HYDROGEN SULFIDE INDUCED BY HYDROGEN PEROXIDE MEDIATES STRIGOLACTONES-TRIGGERED STOMATAL CLOSURE IN ARABIDOPSIS THALIANA

YINLI MA, LIPING HUANG, ZHAN ZHANG, SHUANGSHUANG LIANG AND LIUXI WANG

College of Life Sciences, Shanxi Normal University, Taiyuan 030031, People's Republic of China **Corresponding author's email: mayinli1978@163.com; Ph: +86 (0)351 2051196, Fax: +86 (0)351 2051197*

Abstract

The function of hydrogen sulfide (H₂S) and interaction with hydrogen peroxide (H₂O₂) during stomatal movement caused by strigolactones (SLs) in *Arabidopsis thaliana* were examined. SL triggered stomatal closure and induced rise in H₂S content, L-cysteine desulfhydrase (L-/D-CDes) and D-cysteine desulfhydrase (D-CDes) activity increase in leaves of the wild type, but these effects were prohibited by H₂S scavenger or synthesis inhibitors. However, SL couldn't significantly change stomatal aperture in *Atl-cdes* and *Atd-cdes* mutants. Moreover, H₂O₂ scavengers and synthesis inhibitor obviously prohibited SL-caused H₂O₂ production and stomatal closure of the wild type, but SL couldn't close stomata and couldn't cause H₂O₂ production of guard cells in *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants. Furthermore, H₂O₂ scavengers and synthesis inhibitor prevented SL-caused H₂S synthesis, L-CDes and D-CDes activity increase in leaves of the wild type, but H₂S scavenger or synthesis inhibitors couldn't inhibit SL-caused H₂O₂ synthesis. SL increased H₂O₂ levels in *Atl-cdes* and *Atd-cdes* mutants' guard cells. However, SL couldn't cause H₂S synthesis, L-CDes and D-CDes activity increase in leaves of *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants. All the data suggested that SLs-caused stomatal closure required H₂O₂ synthesis derived from NADPH oxidase and subsequent L-/D-CDes-sourced H₂S production.

Key words: Strigolactones, Stomatal closure, Hydrogen sulfide, Hydrogen peroxide.

Abbreviations: HT = hypotaurine; AOA = aminooxy acetic acid; NH_2OH = hydroxylamine; $C_3H_3KO_3$ = potassium pyruvate; NH_3 = ammonia; ASA = ascorbic acid; DPI = diphenylene iodonium; CAT = catalase; DTT = dithiothreitol; L-/D-Cdes = L-/D-cysteine desulfhydrase; H_2S = hydrogen sulfide; H_2O_2 = hydrogen peroxide

Introduction

Strigolactones (SLs) have been firstly proved to be able to stimulate seed germination (Shaw et al., 1962; Cook et al., 1966). Subsequently, it has been shown that SLs play a key role in hyphal branching and root colonization (Akiyama et al., 2005; Besserer et al., 2006). SLs, as a kind of signal component, are indicated to be one of hormones produced by root and can move to shoot and inhibit branch of root (Gomez-Roldan et al., 2008). Moreover, SLs have been indicated to mediate various processes including photomorphogenesis, stomatal movement, etc. (Shen et al., 2007; Lv et al., 2017). SLs also mediate responses to many stimuli (Ha et al., 2014; Liu et al., 2015). Some evidence showed that SLs and abscisic acid (ABA) interact in adapting abiotic stresses (Ha et al., 2014; Cardinale et al., 2018). Furthermore, SLs-caused stomatal closure required hydrogen peroxide (H₂O₂), nitric oxide (NO), and SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) anion channel activation in an abscisic acid (ABA)independent way (Lv et al., 2017).

More evidence indicates that hydrogen sulfide (H₂S) is a gas acting as a signaling molecule, which is the same as carbon monoxide (CO) and NO (Wang, 2002). In animals, participates in regulating H_2S many physiological processes, such as regulating nervous system and cardiac function, relaxing blood vessels and smooth muscle of digestive tract, etc (Linden et al., 2010; Kimura et al., 2011). In plants, H₂S synthesis mainly depends on the catalyzed reaction of L-/D-cysteine desulfhydrase (L-/D-CDes) (Papenbrock et al., 2007). H₂S mediates the responses to environmental stresses

(Cui *et al.*, 2014; Zhou *et al.*, 2020). It has been shown that H_2S can regulate many biological processes including photosynthesis, stomatal movement, etc. (Chen *et al.*, 2011; Ma *et al.*, 2018a, 2018b). H_2S has been proved to participate in stomatal movement induced by ABA, salt stress and BR, etc. (Wang *et al.*, 2012a; Hou *et al.*, 2013a; Ma *et al.*, 2018a, 2018b, 2021, 2022). H_2O_2 -mediated H_2S synthesis participates in stomatal closure caused by ethylene, ABA and salt stress, etc. (Hou *et al.*, 2013b; Ma *et al.*, 2018a, 2018b, 2021, 2022).

It has been indicated that high concentration of H₂O₂ causes damage to plants, and low concentration of H₂O₂ acts as a signaling molecule, which functions in responses to various stresses and regulates many physiological processes in plants (Neill et al., 2002; Li et al., 2007; Jin et al., 2013; Li & He, 2015). Moreover, H₂O₂, as an important signal component, mediates darkness-, ABA-, SLs-, salt stress-, and 2, 4-epibrassinolide (EBR, a bioactive BR)causes stomatal closure (Desikan et al., 2004; Lv et al., 2017; Ma et al., 2018a, 2021). BR can close stomata by causing AtrbohF-dependent H2O2 synthesis and Nia1derived NO production (Shi et al., 2015). Darkness-caused stomatal closure requires AtRBOHD/F-derived H₂O₂ synthesis and NO production (Zhang et al., 2017). SLstriggered stomatal closure is proved to be dependent on H₂O₂ production and NO synthesis (Lv et al., 2017). Until now, it is unknown whether H₂S functions in SLs-triggered stomatal movement, and it is still unclear whether H₂S interacts with H₂O₂ in the process. This study provided strong evidence that H₂S participates in SLs-triggered stomatal closure in Arabidopsis thaliana, H2O2 synthesis mediates H₂S production in the physiological process.

Material and Methods

Chemicals: The molecular probe H₂DCF-DA was purchased from Biotium (Hayward, CA, USA), and 2-(Nmorpholino) ethanesulfonic acid (MES), (3aR*,8bS*,E)- $3-(((R^*)-4-methy)-5-oxo-2,$ 5-dihydrofuran-2-yloxy) methylene)-3, 3a, 4, 8b-tetrahydro-2H-indeno [1, 2blfuran-2-one (GR24). L-cvsteine. D-cvsteine. hypotaurine (HT), aminooxy acetic acid (AOA), hydroxylamine (NH_2OH) . potassium pyruvate (C₃H₃KO₃), ammonia (NH₃), ascorbic acid (ASA), iodonium (DPI), diphenylene catalase (CAT), Ν. dithiothreitol (DTT) and N-dimethyl-pphenylenediamine dihydrochloride were obtained from Sigma-Aldrich. Unless stated otherwise, all other chemicals were of the highest analytical grade purchased from various Chinese suppliers.

Plant materials: Seeds of A. thaliana ecotype Columbia (Col-0) were used in this study. Seeds of L-/D-cysteine desulfhydras deletion mutants of AtL-CDes T-DNA insertion line (N541918, designated Atl-cdes), AtD-CDes T-DNA insertion line (CS853264, designated Atd-cdes), and NADPH oxidase gene single mutant lines (N9555, designated AtrbohD) and (N9557, designated AtrbohF) and of the homozygous transposon insertion double mutant line (N9558, designated AtrbohD/F) were obtained from the Nottingham Arabidopsis Stock Centre (NASC, Nottingham, UK). Seeds were surface-sterilized and sown on sterilized vermiculite. Seeds were stratified in darkness for 2-4 d at 4°C, placed in a growth chamber at a day/night temperature cycle of 22°C/18°C, 80% RH, and 100 μ mol·m⁻²·s⁻¹ under a 16 h /8 h day/night photoperiod, after growing four euphylla, seedlings were potted in soil and continued to grow. The epidermis was carefully peeled from the abaxial surfaces of the youngest, fully expanded leaves of 4-6-week-old seedlings.

Stomatal bioassays: Stomatal bioassays were performed as described by McAinsh et al., (1996) with minor modifications. Briefly, the freshly prepared epidermal strips were incubated in MES-KCl buffer (10 mmol·L⁻¹ MES, 50 mmol·L⁻¹ KCl, 0.1 mmol·L⁻¹ CaCl₂, pH 6.15) for 3 h at 22 \pm 2°C in light (100 μ mol·m⁻²·s⁻¹) in order to promote stomatal opening. After incubation the epidermal strips were transferred to MES-KCl buffer or GR24 alone or MES-KCl containing various compounds or inhibitors in light for 3 h at $22 \pm 2^{\circ}C$ and then the stomatal apertures were recorded with light microscope and eyepiece graticule previously calibrated with a stage micrometre. In each treatment, we scored 30 randomly selected apertures per replicating and treatments were repeated at least three times. The data presented are the means \pm s.e. of 90 measurements.

Measurement of H₂S emissions: Measurement of H₂S emission was determined by the formation of methylene blue, which was performed as described by Sekiya *et al.*, (1982) and Hou *et al.*, (2013a) with slight modifications. Fully expanded leaves of 4-5-week-old seedlings in the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants were

used to measure the emission of H₂S. Firstly, 0.1 g leaves were cut and treated with MES-KCl buffer or containing GR24 alone or various scavengers or synthesis inhibitors in light (100 μ mol m⁻² s⁻¹) at 22 \pm 2°C for 3 h, and then the leaves were taken out and ground by addition of 0.9 mL 20 mmol·L⁻¹ Tris-HCl (pH 8.0) buffer. After centrifugation, the supernatant and a trap with 1% of zinc acetate were put into a test tube and sealed quickly with a Parafilm. After H₂S was absorbed for 30 min at 37°C, 100 µL 20 mmol·L⁻ N. N-dimethyl-p-phenylenediamine dihydrochloride dissolved in 7.2 mol·L⁻¹ HCl and 100 µL 30 mmol·L⁻¹ FeCl₃ dissolved in 1.2 mol·L⁻¹ HCl were added into the trap. Finally, the absorbance was measured at 670 nm, and a calibration curve was made with known concentrations of Na₂S solution. Each treatment was repeated three times, and the data presented are the means \pm s.e.

L-/D-cysteine desulfhydrase activity measurements: To further investigate the activity of L-/D-CDes, we determined H₂S released from L-/D-cysteine within a certain period of time (Riemenschneider et al., 2005; Hou et al., 2013a). 0.1 g leaves were cut and ground using a mortar and pestle. The soluble proteins were extracted over a period of 4 h by addition of 0.9 mL of 20 mmol/L Tris-HCl (pH 8.0) to 0.1 g plant material. After centrifugation, the protein content of the supernatant was adjusted to 100 µg/mL to provide an equal amount of protein in each assay sample. Lcysteine desulfhydrase activity was measured by the release of H₂S from L-cysteine in the presence of DTT. The 1 mL assay included: 100 µL 0.8 mmol·L⁻¹L-/Dcysteine, 400 µL 2.5 mmol·L⁻¹ DTT, 400 µL 100 mmol·L⁻¹ Tris-HCl, and 100 µL supernatant. Then 100 μ L 20 mmol·L⁻¹ N, N-dimethyl- *p*-phenylenediamine dihydrochloride dissolved in 7.2 mol·L⁻¹ HCl and 100 μ L 30 mmol·L⁻¹ FeCl₃ dissolved in 1.2 mol·L⁻¹ HCl were added into the trap after reacting for 30 min at 37°C. The rate of released H₂S was indicated by the determination of absorbance at 670 nm. Moreover, the activities of L-CDes and D-CDes were determined by the same method, but the pH of Tris-HCl buffer used by the former and latter was 9 and 8, respectively. Each treatment was repeated for three times.

Measurement of endogenous H₂O₂: H₂O₂ levels were measured with 2',7'-dichlorodihydrofluorescein diacetate (H₂DCF-DA) using the method by Allan & Fluhr (1997) with minor modifications. To study the effects of H₂O₂ and H₂S scavengers and synthesis inhibitors on GR24-induced H₂O₂ production in guard cells of the wild type, the epidermal strips were incubated in MES-KCl buffer or GR24 alone, or containing ASA, CAT, DPI, HT, AOA, NH₂OH, and C₃H₃KO₃ + NH₃ at $22 \pm 2^{\circ}$ C in light for 3 h, and then immediately loaded with 50 μ mol·L⁻¹ H₂DCF-DA in Tris-KCl buffer at $25 \pm 2^{\circ}$ C in darkness for 10 min. To study the effects of GR24 on H₂O₂ levels of guard cells in AtrbohD, AtrbohF and AtrbohD/F, Atl-cdes and Atd-cdes mutants, the epidermal strips were incubated in MES-KCl buffer or GR24 alone at $22 \pm 2^{\circ}$ C in light for 3 h, and then immediately loaded with 50 µmol·L⁻¹ H₂DCF-DA in Tris-KCl buffer (10 mmol·L⁻¹ Tris, 50 mmol·L⁻¹ KCl, pH 7.2)

at $25 \pm 2^{\circ}$ C in darkness for 10 min. The excessive dye was washed off with fresh Tris-KCl loading buffer, and the epidermal strips were immediately examined under luminescence microscope (OLYMPUS BX53, U-RFLT50, JAPAN) with following settings: 450 nm of excitation, 490 nm of emission. Images thus acquired were analyzed with Leica image software and processed with Photoshop 7.0 (Adobe, San Jose, CA, USA). Each treatment was repeated at least three times. The images depicted here represent similar results from all three replications.

Statistical analyses

All data were taken from at least three independent experiments. The statistical significance of treatments was checked using one-way ANOVA followed by Duncan's multiple range test. The data were considered statistically significant when *p*-values were <0.05. The figures were plotted by Origin 6.1 (Microcal Software, Nothampton, MA, USA) and processed with Photoshop 7.0 (Adobe, San Jose, CA, USA).

Results

SLs close stomata in *A. thaliana*: To explore if SLs can close stomata of *A. thaliana*, we observed the effects of GR24, a synthetic analogue of SLs, on stomatal aperture of the wild type. GR24 could close stomata, the best effects on stomata under GR24 treatment were 1 μ mol·L⁻¹ and 3 h, respectively (Fig. 1a). Fig. 1b showed that the influence of GR24 to stomata was not irreversible effects from an elution treatment. The data suggested that SLs could close stomata of *A. thaliana*.

H₂S mediates SL-triggered stomatal closure: To declare if H₂S mediates SL-triggered stomatal closure, the effects of H₂S modulators on GR24-caused stomatal closure, H₂S synthesis and L-/D-CDes activity change of leaves in the wild type were measured. HT (a H₂S scavenger), AOA and NH₂OH (H₂S synthesis inhibitors), and C₃H₃KO₃ and NH₃ (the producer of L-/D-CDes) significantly prevented GR24-triggered stomatal closure, and AOA, NH₂OH, and C₃H₃KO₃ and NH₃ prohibited rise in H₂S content of leaves (Fig. 2a-d, Fig. 3a). Moreover, GR24 significantly induced L-CDes and D-CDes activity increase, the effects were significantly prohibited by AOA, NH₂OH, and C₃H₃KO₃ and NH₃ (Fig. 3b, c). However, treatment with AOA, NH₂OH, and C₃H₃KO₃ and NH₃ alone couldn't increase H₂S content, L-CDes and D-CDes activity of leaves (Fig. 3a-c). The data suggested that H₂S synthesis might mediate SL-triggered stomatal closure, and H₂S synthesis depended on L-CDes and D-CDes.

To further examine whether H₂S synthesis mediated SL-triggered stomatal closure, we determined the effects of GR24 on *Atl-cdes* and *Atd-cdes* mutants' stomata. Fig. 4 showed that GR24 triggered stomatal closure in the wild type, while it couldn't significantly change stomatal aperture of *Atl-cdes* and *Atd-cdes* mutants, suggesting that H₂S synthesis really mediated SL-triggered stomatal closure, and H₂S synthesis was dependent on both AtL-CDes and AtD-CDes in the process.

H₂O₂ mediates SL-triggered stomatal closure: To study whether H_2O_2 regulates SL-triggered stomatal closure, the effects of H_2O_2 modulators including ASA (a substrate for H_2O_2 removal), CAT (a H_2O_2 scavenger enzyme) and DPI (an inhibitor of NADPH oxidase) on GR24-iuduced stomatal closure in the wild type were analyzed. H_2O_2 modulators all significantly prohibited GR24-triggered stomatal closure (Fig. 5a). Subsequently, we detected levels of H_2O_2 in guard cells of the wild type by using special H_2O_2 detection fluorescence dye H_2DCF -DA. In agreement with the epidermal bioassay, H_2O_2 production of guard cells induced by GR24 was significantly abolished by H_2O_2 scavengers and synthesis inhibitor (Fig. 6a-e). From the results, we inferred that H_2O_2 might participate in SL-triggered stomatal closure.

Fig. 1. Effects of GR24 on stomatal aperture in the wild type. (a) Isolated epidermal strips were incubated in MES-KCl buffer alone or containing different concentrations of GR24 in light at $22 \pm 2^{\circ}$ C for 1 h, 2 h, 3 h and 4 h, then stomatal apertures were recorded. (b) After the incubation in MES-KCl buffer containing different concentrations of GR24 in light for 3 h (black columns), the strips were treated with MES-KCl buffer in light at $22 \pm 2^{\circ}$ C for another 3 h (white columns), then apertures were measured. The data are presented as means \pm s.e. of three independent experiments (n = 90), and means denoted by different letters in (a) and (b) differ significantly at p < 0.05 according to Duncan's multiple range test.

Fig. 2. Effects of HT, AOA, NH₂OH, and C₃H₃KO₃ + NH₃ on GR24-induced stomatal closure in the wild type. Isolated epidermal strips were incubated in MES-KCl buffer alone, or containing (a) HT (0, 10, 15, 20 μ mol·L⁻¹), (b) AOA (0, 0.2, 0.4, 0.6, 0.8 mmol·L⁻¹), (c) NH₂OH (0, 0.2, 0.4, 0.6, 0.8 mmol·L⁻¹, and (d) C₃H₃KO₃ (0, 0.1, 0.2, 0.3, 0.4 mmol·L⁻¹) + NH₃ (0, 0.1, 0.2, 0.3, 0.4 mmol·L⁻¹) in the absence (black columns) or presence of 1 μ mol·L⁻¹GR24 (white columns) in light at 22 ± 2°C for 3 h, respectively, then apertures were measured. Data presented are means ± s.e. of three independent experiments (n=90). See Fig. 1a for further experimental details.

To further confirm that H_2O_2 functions in SL-triggered stomatal movement signal network, we measured stomatal aperture and H_2O_2 levels in guard cells of the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants after GR24 treatment. GR24 closed stomata of the wild type, but GR24 couldn't close stomata of *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (Fig. 5b). Moreover, GR24 obviously increased H₂DCF fluorescence in guard cells of the wild type, but failed to stimulate H₂O₂ production in *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (Fig. 6b, f-h). From the data, it was concluded that AtrbohD- and AtrbohFcatalyzed H₂O₂ synthesis participated in SL-triggered stomatal closure.

H₂S interacted with H₂O₂ during SL-triggered stomatal closure

 H_2O_2 modulators prohibited SL-caused rise in H_2S content and L-/D-CDes activity increase: To declare the interrelationship between H_2S and H_2O_2 during SLs-triggered stomatal closure, we firstly examined the effects

of H_2O_2 modulators ASA, CAT, and DPI on GR24-caused rise of H_2S synthesis, L-CDes and D-CDes activity change in leaves of the wild type. As shown in Fig. 7, GR24 could cause H_2S synthesis and increased L-CDes and D-CDes activity, these effects were significantly prohibited by ASA, CAT, and DPI (Fig. 7a-c). The data showed that H_2O_2 synthesis might mediate SL-triggered stomatal closure by inducing H_2S production.

SL couldn't increase H₂S level, L-CDes and D-CDes activity of leaves in *AtrbohD*, *AtrbohF* and *AtrbohD/F* **mutants:** To further confirm H₂O₂ synthesis mediated SL-triggered stomatal closure by inducing H₂S production, the effects of GR24 on H₂S level, L-CDes and D-CDes activity in *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants were detected. GR24 could increase H₂S level, L-CDes and D-CDes activity, but the effects observed in the wild type were blocked in *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (Fig. 8a-c). Our data provided evidence that H₂O₂ synthesis mediated SL-triggered stomatal closure by inducing H₂S production.

Fig. 3. Effects of AOA, NH₂OH, and C₃H₃KO₃ + NH₃ on GR24induced H₂S synthesis, L-CDes activity and D-CDes activity change of leaves in the wild type *A. thaliana*. Isolated epidermal strips were incubated in MES-KCl buffer alone, or containing 0.4 mmol·L⁻¹ AOA, 0.4 mmol·L⁻¹ NH₂OH, and 0.4 mmol·L⁻¹ C₃H₃KO₃ + 0.4 mmol·L⁻¹ NH₃ in the absence (black columns) or presence of 1 µmol·L⁻¹ GR24 (white columns) in light at 22 ± 2°C for 3 h, respectively, then H₂S content (a), L-CDes activity (b), and D-CDes activity (c) were measured. Data presented means ± s.e. of three independent experiments (n=9). See Fig. 1a for further experimental details.

Fig. 4. Effects of GR24 on stomatal movement in the wild type, *Atl-cdes* and *Atd-cdes* mutants. Isolated epidermal strips of the wild type, *Atl-cdes* and *Atd-cdes* mutants were incubated in MES-KCl buffer alone (black columns) or containing 1 μ mol·L⁻¹GR24 in light at 22 \pm 2°C for 3 h (white columns), respectively, then apertures were measured. Data presented means \pm s.e. of three independent experiments (n=90). See Fig. 1a for further experimental details.

Fig. 5. Effects of ASA, CAT, and DPI on GR24-induced stomatal closure in the wild type (a), and effects of GR24 on stomatal movement in the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (b). (a) Isolated epidermal strips were incubated in MES-KCI buffer alone, or containing 100 µmol·L⁻¹ ASA, 100 units·mL⁻¹ CAT and 10 µmol·L⁻¹ DPI in the absence (black columns) or presence of 1 µmol·L⁻¹ GR24 (white columns) in light at $22 \pm 2^{\circ}$ C for 3 h, respectively, then apertures were measured. (b) Isolated epidermal strips of the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants were incubated in MES-KCI buffer alone (black columns) or containing 1 µmol·L⁻¹ GR24 in light at $22 \pm 2^{\circ}$ C for 3 h (white columns), respectively, then apertures were measured. Data presented means ± s.e. of three independent experiments (n=90). See Fig. 1a for further experimental details.

Fig. 6. Effects of ASA, CAT, and DPI on GR24-induced H_2O_2 production in guard cells of the wild type, and effects of GR24 on H_2O_2 levels of guard cells in the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants. Guard cells were treated in light at 22 ± 2 °C for 3 h as follows: (a) with MES-KCl buffer alone in light; (b) containing 1 µmol·L⁻¹ GR24, (c) 1 µmol·L⁻¹ GR24 +100 µmol·L⁻¹ ASA, (d) 1 µmol·L⁻¹ GR24 +100 units·mL⁻¹ CAT, (e) 1 µmol·L⁻¹ GR24 +10 µmol·L⁻¹ DPI, respectively. (f-h), Guard cells of *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants were treated with 1 µmol·L⁻¹ GR24, respectively. After treatments, epidermal strips were immediately loaded with 50 µmol·L⁻¹ H₂DCF-DA in Tris-KCl buffer in darkness for 10 min, then excess dye was removed and the strips were examined by luminescence microscope. Scale bar = 20 µm for all images.

H₂S modulators couldn't prohibit SL-caused H₂O₂ synthesis in the wild type: To further establish that H₂S synthesis mediated SL-triggered stomatal closure by inducing H₂O₂ production, H₂DCF fluorescence after cotreatment with H₂S modulators and GR24 were measured. H₂DCF fluorescence of guard cells after treatment with GR24 was more intense than that of the control (Fig. 9a, b), and HT, AOA, NH₂OH, and C₃H₃KO₃ and NH₃ couldn't inhibit GR24-induced rise in H₂DCF fluorescence intensity (Fig. 9c-f). The data indicated that H₂S synthesis really mediated SL-triggered stomatal closure by inducing H₂O₂ production.

SL induced H_2O_2 production in *Atl-cdes* and *Atd-cdes* mutants: To consolidate the conclusion that H_2S synthesis really mediated SL-triggered stomatal closure by inducing H_2O_2 production, we further measured GR24-triggered H_2DCF fluorescence change of guard cells in *Atl-cdes* and *Atd-cdes* mutants. Treatment with GR24 induced intense H_2DCF fluorescence of guard cells in the wild type, *Atlcdes* and *Atd-cdes* mutants (Fig. 9g, h), which reinforced the conclusion that H_2O_2 represented a novel component upstream of H_2S in SL-triggered stomatal closure.

Discussion

Stomata regulates water and carbon cycles in plants (Heherington & Woodward, 2003). Light, drought, salt

stress, and various phytohormones (such as JA, ABA, BR, etc) can affect stomatal aperture (Desikan *et al.*, 2004; Acharya & Assmann, 2009; Jin *et al.*, 2013; Ma *et al.*, 2018a, 2021). Stomata responds to environmental stresses by inducing endogenous signals' production and defending cell's perception of environment (Acharya & Assmann, 2009). Therefore, stomatal movement is essential for the survival of plants. In recent years, many signal molecules such as H₂S, H₂O₂, NO and ATP have been indicated to be involved in stomatal movement of plants (Wang *et al.*, 2015; Ma *et al.*, 2022).

SLs are plant hormones that can regulate various physiological processes in plants including seed germination, secondary growth, development, etc. (Shaw et al., 1962; Agusti et al., 2011; Brewer et al., 2013). SLs have been reported to act as a co-regulator in regulating stomatal aperture. SLs is integrated with ABA in responding to stress adaptation (Visentin et al., 2016). Lv et al., (2017) reported that SLs can close stomata via H₂O₂ production and NO synthesis, and SLAC1 anion channel activation in A. thaliana in ABAindependent manner. GR24 caused stomatal closure of Vicia faba (Zhang et al., 2018). However, the signal network in SLs-triggered stomatal movement is still unclear. In our study, GR24 could close stomata, and 1 μ mol·L⁻¹ GR24 treatment for 3 h showed the optimum effects (Fig. 1a). The results are consistent with the previous results (Lv et al., 2017).

Fig. 7. Effects of ASA, CAT, and DPI on GR24-induced H₂S synthesis, L-CDes and D-CDes activity increase in leaves of the wild type. Isolated epidermal strips were incubated in MES-KCl buffer alone, or containing 100 μ mol·L⁻¹ ASA, 100 units·mL⁻¹ CAT and 10 μ mol·L⁻¹ DPI in the absence (black columns) or presence of 1 μ mol·L⁻¹ GR24 (white columns) in light at 22 ± 2°C for 3 h, respectively, then H₂S content (a), L-CDes activity (b), and D-CDes activity (c) were measured. Data presented are means ± s.e. of three independent experiments (n=9). See Fig. 1*a* for further experimental details.

Fig. 8. Effects of GR24 on H₂S content, L-CDes activity and D-CDes activity in leaves of the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants. Isolated epidermal strips of the wild type, *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants were incubated in MES-KCl buffer alone (black columns), or containing 1 μ mol·L⁻¹ GR24 in light at 22 ± 2°C for 3 h (white columns), respectively, then H₂S content (a), L-CDes activity (b), and D-CDes activity (c) were measured. Data presented are means ± s.e. of three independent experiments (n=9). See Fig.1a for further experimental details.

Fig. 9. Effects of HT, AOA, NH₂OH, and C₃H₃KO₃ + NH₃ on GR24-induced H₂O₂ production in guard cells of the wild type, and effects of GR24 on H₂O₂ levels of guard cells in the wild type, *Atl-cdes* and *Atd-cdes* mutants. Guard cells were treated in light at $22 \pm 2^{\circ}$ C for 3 h as follows: (a) with MES-KCl buffer alone; (b) containing 1 µmol·L⁻¹ GR24, (c) 1 µmol·L⁻¹ GR24 +15 µmol·L⁻¹ HT, (d) 1 µmol·L⁻¹ GR24 +0.4 mmol·L⁻¹ GR24 +0.4 mmol·L⁻¹ GR24 +0.4 mmol·L⁻¹ C₃H₃KO₃+0.4 mmol·L⁻¹ NH₃, respectively. (g-h), Guard cells of the *Atl-cdes* and *Atd-cdes* mutants were treated with 1 µmol·L⁻¹ GR24, respectively. After treatments, epidermal strips were immediately loaded with 50 µmol·L⁻¹ H₂DCF-DA in Tris-KCl buffer in darkness for 10 min, then excess dye was removed and the strips were examined by luminescence microscope. Scale bar = 20 µm for all images.

H₂S, as an important signaling molecule, has been shown to participate in various physiological processes in plants (Zhang et al., 2008; Ma et al., 2022). H₂S functions in alleviating environmental stresses (Wang et al., 2012b; Zhou et al., 2020). It has been shown that exogenous H₂S can close stomata (García-Mata et al., 2010). More evidence has demonstrated that H₂S participates in darkness-, salt stress-, BR- and CdCl2-triggered stomatal movement (Ma et al., 2018a, 2018b, 2019, 2021, 2022). Until now, whether H₂S, as a signaling molecular, functions in mediating SLsregulated stomatal movement is unknown. Here, we showed that H₂S participated in GR24-triggered stomatal closure. HT, AOA, NH₂OH, and C₃H₃KO₃ and NH₃ could prevent GR24-triggered stomatal closure (Fig. 2a-d). Additionally, we investigated the source of H₂S in SLs-triggered stomatal movement. Treatment with GR24 significantly increased H₂S level, L-CDes and D-CDes activity of leaves in the wild type, cotreatment with AOA, NH2OH, and C3H3KO3 and NH₃ and GR24 prevented the effects (Fig. 3a-c). Furthermore, GR24 closed stomata of the wild type, while it couldn't change Atl-cdes and Atd-cdes mutants' stomatal aperture (Fig. 4). The results proved that H₂S soured from L-CDes- and D-CDes mediated SL-triggered stomatal closure in A. thaliana, both AtL-CDes and AtD-CDes mediated H₂S synthesis in the process.

 H_2O_2 , as another signaling molecule in plants, has been implicated in stomatal movement triggered by SLs, ABA, and BR, etc (Desikan *et al.*, 2004; Shi *et al.*, 2015; Lv *et al.*, 2017). McAinsh *et al.*, (1996) first proved that the rise of calcium level is necessary for exogenous H_2O_2 induced stomatal closure. In *A. thaliana*, salt stresstriggered H_2O_2 production depends on AtrbohD and AtrbohF (Ma *et al.*, 2012). H_2O_2 functions in SL-triggered stomatal closure (Lv *et al.*, 2017). Our results showed that H₂O₂ modulators (ASA, CAT, and DPI) inhibited GR24triggered stomatal closure (Fig. 5a) and enhancement of H₂DCF fluorescence of guard cells in the wild type (Fig. 6c-e). But GR24 couldn't close the stomata of *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (Fig. 5b), and it failed to stimulate H₂O₂ production of guard cells in *AtrbohD*, *AtrbohF* and *AtrbohD/F* mutants (Fig. 6f-h). These results proved that H₂O₂ was derived from NADPH oxidase pathway and participated in SL-triggered stomatal closure, H₂O₂ is sourced from AtrbohD and AtrbohF, the results are the same as the previous reports (Lv *et al.*, 2017).

 H_2S and H_2O_2 interact in many physiological processes in plants, and exogenous H₂S can reduce H₂O₂ level to resist oxidative damage (Zhang et al., 2008). H₂S participates in ethylene-caused stomatal closure depending on H₂O₂ synthesis in A. thaliana (Hou et al., 2016). Moreover, H_2S is a component downstream of H_2O_2 in stomatal movement triggered by darkness, NaCl stress, and BR, etc (Ma et al., 2018a, 2018b, 2021, 2022). Until now, it is unknown whether H₂S is related to H₂O₂ in SLtriggered stomatal closure. In the present work, we showed that ASA, CAT and DPI prohibited GR24-caused H₂S production, L-CDes and D-CDes activity increase in the wild type (Fig. 7a-c), but GR24 couldn't change H₂S content, L-CDes and D-CDes activity of leaves in AtrbohD, AtrbohF and AtrbohD/F mutants (Fig. 8a-c). Furthermore, HT, AOA, NH₂OH, and C₃H₃KO₃ and NH₃ couldn't inhibit GR24-induced rise in H₂DCF fluorescence intensity (Fig. 9c-f), and GR24 induced intense H₂DCF fluorescence in Atl-cdes and Atd-cdes mutants (Fig. 9g, h). From these data, we concluded that H₂S derived from L-CDes and D-CDes represented a novel component downstream of H2O2 production from NADPH oxidase pathway in SL-triggered stomatal closure in A. thaliana.

Conclusions

In the present study, it was concluded that SLs induced NADPH oxidase-derived H_2O_2 production, then caused L-CDes and D-CDes-sourced H_2S synthesis, and finally led to stomatal closure in *A. thaliana* (Fig. 10). During SLs-triggered stomatal closure, both AtrobhD and AtrobhF were responsible for H_2O_2 production, H_2S synthesis depended on both AtL-CDes and AtD-CDes. However, the interaction between H_2S and other signaling molecule, such as ethylene, G protein, CO or Ca²⁺ remains to be further investigated.

Fig. 10. Model of possible signaling pathway for SLstriggered stomatal closure in *A. thaliana*. SLs promotes H₂O₂ production by AtrbohD and AtrbohF, subsequently increases AtL-CDes-/AtD-CDes-catalysed H₂S synthesis, and finally closes the stomata.

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Shanxi Province, China (No.202203021211262). The funding bodies had no role in the experimental design, data analysis, decision to publish, or preparation of the manuscript.

References

- Acharya, B.R. and S.M. Assmann. 2009. Hormone interactions in stomatal function. *Plant Mol. Biol.*, 69: 451-462.
- Agusti, J., S. Herold, M. Schwarz, P. Sanchez, K. Ljung, E.A. Dun, P.B. Brewer, C.A. Beveridge, T. Sieberer, E.M. Sehr and T. Greb. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. *Proc. Natl. Acad. Sci.*, 108: 20242-20247
- Akiyama, K., K. Matsuzaki and H. Hayashi. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. *Nature*, 435: 824-827.
- Allan, A.C. and R. Fluhr. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. *Plant Cell*, 9: 1559-1572.

- Besserer, A., V. Puech-Pagès, P. Kiefer, V. Gomez-Roldan, A. Jauneau, S. Roy, J.C. Portais, C. Roux, G. Bécard and N. Séjalon-Delmas. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. *PLoS Biol.*, 4: e226.
- Brewer P.B., H. Koltai and C.A. Beveridge. 2013. Diverse roles of strigolactones in plant development. *Mol. Plant*, 6: 18-28.
- Cardinale, F., P. Korwin Krukowski, A. Schubert and I. Visentin. 2018. Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J. Exp. Bot., 69: 2291-2303.
- Chen, J., F.H. Wu, W.H. Wang, C.J. Zheng, G.H. Lin, X.J. Dong, J.X. He, Z.M. Pei and H.L. Zheng. 2011. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in *Spinacia oleracea* seedlings. J. Exp. Bot., 62: 4481-4493.
- Cook, C.E., L.P. Whichard, B. Turner, M.E. Wall and G.H. Egley. 1966. Germination of witchweed (*Striga lutea* Lour.): isolation and properties of a potent stimulant. *Science*, 154: 1189-1190.
- Cui, W.T., H.P. Chen, K.K. Zhu, Q.J. Jin, Y.J. Xie, J. Cui, Y. Xia, J. Zhang and W.B. Shen. 2014. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in *Medicago sativa* by reestablishment of reduced (Homo) glutathione and reactive oxygen species homeostases. *PLoS One*, 9: e109669.
- Desikan, R., M.K. Cheung, A. Clarke, S. Golding, M. Sagi, R. Fluhr, C. Rock, J. Hancock and S. Neill. 2004. Hydrogen peroxide is a common signal for darkness- and ABAinduced stomatal closure in *Pisum sativum*. *Fun. Plant Biol.*, 31: 913-920.
- García-Mata, C. and L. Lamattina. 2010. Hydrogen sulfide, a novel gasotransmitter involved in guard cell signaling. *New Phytol.*, 188: 977-984.
- Gomez-Roldan, V., S. Fermas, P.B. Brewer, V. Puech-Pagès, E.A. Dun, J.P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.C. Portais, H. Bouwmeester, G. Bécard, C.A. Beveridge, C. Rameau and S.F. Rochange. 2008. Strigolactone inhibition of shoot branching. *Nature*, 455: 189-194.
- Ha, C.V., M.A. Leyva-González, Y. Osakabe, U.T. Tran, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, S. Yamaguchi, N.V. Dong, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella and L.S. Tran. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. *Proc. Natl. Acad. Sci. U. S. A.*, 111: 851-856.
- Heherington, A.M. and F.I. Woodward. 2003. The role of stomatal in sensing and driving environmental change. *Nature*, 424: 901-908.
- Hou, Z., Y. Che, L. Wang, L. Hou and X. Liu. 2016. H₂S functions downstream of H₂O₂ in mediating ethyleneinduced stomatal closure in *Arabidopsis thaliana*. *Plant Physiol. J.*, 48: 1193-1199.
- Hou, Z.H., G.H. Liu, L.X. Hou, L.X. Wang and X. Liu. 2013b. Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-Induced stomatal closure in *Arabidopsis thaliana. J. Integ. Agric.*, 12: 251-262.
- Hou, Z.H., L.X. Wang, J. Liu, L.X. Hou and X. Liu. 2013a. Hydrogen sulfide regulates ethylene induced stomatal closure in A. thaliana. J. Integ. Plant Biol., 55: 277-289.
- Jin, Z.P., S.W. Xue, Y.N. Luo, B.H. Tian, H.H. Fang, H. Li and Y.X. Pei. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in *Arabidopsis. Plant Physiol. Biochem.*, 62: 41-46.
- Kimura, H. 2011. Hydrogen sulfide: its production, release and functions. *Amino Acids*, 41: 113-121.
- Li, S., L. Xue, S. Xu, H. Feng and L. An. 2007. Hydrogen peroxide involvement in formation and development of

adventitious roots in cucumber. *Plant Growth Regul.*, 52: 173-180.

- Li, Z.G. and Q.Q. He. 2015. Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (*Vigna radiata*). *Biologia*, 70: 753-759.
- Linden, D.R., M.D. Levitt, G. Farrugia and J.H. Szurszewski. 2010. Endogenous production of H₂S in the gastrointestinal tract: still in search of a physiologic function. *Antioxid. Redox Signal.*, 12: 1135-1146.
- Liu, J., H. He, M. Vitali, I. Visentin, T. Charnikhova, I. Haider, A. Schubert, C. Ruyter-Spira, H.J. Bouwmeester, C. Lovisolo and F. Cardinale. 2015. Osmotic stress represses strigolactone biosynthesis in *Lotus japonicus* roots: exploring the interaction between strigolactones and ABA under abiotic stress. *Planta*, 241: 1435-1451.
- Lv, S., Y. Zhang, C. Li, Z. Liu, N. Yang, L. Pan, J. Wu, J. Wang, J. Yang, Y. Lv, Y. Zhang, W. Jiang, X. She and G. Wang. 2017. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. *New Phytol.*, 217: 290-304.
- Ma, L.Y., H. Zhang, L. Sun, Y.H. Jiao, G.Z. Zhang, C. Miao and F.S. Hao. 2012. NADPH oxidase *AtrbohD* and *AtrbohF* function in ROS-dependent regulation of Na⁺/K⁺ homeostasis in *Arabidopsis* under salt stress. *J. Exp. Bot.*, 63: 305-317.
- Ma, Y.L., J. Niu, W. Zhang and X. Wu. 2018b. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in *Vicia faba*. *Fun. Plant Biol.*, 45: 553-560.
- Ma, Y.L., L.H. Shao, W. Zhang and F.X. Zheng. 2021. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of *Arabidopsis* thaliana. Funct. Plant Biol., 48: 195-205.
- Ma, Y.L., L.X. Wang and W. Zhang. 2022. The role of hydrogen sulfide and its relationship with hydrogen peroxide and nitric oxide in brassinosteroid-induced stomatal closure of *Vicia faba* L. S. Afr. J. Bot., 146: 426-436.
- Ma, Y.L., W. Zhang and J. Niu. 2019. Hydrogen sulfide may function downstream of hydrogen peroxide in CdCl₂induced stomatal closure in *Vigna radiata* L. S. Afr. J. Bot., 124: 39-46.
- Ma, Y.L., W. Zhang, J. Niu, Y. Ren and F. Zhang. 2018a. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating salt stress-induced stomatal closure in *Vicia faba. Fun. Plant Biol.*, 46: 136-145.
- McAinsh, M.R., H. Clayton, T.A. Mansfield and A.M. Hetherington. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. *Plant Physiol.*, 111: 1031-1042.
- Neill, S., R. Desikan and J. Hancock. 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5: 388-395.
- Papenbrock, J., A. Riemenschneider, A. Kamp, H.N. Schulz-Vogt and A. Schmidt. 2007. Characterization of cysteine-

degrading and H₂S releasing enzymes of higher plants from the field to the test tube and back. *Plant Biol.*, (Stuttg) 9: 582-588.

- Riemenschneider, A., V. Nikiforova, R.D. Hoefgen, L.J. Kok and J. Papenbrock. 2005. Impact of elevated H₂S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. *Plant Physiol. Biochem.*, 43: 473-483.
- Sekiya, J., A. Schmidt, L.G. Wilson and P. Filner. 1982. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. *Plant Physiol.*, 70: 430-436.
- Shaw, W., D. Shepherd, E. Robinson and P. Sand. 1962. Advances in witchweed control. *Weeds*, 10: 182-192.
- Shen, H., P. Luong and E. Huq. 2007. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in *Arabidopsis. Plant Physiol.*, 145: 1471-1483.
- Shi, C., C. Qi, H. Ren, A. Huang, S. Hei and X. She. 2015. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in *Arabidopsis*. *Plant J.*, 82: 280-301.
- Visentin, I., M. Vitali, M. Ferrero, Y. Zhang, C. Ruyter-Spira, O. Novák, M. Strnad, C. Lovisolo, A. Schubert and F. Cardinale. 2016. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. *Mol. Plant*, 212: 954-963.
- Wang, L.X., X.Y. Ma, Y.M. Che, L.X. Hou, X. Liu and W. Zhang. 2015. Extracellular ATP mediates H₂S-regulated stomatal movements and guard cell K⁺ current in a H₂O₂-dependent manner in *Arabidopsis. Sci. Bull.*, 60: 419-427.
- Wang, L.X., Z.H. Hou, L.X. Hou, F.G. Zhao and X. Liu. 2012a. H₂S induced by H₂O₂ mediates drought-induced stomatal closure in *Arabidopsis thaliana. Chin. Bull. Bot.*, 47: 217-225.
- Wang, R. 2002. Two's company, three's a crowd: can H₂S be the third endogenous gaseous transmitter? *FASEB J.*, 16: 1792-1798.
- Wang, Y., L. Li, W. Cui, S. Xu, W. Shen and R. Wang. 2012b. Hydrogen sulfide enhances *alfalfa* (*Medicago sativa*) tolerance against salinity during seed germination by nitric oxide pathway. *Plant Soil*, 351: 107-119.
- Zhang, H., L.Y. Hu, K.D. Hu, Y.D. He, S.H. Wang and J.P. Luo. 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integ. Plant Biol., 50: 1518-1529.
- Zhang, T.Y., F.C. Li, C.M. Fan, X. Li, F.F. Zhang and J.M. He. 2017. Role and interrelationship of MEK1–MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. *Plant Sci.*, 262: 190-199.
- Zhang, Y., S. Lv and G. Wang. 2018. Strigolactones are common regulators in induction of stomatal closure in planta. *Plant Signaling Behav.*, 13: e1444322.
- Zhou, H., Y. Chen, F. Zhai, J. Zhang, F. Zhang, X. Yuan and Y. Xie. 2020. Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. *Plant Physiol. Biochem.*, 155: 213-220.

(Received for publication 21 October 2022)