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Abstract 
 

In Pakistan in spite of few attempts for mapping land-cover types, satellite remotely sensed 

data has not been used extensively; and its potential is not being explored for providing information 

on mapping vegetation cover in general and ecological communities in particular. In this study, we 

used SPOT(Systeme Pour l'Observation de la Terre) multispectral (XS) satellite sensor data in 

visible and near infrared portion of the light spectrum as a surrogate for distribution of ecological 

vegetation groups defined by the classification and ordination methods (the most commonly used 

multivariate techniques used in floristic composition classification in vegetation ecology) and non-

vegetation classes. The results indicate that classification of vegetation groups based on species 

composition identified using classification and ordination techniques to some extent resemble to 

those groups classified using SPOT XS data with least accuracy in comparison to non-vegetation 

classes which were more homogenous and spectrally separable and were classified more accurately 

in comparison. Two classification models i.e. supervised maximum likelihood and fuzzy supervised 

classification showed similar overall level of accuracies.  The possibilities of lower classification 

accuracies and difficulties of classifying ecological communities based on the species composition 

using remotely sensor data are discussed.  
 

Introduction 
 

Satellite remote sensing (RS) has become a valuable tool for gathering information about 
land cover types and holds great potential for deriving timely and reliable information on the 
nature, extent and magnitude of land-cover (Apan, 1997; Turner, 1991), which is required for 
planning and implementation of conservation and management programmes (Nagendra, 2001; 
Zomer et al., 2002). During the past decade, digital remote sensing has become an 
increasingly important tool for mapping and monitoring and classifying vegetation resources 
around the globe (Cohen et al., 1996). This is due to the increasing availability and 
understanding of remote sensing data in general (Arora, 2002) and to the greatly expanded use 
of geographic information systems (Roy et al., 1991; Dymond et al., 1996). Resource 
scientists and managers now require spatially explicit vegetation data over extensive 
geographic areas, which mean that traditional field survey techniques, even when coupled 
with aerial photography are useful but of limited use (Cohen et al., 1996; Dwivedi et al., 
1997). Traditional methods of vegetation mapping are time-consuming and generally 
uneconomical, with data collected over long time intervals, and are particularly inefficient and 
impractical for real-time global and regional mapping of different vegetation types and other 
land-cover categories (De Fries & Townshend, 1994; San Miguel-Ayanz et al., 1997; 
Nagendra & Gadgil, 1999). Another important factor is an increased understanding that large-
scale monitoring of forest conditions is practical only if digital remote sensing is included in 
the sampling and mapping scheme (Townshend & Walsh, 2001).    
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Satellite sensors most commonly used for land-cover mapping, particularly forest 
types mapping include Landsat Thematic Mapper (TM) and Multispectral Scanner 
(MSS), airborne Thematic Mapper Simulator (TMS), Systeme Pour l'Observation de la 
Terre multispectral (SPOT XS) and Average Very High Resolution Radiometer 
(AVHRR). Among these, Landsat TM sensor data have been used extensively in forest 
type mapping (Stenback & Congalton, 1990; Hill, 1999). This is because of its improved 
spectral, spatial and radiometric resolution (Wilkie & Finn, 1996). Most of the 
investigations using sensor data have provided accurate classification results (Karteris, 
1990; Rignot et al., 1997; Singh et al., 2002).  

Although satellite remote sensing data have been extensively used for mapping and 
classifying land-cover classes, and are available at various spectral and spatial scales, 
they have not been fully exploited in Pakistan for mapping different vegetation types of 
ecological importance. Although a few attempts have been made using SPOT XS data 
(Malik et al., 1999, 2000). Yet the potential of remote sensing has yet to be explored in 
terms of providing information on ecological communities. Therefore the aim of this 
study is to map the spatial distribution of different vegetation groups classified using 
classification and ordination analysis using remote sensing techniques and assess the 
potential of SPT XS for mapping vegetative and non-vegetative classes. 
 

Materials and Methods 
 

Floristic data were collected from 90 randomly selected plots from Lohiberh study 
site (Malik & Hussain, 2006) from 30 field areas which were selected subjectively 
(Fig.1). Each field area comprised an area of 1.44 ha, which is equal to 120mx120m or 
6x6 pixels of satellite sensor data (SPOT XS). Three to five randomly located points from 
each area were sampled based on vegetation homogeneity/heterogeneity. For each plot 
floristic and geographic data were collected. The latitude and longitudes were recorded 
for each plot using a Global Positioning System (GPS). Field information about different 
vegetation types and other parameters such as deforestation, urban encroachment, grazing 
pressure, land-use/cover patterns, general topography of the area and cultivation were 
also recorded. Floristic data from each plot was recorded as a percentage cover which 
was assessed as the vertical projection onto the ground of all the above ground parts of 
the individuals expressed as a percentage of the reference area. The percentage cover 
recorded was then partitioned to the “DOMIN” scale (Kent & Coker, 1992). Floristic data 
were analyzed using TWINSPAN classification and ordination analysis for plant 
communities classification which were used for mapping their spatial distribution (Malik 
& Husain, 2006). The remote sensing data obtained on 8 June 1998 by SPOT XS sensor 
were used and were geometrically corrected with Root Mean Square Error (RMSE) of 
0.19 m. An area of original image containing the study area was subset from the full 
scene of the SPOT XS sensor data and was used for subsequent analysis. 

The classification schemes included vegetation groups identified using hierarchical 
classification of floristic data and three other land-cover classes such as ‘settlements & 
barren-land’, ‘water bodies’ ‘land-area used for cultivation purposes and degraded land. 
Fuzzy supervised classification using maximum likelihood algorithm for the image 
classification which takes into account that there are pixels of mixed makeup, (a pixel 
which cannot be definitely assigned to one category) (Jensen, 1996). ‘Fuzzy convolution 
operation’ was performed on the fuzzy classified image, which creates a single 
classification layer by calculating the total weighted inverse distance of all the classes in 
a window of pixels. Then it assigns the centre pixel in the class with the largest total 
inverse distance summed over the entire set of fuzzy classification layers. This has the 
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effect of creating a context-based classification to reduce the speckle in the classification. 
Classes with a very small distance value remain unchanged while classes with higher 
distance values may change to a neighbouring value if there are a sufficient number of 
neighbouring pixels with class values and small corresponding distance values. A 3 x 3 
window size was used in the convolution process. The following equation was used in the 
‘fuzzy convolution operation’ (source ERDAS, 8.6): 
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where 

i = row index of window 

j = column index of window 

s = size of window (3, 5, or 7) 

l = layer index of fuzzy set 

n = number of fuzzy layers used 

W = weight table for window 

k = class value 

D[k]= distance file value for class k 

T[k] = total weighted distance of window for class k 

The centre pixel is assigned the class with the maximum T[k] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Location of the field sites where floristic data were collected. Numbers inside the 

Lohibehr forest indicate different compartments. 
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Classified images obtained from each classification were assessed for their accuracy 

assessment. 

Accuracy assessment: To assess the accuracy, an independent dataset for the 

vegetation and non vegetation was collected from 70 sites. Different measures of 

accuracy for instance ‘overall accuracy’, the ‘confusion matrix’, ‘procedure’s’ and 

‘user’s’ accuracy; ‘error of commission/omission’, and the ‘kappa coefficient’ were 

examined in the error analysis. ‘Overall accuracy’ was calculated by dividing the number 

of validation pixels that were classified correctly by the total number of validation pixels 

for all classes. The ‘error matrix’ (also referred as ‘confusion matrix’ or ‘contingency 

table’) was used to illustrate class agreement and error in greater detail by illustrating the 

relationship between the independent validation sites (of the known class) and the 

percentage of those pixels actually classified into the various classes by the maximum 

likelihood classifier (Jensen, 1996; 2000; Lillesand & Kiefer, 2000). Percentages of 

pixels classified correctly are shown on the diagonal of the confusion matrix, while errors 

of ‘commission’ (incorrect inclusion into class-row entries) and ‘omission’ (incorrect 

exclusion from class column entries) can be seen off the diagonal (Lillesand & Kiefer, 

2000). The ‘procedure’s accuracy’ which is a measure of omission error was computed 

by dividing the number of correctly classified pixels in each category by the total number 

pixels in the corresponding column. The ‘user’s accuracy’ which is a measure of 

commission error, was computed by dividing the number of correctly classified pixels in 

each category by the total number pixels that were classified in that category 

(corresponding row total). Finally, Kappa coefficients were calculated using the 

following equation (Lillesand &Kiefer, 2000): 
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where 

K = Kappa coefficient  

r = number of rows in the error matrix 

xii = the number of observations in row i and column i in the major diagonal) 

xi+ = total number of observations in row i  

x+i = total number of observations in column i  

N = total number of observation included in matrix  

 

Results 

 

Four ecological communities were recognized from the TWINSPAN clustering and 

ordination method. These include Ziziphus-Malcolmia, Prosopis-Chrysopogon, 

Capparis-Eleusine and Salix-Saccharum plant community types (Malik & Husain, 2006) 

and are used with spectral classification of SPOT XS data. 

Table 1 represents the error matrices of the fuzzy supervised classification model and 

Table 2 shows the accuracy totals of all the classified land-cover types. The land-cover 

maps produced are given in Fig. 2 and 3. 
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Table 1. Error matrix of fuzzy supervised classified map. 
Class Name Aca Cap Pros Deg Cul Sac W Sett Totals 

Ziziphus malcolmia 8 0 2 0 0 0 0 0 10 

Capparis eleusine 1 4 0 0 1 1 0 0 7 

Prosopis chrysopogon 1 0 5 0 0 0 0 0 6 
Degraded land 0 0 0 8 0 0 0 2 10 

Cultivated land 0 1 0 0 7 1 1 0 10 

Salix saccharum plant community types 0 2 0 0 1 4 0 0 7 
Water bodies 0 0 0 0 0 0 8 1 9 

Settlements and barren land 0 0 0 2 1 0 1 7 11 

Totals 10 7 7 10 10 6 10 10 51 

 

 
 

Fig. 2. Land cover maps showing the spatial distribution of vegetation classes. 
 

 

    
Fig. 3. Land cover maps showing the spatial distribution of non-vegetation classes. 

Legend 
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A total of 70 pixels were used for the calculation of the error matrix. Out of total 

pixels evaluated, 45 and 51 were correctly classified into the various land-cover classes 

using the two classification models respectively. The overall classification accuracy 

achieved for all land-cover classes was 65.71% and 72.68% and the overall kappa 

statistic was 0.62 and 0.70 for the two classifications. The Kappa statistic for the standard 

supervised classification ranged from 0.40 for Capparis-Eleusine and 0.77 for water 

bodies and the procedure’s and user’s accuracies ranged from 42.86% to 70.00% and 

42.48% to 77.78% respectively. The E.Os and E.Cs for all land-cover classes were 

between 20.00% to 57.14%.  

For the fuzzy supervised classification, Ziziphus-Malcolmia community type, 

degraded land and water bodies had the highest accuracy with a Kappa statistic of 0.77 

and 0.87 respectively whereas vegetation types such as Capparis-Eleusine, and Salix-

Saccharum were the least accurately identified classes with an E.C of 42.84%.  

The data in Tables 1-2 also indicated that non-vegetation classes were more 

accurately classified as compared to vegetation classes which are due to the fact that 

boundaries between these classes are clearly defined and these classes are more uniform 

in their detail compared to vegetation classes. These factors resulted in higher accuracies. 

 

Discussion 

 

While analysing the SPOT XS data, wide variations in spectral response of a single 

vegetation type were found. This could be due to varied illumination geometry of the 

terrain of the study area. Careful consideration of spectral variation should be taken, 

especially when simple supervised classification techniques are applied (Saxena et al., 

1992). This was accomplished by preliminary analysis of false colour composites 

(FCCs), topographical sheets, available vegetation maps, and by an intensive ground truth 

data collection. The results indicated that besides the obvious difficulties arising as a 

result of geographical complexities in the area, classification of plant communities could 

be possible by digital processing of satellite data.  

A number of land-cover types were present in the SPOT XS image of the study sites. 

However the colour distribution of vegetation groups did not coincide well with the 

vegetation types recognized in the field. Instead different colour or tones could be 

identified within each vegetation types. Certain colours appeared to be associated with 

physiognomic differences between the main vegetation categories (scrub, and pine forest, 

open shrubby vegetation etc.), but none of the actual vegetation types could be readily 

identified. As far as broadly defined ground cover-types were concerned, satellite data 

seem to be superior to the topographic maps because the topographic maps mainly reflect 

physiognomic features (rock outcrops, stony sites, shrub-lands). Satellite imagery adds to 

this by providing more information about the luxuriance (cover) of the vegetation 

(Kalliola & Syrjänen, 1990). 

These results indicate the usefulness of near infrared and visible red bands for the 

separability of different classes. The near infrared band responds to green biomass and is 

believed useful for species discrimination (Trisurat et al., 2000). Wolter et al., (1995) 

have also suggested the use of red, infrared and mid infrared bands for the separation of 

conifers, hardwood, and mixed coniferous hardwood classes, these bands were also found 

useful for detecting the presence or absence of the understorey vegetation for various 

degrees of canopy closure (Stenback & Congalton, 1990). Similarly, Foody & Hill (1996) 
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also recommended the use of red, and near infrared for differentiation of different forest 

types. The present results are also consistent with the findings of Schmidt & Skidmore 

(2003).  

Ground surveys revealed the presence of Broussonetia papyrifera, Dalbergia sissoo, 

Prosopis juliflora, Eucalyptus sp., and Populus sp., either in small stands or interspersed 

among thick Acacia modesta scrub in Compartments 3, 4, 6, 7 and 8 (Fig.1). With regard 

to species recognition, accurate differentiation was difficult within thick scrub forest of 

Acacia modesta. This is most likely due to following reasons: 1) emergence of Prosopis 

juliflora, Broussonetia papyrifera, Eucalyptus and Populus which are not in large 

contiguous areas; 2) they are in irregular, relatively small patches which are interspersed 

with pure Acacia modesta even less then the pixel size of SPOT XS imagery and 3) there 

is no uniform spacing.  Therefore it was difficult to discriminate them on the imagery.  

Barren land features have low separability from settlements and urban areas (Fig. 3), 

therefore it was difficult to map separate houses and buildings from bare land features on 

imagery as a large number of small dwellings were present and it was very difficult to 

assign spectral signatures. These were merged into a single class of settlements and 

barren land. Roads were more visible in the visible bands of SPOT XS because of their 

linear features. However they were not discriminated in heavily built-up areas and under 

thick vegetation cover. Gao & Skilcorn (1998) also pointed out that the NIR band 

provided more detail in the non-urban areas than in the urban areas and urban features are 

more readily seen in the visible red band compared to other bands. Rivers were 

adequately discriminated and classified but streams and nullaha were not discriminated 

using supervised classifications.  

Although Prosopis juliflora and Capparis decidua dominated vegetation types were 

easily separated from the scrub forest class but they were mixed with fields, barren land 

with scanty scattered bushes and grasses.These factors determine the radiometric 

reflectance characteristics of these land-cover types. Similarly open canopy vegetation 

types often showed a much greater spectral variability than the more homogenous forest 

vegetation like Acacia modesta scrub forest. The spatial resolution of the SPOT XS 

(20mx20m) also prevented detailed studies on these vegetation types because the size of 

a rather homogenous object would exceed the 20mx20m to reach good classification 

accuracy (Kalliola & Syrjänen, 1990). 

To assess the degree of correspondence between ecological classes identified from 

cluster and ordination analyses and those identifiable in the remotely sensed data, 

attention was focused on only classifications producing up 4 ecological groups. The two 

groups classification obtained from clustering and ordination analyses essentially 

separated scrub forest from flood plain vegetation. They were also easily separated from 

the remotely sensed data as they were spectrally as well as statistically distinct from each 

other. It is likely that these two classes are structurally different with different species 

composition with different canopy structure. These factors combined to make these two 

vegetation classes quite distinct spectrally from each other and from other classes such as 

settlements and cultivated areas.  

The classification of ecological groups produced by TWINSPAN at each level were 

not tested using spectral classification, because the vegetation group identified using 

TWINSPAN division cannot be spectrally separable or ecologically similar groups could 

be spectrally distinct which would further lower the classification accuracy (Thomas et 

al., 2003). For example in the present study, most of the vegetation classes obtained at 
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the third level of TWINSPAN could be spectrally as well as ecologically distinct, but 

sites classified by TWINSPAN classification as degraded forest are a combination of two 

spectrally distinct vegetation classes, namely, group identified on the left side of the first 

division comprise of vegetation classes such Ziziphus-Malcolmia, Capparis-Eleusine and 

Prosopis-Chrysopogon where Ziziphus-Malcolmia is highly separable from Capparis-

Eleusine and Prosopis-Chrysopogon. Similarly, if classification is tested at the Third 

level of division, more ecological classes could be obtained which could not be separable 

spectrally. It was observed that most of the spectrally separable groups were observed at 

different levels within the hierarchical divisions. This seems logical, in that it would be 

expected that spectral groupings would not correspond on a one-to-one level within 

hierarchy (Thomas et al., 2003). 

The results indicated that the vegetation groups identified from the classification of 

the remotely sensed data to some extent resembled those derived from the TWINSPAN, 

agglomerative clustering and ordination analyses. In general, using multivariate and 

remote sensing techniques, classification of different vegetation groups of ecological 

importance is possible, although some results do show lower classification accuracies. 

According to Nagendra (2001), 10-25 species in a relatively a homogenous stand can be 

directly identified using remote sensed data to provide maps with accuracies of around 

60-100%.  

Based on spectral and spatial resolution of satellite imagery employed and lower 

classification accuracies results, a three group general ecological group-based 

classification is recommended instead of four vegetation groups which should include 

Acacia modesta scrub, sparse vegetation characterized by Prosopis juliflora and 

Capparis decidua vegetation and group defined by the flood plain vegetation along with 

non-vegetated groups. These classification schemes could further improve the 

classification accuracy.  

The supervised fuzzy maximum likelihood classification map produced using a 

convolution operation, which creates a single classification band incorporating the 

contextual information to estimate the most likely class for each pixel, was on the whole 

no more accurate than the standard maximum likelihood approach.  Both classification 

methods had approximately the same overall level of accuracy. Similarly, studies that 

used the contextual classifier generally improved their accuracy by only a few percentage 

points (Poulin et al., 2002). However, in the present study, few classes were more 

accurately classified using a fuzzy classification procedure. This was partly because the 

fuzzy classification led to a more homogenous classification that contaminated fewer 

isolated pixels or small clusters of pixels of any given class, thus eliminating the salt and 

paper noise in the classification. The results revealed an overall accuracy of 65.71% and 

72.85. This indicates the poor performance of SPOT XS data for vegetation types 

classification. This could be due to the poor spectral resolution of SPOT XS bands, which 

undermines its superior spatial resolution.  

Although, in this study, fuzzy supervised classification was attempted for the 

classification, which produced fraction images (multi-layered classification), that 

displayed the proportion of coverage of a particular class in each pixel (Foody et al., 

1996), it did not improve the classification accuracies. One possible explanation is that 

multi-layered classification was hardened to produce a thematic map of the area (single 

layer). Thus the information at subpixel level was lost while hardening the fraction 

images into a single layer image.  
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The results of this study also indicated that classification based on species 

composition or based on ecological groups to some extent is possible. Our results 

disagree with the findings of Lucas (1993) and Nilson et al., (1999) that digital 

classification of satellite multispectral data alone can not be used to determine the species 

composition in the forest stands and could not adequately discriminate between different 

forest classes. The classification accuracies of non-vegetation classes were higher than 

for vegetation classes in our study, which could be attributed to their spectral 

homogeneity, use of broad category scheme and the identification of training sites of 

good representative signatures used for the classification process.  
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