net 201 18.1 87.23% 12.77% 

Table 4. Accuracy using Adam Optimizer. 

Architecture 

layers 

Number of parameters 

(in millions) 
Accuracy Error 

Res Net 26 13.9  80.31% 19.69% 

Res Net 34 21.3  78.31% 21.69% 

Res Net 50 23.5  88.23% 11.77% 

Res Net 101 42.5  89.50% 10.5% 

Res Net 152 58.5  86.29% 13.71% 

Dense Net 121 6.9  92.34% 7.66% 

Dense Net 169 12.5  95.72% 4.28% 

Dense Net 201 18.1  89.46% 10.54% 

 

 
 

Fig. 4. Accuracy using Stochastic Gradient Descent. 

 
 

Fig. 5. Accuracy using Adam Optimizer. 

 

Stochastic gradient descent (SGD): The model ResNet 
had 26, 34, 50, 101, and 152 layers through Stochastic 
Gradient Descent. The best accuracy achieved was 
89.24% using 50 layers. The second-best accuracy 
achieved was 85.38% using 152 layers. Similarly, the 
model DenseNet had 121, 169, and 201 layers. The best 
accuracy achieved was 94.20% using 169 layers and the 
second-best accuracy was 91.01% using 121 layers. The 
overall best accuracy achieved using Stochastic Gradient 
Descent for plant species identification was 94.20%. 

 
Adam optimizer (AO): In Adam optimizer, the ResNet 
model had 26, 34, 50, 101, and 152 layers. The best 
accuracy achieved was 89.50% using 101 layers. The 
second-best accuracy was achieved 88.23% by using 50 
layers. Similarly, the model DenseNet had 121, 169, and 
201 layers. The best accuracy achieved was 95.72% using 
169 layers and the second-best accuracy was 92.34% by 
using 121 layers. The overall best accuracy achieved using 
adam optimizer for plant species identification was 
95.72%. Overall, the best performance was achieved using 
the Adam Optimizer using the DenseNet model with 169 
layers and came out to be 95.72%. This also surpassed the 
accuracy that was achieved using D-leaf architecture (Wei 
Tan et al., 2018). The per-class accuracy of the best models 
from both ResNet and DenseNet by using adam optimizer 
is given in (Figs. 6 and 7), respectively. 

 

Discussion 

 

Deep learning has powerful capabilities of extracting 

features of the image data and then classifying it. As they 

have a deeper network connection, they tend to extract 

features more efficiently. We used Deep Learning methods 

for the identification of plants. This study developed an 

improved deep learning (DL) model for plant identification 

with plant leaf vein architecture. We compared different 

Deep Residual Neural Networks (ResNet) and Densely 

Connected Convolution Networks (DenseNet), through 

different models using a stochastic gradient descent 

algorithm and adam optimization. We achieved up to 96% 

accuracy with adam optimization using a DenseNet model 

with 169 layers. This also surpassed the accuracy that was 

achieved using D-leaf architecture (Wei Tan et al., 2018). 

The D-leaf model identifies plant species using vein 

morphometry. The proposed model consists of four steps. 

The first step sample the data set. Several datasets have 

been used, including MalayaKew (MK), Flavia, and the 

Swedish leaf dataset. In the second step, the images were 

resized to 224 x 224 resolution, converted to grayscale, 

passed through the Sobel edge detection method, and 

skeletonized to obtain the clean vein architecture. Then 

these images were then fed to the proposed D-leaf model 

for classification. The model contained a total of 6 

convolution layers that include convolution, ReLU 

(rectified linear unit), and a pooling stage for feature 

extraction. These features were then fed to three fully 

connected layers and a Softmax classification layer. 

Artificial Neural Networks (ANN) have been employed for 

the classification after the feature extraction. Such a model 

was found effective but relatively more straightforward 

with a small data set (as the number of species was less). 

The current study provided an improved deep learning 

model for plant identification by using plant leaf vein 

architecture. We also represented a comparison of different 
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Deep Residual Neural Networks (DRNN) and Densely 

Connected Convolution Networks (DCN) with the 

accuracies. We identified the plants through different 

models by using a stochastic gradient descent algorithm 

and adam optimization. 

Plant leaves are the most common organ of the plant 

body and are readily available in all seasons. In different 

research works, leaf texture-like vein architecture has been 

used as a feature to differentiate between species. Deep 

learning models like convolutional neural networks have 

been used to identify plant species; however, the accuracy of 

these models can be improved considerably. Wu et al., 

(2007) worked on the problem of automated plan 

identification using the leaf. Their main goal was to improve 

feature extraction and classification. They proposed a 

Probabilistic Neural Network for classification and for 

feature extraction they used Principal Component Analysis 

(PCA). Cope et al., (2010) analyzed the problem of plant 

species identification using plant leaf veins. The proposed 

algorithm is based on a Genetic Algorithm and Ant colony 

optimization for vein extraction. The classifier can extract 

the primary and secondary veins with only very little noise. 

Jamil et al., (2015) investigated the problem of automatic 

plant identification by emphasizing the leaf's shape. The 

main goal was to determine the effectiveness of shape as a 

critical feature. They used the AdaBoost classifier to train the 

features extracted from the images of seven species. 

Yanikoglu et al., (2014) investigated the challenges involved 

due to the variation of light, pose, and orientation of leaf 

images. Aakif et al., (2015) identified the problem of plant 

species classification based on their leaves. The proposed 

solution used morphological features like aspect ratio, 

eccentricity roundness, convex hull, their novel shape 

defining feature, and Fourier descriptor. For classification, 

they used artificial neural networks (ANN) and used 

different combinations of features to study the impact on the 

accuracy of the model. Adinugroho et al., (2018) proposed a 

neural network for the identification of plant species by 

including the characteristics of leaves of the plant for 15 

species. After preprocessing, 31 features were extracted 

using the characteristics of leaves, i.e., shape, color, and 

texture. These extracted features are fed as an input to the 

neural network. Larese et al., (2012) proposed an automatic 

algorithm for the classification of legume leaves by taking 

leaf venation patterns and excluding the color, texture, and 

shape of the leaves. Sun et al., (2017) proposed a Deep 

Residual Network to improve the accuracy of image 

classification. The model consists of a convolution layer, 

max pool layer, and a bottleneck residual block layer. They 

used full-plant images, but sometimes endangered species do 

not have the whole plant available, so leaf recognition comes 

in handy in such situations. 

 

 
 

Fig. 6. Per class accuracy of Res Net 101 with an average accuracy of 89.50% using Stochastic Gradient Descent. 
 

 
 

Fig. 7. Per class accuracy of Dense Net 169 with an average accuracy of 95.72% using Adam optimizer. 
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Zhang et al., (2021) developed the MFCIS (Multi-

feature Combined Cultivar Identification System)-that 

incorporates multiple leaf morphological information 

obtained using persistent homology. The classification 

accuracy after score-level fusion was 91.4 percent, which 

was much higher than the accuracy when each 

development period was utilized individually or when all 

growth periods were merged (Zhang et al., 2021). Mary 

Sobha & Thomas (2020) employed VGG16 CNN to extract 

features from simple and complex leaf pictures. For feature 

extraction and classification of actual complicated 

background pictures, a transfer trained VGG16 CNN was 

employed. VGG16 CNN models are used to extract and 

classify features from original (model1) and patch (model2) 

pictures independently. Using complicated backdrop leaf 

pictures, their suggested fusion model demonstrated 98.6 

percent accuracy in model evaluation and 90 percent 

accuracy in plant identification. Sachar & Kumar (2021) 

used transfer learning to assess the feature extraction skills 

of the VGG-16, Xception, MobileNetV2, and DenseNet121 

architectures using freely accessible Swedish, Flavia, and 

MalayaKew leaf picture datasets. The requested feature 

extractor models' assessments and comparisons were 

supplied. DenseNet121 obtained maximum accuracy of 

100 percent, 99 percent, and 92.4 percent on the three 

datasets, respectively. 

 

Conclusion and Future work 
 

Plant identification has been a significant area of 

research for many decades as it plays a significant role in 

biodiversity conservation. Many plant species are getting 

extinct day by day, and there is a need to build a common 

knowledge base that could identify the plant species. This 

has been greatly simplified by automated methods. 

Machine learning algorithms learn information from 

several photos and predict the proper outcome. The deep 

learning models used to identify the species of plants in this 

study were the ResNet, and DenseNet. The optimizers used 

were adam optimization and Stochastic Gradient Descent. 

Overall, the best performance was achieved using Adam 

optimization using the DenseNet model with 169 layers 

and came out to be 95.72%. This is higher as compared to 

the state-of-the-art methods. The deep learning (DL) 

methods were found very accurate to employ to have a 

better and exact plant identification. As future work, we 

aim to test our DDN-based model on various datasets from 

different regions of the world. We wish to incorporate plant 

features such as stems and branches in addition to leaves in 

our model to improve its accuracy. Furthermore, we intend 

to enhance our model by tuning the hyperparameters of 

current deep nets and deploying new emerging deep neural 

nets. There is also a need to carry out a detailed and 

comprehensive study for comparing different traditional 

and deep neural network-based models for plant 

identification on various real-world datasets.  
 

Limitation: The proposed research model for plant 

identification is tested on one dataset namely MalayaKew, so 

it may suffer from the sample bias. Scientists have shown 

that big data combined with the best machine learning 

techniques and DNN-based models can give intuitive 

insights. However, we do not have vast data of leaves for 

plant identification. We can use the emerging GANs, which 

are composed of two deep neural nets, to generate substantial 

synthetic data for plant identification models. 
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