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Abstract

In Pakistan in spite of few attempts for mapping land-cover types, satellite remotely sensed
data has not been used extensively; and its potential is not being explored for providing information
on mapping vegetation cover in general and ecological communities in particular. In this study, we
used SPOT(Systeme Pour I'Observation de la Terre) multispectral (XS) satellite sensor data in
visible and near infrared portion of the light spectrum as a surrogate for distribution of ecological
vegetation groups defined by the classification and ordination methods (the most commonly used
multivariate techniques used in floristic composition classification in vegetation ecology) and non-
vegetation classes. The results indicate that classification of vegetation groups based on species
composition identified using classification and ordination techniques to some extent resemble to
those groups classified using SPOT XS data with least accuracy in comparison to non-vegetation
classes which were more homogenous and spectrally separable and were classified more accurately
in comparison. Two classification models i.e. supervised maximum likelihood and fuzzy supervised
classification showed similar overall level of accuracies. The possibilities of lower classification
accuracies and difficulties of classifying ecological communities based on the species composition
using remotely sensor data are discussed.

Introduction

Satellite remote sensing (RS) has become a valuable tool for gathering information about
land cover types and holds great potential for deriving timely and reliable information on the
nature, extent and magnitude of land-cover (Apan, 1997; Turner, 1991), which is required for
planning and implementation of conservation and management programmes (Nagendra, 2001;
Zomer et al.,, 2002). During the past decade, digital remote sensing has become an
increasingly important tool for mapping and monitoring and classifying vegetation resources
around the globe (Cohen et al., 1996). This is due to the increasing availability and
understanding of remote sensing data in general (Arora, 2002) and to the greatly expanded use
of geographic information systems (Roy et al., 1991, Dymond et al., 1996). Resource
scientists and managers now require spatially explicit vegetation data over extensive
geographic areas, which mean that traditional field survey techniques, even when coupled
with aerial photography are useful but of limited use (Cohen et al., 1996; Dwivedi et al.,
1997). Traditional methods of vegetation mapping are time-consuming and generally
uneconomical, with data collected over long time intervals, and are particularly inefficient and
impractical for real-time global and regional mapping of different vegetation types and other
land-cover categories (De Fries & Townshend, 1994; San Miguel-Ayanz et al., 1997,
Nagendra & Gadgil, 1999). Another important factor is an increased understanding that large-
scale monitoring of forest conditions is practical only if digital remote sensing is included in
the sampling and mapping scheme (Townshend & Walsh, 2001).
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Satellite sensors most commonly used for land-cover mapping, particularly forest
types mapping include Landsat Thematic Mapper (TM) and Multispectral Scanner
(MSS), airborne Thematic Mapper Simulator (TMS), Systeme Pour I'Observation de la
Terre multispectral (SPOT XS) and Average Very High Resolution Radiometer
(AVHRR). Among these, Landsat TM sensor data have been used extensively in forest
type mapping (Stenback & Congalton, 1990; Hill, 1999). This is because of its improved
spectral, spatial and radiometric resolution (Wilkie & Finn, 1996). Most of the
investigations using sensor data have provided accurate classification results (Karteris,
1990; Rignot et al., 1997; Singh et al., 2002).

Although satellite remote sensing data have been extensively used for mapping and
classifying land-cover classes, and are available at various spectral and spatial scales,
they have not been fully exploited in Pakistan for mapping different vegetation types of
ecological importance. Although a few attempts have been made using SPOT XS data
(Malik et al., 1999, 2000). Yet the potential of remote sensing has yet to be explored in
terms of providing information on ecological communities. Therefore the aim of this
study is to map the spatial distribution of different vegetation groups classified using
classification and ordination analysis using remote sensing techniques and assess the
potential of SPT XS for mapping vegetative and non-vegetative classes.

Materials and Methods

Floristic data were collected from 90 randomly selected plots from Lohiberh study
site (Malik & Hussain, 2006) from 30 field areas which were selected subjectively
(Fig.1). Each field area comprised an area of 1.44 ha, which is equal to 120mx120m or
6x6 pixels of satellite sensor data (SPOT XS). Three to five randomly located points from
each area were sampled based on vegetation homogeneity/heterogeneity. For each plot
floristic and geographic data were collected. The latitude and longitudes were recorded
for each plot using a Global Positioning System (GPS). Field information about different
vegetation types and other parameters such as deforestation, urban encroachment, grazing
pressure, land-use/cover patterns, general topography of the area and cultivation were
also recorded. Floristic data from each plot was recorded as a percentage cover which
was assessed as the vertical projection onto the ground of all the above ground parts of
the individuals expressed as a percentage of the reference area. The percentage cover
recorded was then partitioned to the “DOMIN” scale (Kent & Coker, 1992). Floristic data
were analyzed using TWINSPAN classification and ordination analysis for plant
communities classification which were used for mapping their spatial distribution (Malik
& Husain, 2006). The remote sensing data obtained on 8 June 1998 by SPOT XS sensor
were used and were geometrically corrected with Root Mean Square Error (RMSE) of
0.19 m. An area of original image containing the study area was subset from the full
scene of the SPOT XS sensor data and was used for subsequent analysis.

The classification schemes included vegetation groups identified using hierarchical
classification of floristic data and three other land-cover classes such as ‘settlements &
barren-land’, ‘water bodies’ ‘land-area used for cultivation purposes and degraded land.
Fuzzy supervised classification using maximum likelihood algorithm for the image
classification which takes into account that there are pixels of mixed makeup, (a pixel
which cannot be definitely assigned to one category) (Jensen, 1996). ‘Fuzzy convolution
operation’ was performed on the fuzzy classified image, which creates a single
classification layer by calculating the total weighted inverse distance of all the classes in
a window of pixels. Then it assigns the centre pixel in the class with the largest total
inverse distance summed over the entire set of fuzzy classification layers. This has the
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effect of creating a context-based classification to reduce the speckle in the classification.
Classes with a very small distance value remain unchanged while classes with higher
distance values may change to a neighbouring value if there are a sufficient number of
neighbouring pixels with class values and small corresponding distance values. A 3 x 3
window size was used in the convolution process. The following equation was used in the
‘fuzzy convolution operation’ (source ERDAS, 8.6):
S s s Wi
Tkl = = = —3
i=0j =0l =ODij|[k]
where
i = row index of window
j = column index of window
s = size of window (3, 5, or 7)
| = layer index of fuzzy set
n = number of fuzzy layers used
W = weight table for window
k = class value
D[k]= distance file value for class k
T[K] = total weighted distance of window for class k
The centre pixel is assigned the class with the maximum T[k]
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Fig. 1. Location of the field sites where floristic data were collected. Numbers inside the
Lohibehr forest indicate different compartments.
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Classified images obtained from each classification were assessed for their accuracy
assessment.

Accuracy assessment; To assess the accuracy, an independent dataset for the
vegetation and non vegetation was collected from 70 sites. Different measures of
accuracy for instance ‘overall accuracy’, the ‘confusion matrix’, ‘procedure’s’ and
‘user’s’ accuracy; ‘error of commission/omission’, and the ‘kappa coefficient’ were
examined in the error analysis. ‘Overall accuracy’ was calculated by dividing the number
of validation pixels that were classified correctly by the total number of validation pixels
for all classes. The ‘error matrix’ (also referred as ‘confusion matrix’ or ‘contingency
table”) was used to illustrate class agreement and error in greater detail by illustrating the
relationship between the independent validation sites (of the known class) and the
percentage of those pixels actually classified into the various classes by the maximum
likelihood classifier (Jensen, 1996; 2000; Lillesand & Kiefer, 2000). Percentages of
pixels classified correctly are shown on the diagonal of the confusion matrix, while errors
of ‘commission’ (incorrect inclusion into class-row entries) and ‘omission’ (incorrect
exclusion from class column entries) can be seen off the diagonal (Lillesand & Kiefer,
2000). The ‘procedure’s accuracy’ which is a measure of omission error was computed
by dividing the number of correctly classified pixels in each category by the total number
pixels in the corresponding column. The ‘user’s accuracy’ which is a measure of
commission error, was computed by dividing the number of correctly classified pixels in
each category by the total number pixels that were classified in that category
(corresponding row total). Finally, Kappa coefficients were calculated using the
following equation (Lillesand &Kiefer, 2000):

N ixxii— i(xi+ <X )
N 2 _i(th X )

where

K = Kappa coefficient

r = number of rows in the error matrix

Xii = the number of observations in row i and column i in the major diagonal)
Xi+ = total number of observations in row i

X+i = total number of observations in column i

N = total number of observation included in matrix

Results

Four ecological communities were recognized from the TWINSPAN clustering and
ordination method. These include Ziziphus-Malcolmia, Prosopis-Chrysopogon,
Capparis-Eleusine and Salix-Saccharum plant community types (Malik & Husain, 2006)
and are used with spectral classification of SPOT XS data.

Table 1 represents the error matrices of the fuzzy supervised classification model and
Table 2 shows the accuracy totals of all the classified land-cover types. The land-cover
maps produced are given in Fig. 2 and 3.
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Table 1. Error matrix of fuzzy supervised classified map.
Class Name Aca Cap Pros Deg Cul Sac W Sett Totals
Ziziphus malcolmia 8 0 2 0 0 0 0 0 10
Capparis eleusine 1 4 0 0 1 1 0 0 7
Prosopis chrysopogon 1 0 5 0 0 0 0 0 6
Degraded land 0 0 0 8 0 0 0 2 10
Cultivated land 0 1 0 0 7 1 1 0 10
Salix saccharum plant community types 0 2 0 0 1 4 0 0 7
Water bodies 0 0 0 0 0 0 8 1 9
Settlements and barren land 0 0 0 2 1 0 1 7 11
Totals 10 7 7 10 10 6 10 10 51
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Fig. 2. Land cover maps showing the spatial distribution of vegetation classes.
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Fig. 3. Land cover maps showing the spatial distribution of non-vegetation classes.
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A total of 70 pixels were used for the calculation of the error matrix. Out of total
pixels evaluated, 45 and 51 were correctly classified into the various land-cover classes
using the two classification models respectively. The overall classification accuracy
achieved for all land-cover classes was 65.71% and 72.68% and the overall kappa
statistic was 0.62 and 0.70 for the two classifications. The Kappa statistic for the standard
supervised classification ranged from 0.40 for Capparis-Eleusine and 0.77 for water
bodies and the procedure’s and user’s accuracies ranged from 42.86% to 70.00% and
42.48% to 77.78% respectively. The E.Os and E.Cs for all land-cover classes were
between 20.00% to 57.14%.

For the fuzzy supervised classification, Ziziphus-Malcolmia community type,
degraded land and water bodies had the highest accuracy with a Kappa statistic of 0.77
and 0.87 respectively whereas vegetation types such as Capparis-Eleusine, and Salix-
Saccharum were the least accurately identified classes with an E.C of 42.84%.

The data in Tables 1-2 also indicated that non-vegetation classes were more
accurately classified as compared to vegetation classes which are due to the fact that
boundaries between these classes are clearly defined and these classes are more uniform
in their detail compared to vegetation classes. These factors resulted in higher accuracies.

Discussion

While analysing the SPOT XS data, wide variations in spectral response of a single
vegetation type were found. This could be due to varied illumination geometry of the
terrain of the study area. Careful consideration of spectral variation should be taken,
especially when simple supervised classification techniques are applied (Saxena et al.,
1992). This was accomplished by preliminary analysis of false colour composites
(FCCs), topographical sheets, available vegetation maps, and by an intensive ground truth
data collection. The results indicated that besides the obvious difficulties arising as a
result of geographical complexities in the area, classification of plant communities could
be possible by digital processing of satellite data.

A number of land-cover types were present in the SPOT XS image of the study sites.
However the colour distribution of vegetation groups did not coincide well with the
vegetation types recognized in the field. Instead different colour or tones could be
identified within each vegetation types. Certain colours appeared to be associated with
physiognomic differences between the main vegetation categories (scrub, and pine forest,
open shrubby vegetation etc.), but none of the actual vegetation types could be readily
identified. As far as broadly defined ground cover-types were concerned, satellite data
seem to be superior to the topographic maps because the topographic maps mainly reflect
physiognomic features (rock outcrops, stony sites, shrub-lands). Satellite imagery adds to
this by providing more information about the luxuriance (cover) of the vegetation
(Kalliola & Syrjénen, 1990).

These results indicate the usefulness of near infrared and visible red bands for the
separability of different classes. The near infrared band responds to green biomass and is
believed useful for species discrimination (Trisurat et al., 2000). Wolter et al., (1995)
have also suggested the use of red, infrared and mid infrared bands for the separation of
conifers, hardwood, and mixed coniferous hardwood classes, these bands were also found
useful for detecting the presence or absence of the understorey vegetation for various
degrees of canopy closure (Stenback & Congalton, 1990). Similarly, Foody & Hill (1996)
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also recommended the use of red, and near infrared for differentiation of different forest
types. The present results are also consistent with the findings of Schmidt & Skidmore
(2003).

Ground surveys revealed the presence of Broussonetia papyrifera, Dalbergia sissoo,
Prosopis juliflora, Eucalyptus sp., and Populus sp., either in small stands or interspersed
among thick Acacia modesta scrub in Compartments 3, 4, 6, 7 and 8 (Fig.1). With regard
to species recognition, accurate differentiation was difficult within thick scrub forest of
Acacia modesta. This is most likely due to following reasons: 1) emergence of Prosopis
juliflora, Broussonetia papyrifera, Eucalyptus and Populus which are not in large
contiguous areas; 2) they are in irregular, relatively small patches which are interspersed
with pure Acacia modesta even less then the pixel size of SPOT XS imagery and 3) there
is no uniform spacing. Therefore it was difficult to discriminate them on the imagery.

Barren land features have low separability from settlements and urban areas (Fig. 3),
therefore it was difficult to map separate houses and buildings from bare land features on
imagery as a large number of small dwellings were present and it was very difficult to
assign spectral signatures. These were merged into a single class of settlements and
barren land. Roads were more visible in the visible bands of SPOT XS because of their
linear features. However they were not discriminated in heavily built-up areas and under
thick vegetation cover. Gao & Skilcorn (1998) also pointed out that the NIR band
provided more detail in the non-urban areas than in the urban areas and urban features are
more readily seen in the visible red band compared to other bands. Rivers were
adequately discriminated and classified but streams and nullaha were not discriminated
using supervised classifications.

Although Prosopis juliflora and Capparis decidua dominated vegetation types were
easily separated from the scrub forest class but they were mixed with fields, barren land
with scanty scattered bushes and grasses.These factors determine the radiometric
reflectance characteristics of these land-cover types. Similarly open canopy vegetation
types often showed a much greater spectral variability than the more homogenous forest
vegetation like Acacia modesta scrub forest. The spatial resolution of the SPOT XS
(20mx20m) also prevented detailed studies on these vegetation types because the size of
a rather homogenous object would exceed the 20mx20m to reach good classification
accuracy (Kalliola & Syrjénen, 1990).

To assess the degree of correspondence between ecological classes identified from
cluster and ordination analyses and those identifiable in the remotely sensed data,
attention was focused on only classifications producing up 4 ecological groups. The two
groups classification obtained from clustering and ordination analyses essentially
separated scrub forest from flood plain vegetation. They were also easily separated from
the remotely sensed data as they were spectrally as well as statistically distinct from each
other. It is likely that these two classes are structurally different with different species
composition with different canopy structure. These factors combined to make these two
vegetation classes quite distinct spectrally from each other and from other classes such as
settlements and cultivated areas.

The classification of ecological groups produced by TWINSPAN at each level were
not tested using spectral classification, because the vegetation group identified using
TWINSPAN division cannot be spectrally separable or ecologically similar groups could
be spectrally distinct which would further lower the classification accuracy (Thomas et
al., 2003). For example in the present study, most of the vegetation classes obtained at
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the third level of TWINSPAN could be spectrally as well as ecologically distinct, but
sites classified by TWINSPAN classification as degraded forest are a combination of two
spectrally distinct vegetation classes, namely, group identified on the left side of the first
division comprise of vegetation classes such Ziziphus-Malcolmia, Capparis-Eleusine and
Prosopis-Chrysopogon where Ziziphus-Malcolmia is highly separable from Capparis-
Eleusine and Prosopis-Chrysopogon. Similarly, if classification is tested at the Third
level of division, more ecological classes could be obtained which could not be separable
spectrally. It was observed that most of the spectrally separable groups were observed at
different levels within the hierarchical divisions. This seems logical, in that it would be
expected that spectral groupings would not correspond on a one-to-one level within
hierarchy (Thomas et al., 2003).

The results indicated that the vegetation groups identified from the classification of
the remotely sensed data to some extent resembled those derived from the TWINSPAN,
agglomerative clustering and ordination analyses. In general, using multivariate and
remote sensing techniques, classification of different vegetation groups of ecological
importance is possible, although some results do show lower classification accuracies.
According to Nagendra (2001), 10-25 species in a relatively a homogenous stand can be
directly identified using remote sensed data to provide maps with accuracies of around
60-100%.

Based on spectral and spatial resolution of satellite imagery employed and lower
classification accuracies results, a three group general ecological group-based
classification is recommended instead of four vegetation groups which should include
Acacia modesta scrub, sparse vegetation characterized by Prosopis juliflora and
Capparis decidua vegetation and group defined by the flood plain vegetation along with
non-vegetated groups. These classification schemes could further improve the
classification accuracy.

The supervised fuzzy maximum likelihood classification map produced using a
convolution operation, which creates a single classification band incorporating the
contextual information to estimate the most likely class for each pixel, was on the whole
no more accurate than the standard maximum likelihood approach. Both classification
methods had approximately the same overall level of accuracy. Similarly, studies that
used the contextual classifier generally improved their accuracy by only a few percentage
points (Poulin et al., 2002). However, in the present study, few classes were more
accurately classified using a fuzzy classification procedure. This was partly because the
fuzzy classification led to a more homogenous classification that contaminated fewer
isolated pixels or small clusters of pixels of any given class, thus eliminating the salt and
paper noise in the classification. The results revealed an overall accuracy of 65.71% and
72.85. This indicates the poor performance of SPOT XS data for vegetation types
classification. This could be due to the poor spectral resolution of SPOT XS bands, which
undermines its superior spatial resolution.

Although, in this study, fuzzy supervised classification was attempted for the
classification, which produced fraction images (multi-layered -classification), that
displayed the proportion of coverage of a particular class in each pixel (Foody et al.,
1996), it did not improve the classification accuracies. One possible explanation is that
multi-layered classification was hardened to produce a thematic map of the area (single
layer). Thus the information at subpixel level was lost while hardening the fraction
images into a single layer image.
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The results of this study also indicated that classification based on species
composition or based on ecological groups to some extent is possible. Our results
disagree with the findings of Lucas (1993) and Nilson et al., (1999) that digital
classification of satellite multispectral data alone can not be used to determine the species
composition in the forest stands and could not adequately discriminate between different
forest classes. The classification accuracies of non-vegetation classes were higher than
for vegetation classes in our study, which could be attributed to their spectral
homogeneity, use of broad category scheme and the identification of training sites of
good representative signatures used for the classification process.
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