

HIGH YIELDING DESI CHICKPEA (*CICER ARIETINUM L.*) VARIETY “NIFA-2005”

G. S. S. KHATTAK¹, M. ASHRAF², ROSHAN ZAMIR¹ AND I. SAEED¹

¹*Nuclear Institute for Food and Agriculture (NIFA), Peshawar, NWFP*

²*Department of Botany, Univesity of Faisalabad, Faisalabad*

Email: gssktt@yahoo.com

Abstract

The seeds of a local chickpea variety Pb-91 were irradiated at 0.30 KGy doses of gamma rays using ⁶⁰Co gamma cell and raised M₁ generation at Nuclear Institute for Food and Agriculture (NIFA) during 1994-95. M₂ to M₆ generations were raised along with parents and standard varieties from 1996 to 2000 and made selections on the basis of more pods and branches per plant, large seed size and good plant type. Performance of the line CMN-257 along with standard varieties was evaluated in various replicated yield trials and screened for diseases from 2000-2004. The proposal of the mutant CMN-257 was submitted for approval as commercial variety for NWFP to the Provincial Seed Council meeting held on 19th September 2005 at NWFP Agricultural University, Peshawar. The Provincial Seed Council approved the mutant CMN-257 as a commercial variety under the name “NIFA-2005” for general cultivation in NWFP.

The major improvements in CMN-257 are manifested in the form of increase in seed size and erect plant type with stiff stem as compared to standards NIFA-88 and NIFA-95. The large seed size of CMN-257 is the main contributing factor towards increase in seed yield compared to NIFA-88 and NIFA-95. Erect plant type and stiff stem of CMN-257 helps in showing resistance to lodging, which reduces seed yield losses. Pods per plant, branches per plant, seeds per pod and protein contents of CMN-257 compare favorably with standards NIFA-88 and NIFA-95. CMN-257 has 16 % and 48 % high seed yield potential compared to the standard varieties NIFA-88 and NIFA-95. Its experimental seed yield was 1994 kg ha⁻¹. CMN-257 also showed tolerance to wilt/root rot and chickpea blight.

Introduction

Chickpea is one of the major rabi pulse crops, which is the only source of income for the poor farmers living in most dry and low fertile lands of Pakistan. In rabi season, the chickpea growing areas can not be utilized for any other crops due to their low fertility and scarcity of water. Rains are the only source of moisture in major chickpea growing areas in NWFP. In D. I. Khan some farmers have started chickpea cultivation on irrigated areas in rice belt and on the fields where the available irrigation facility is insufficient for cultivation of wheat crop. A new and profitable utilization of chickpea crop as goat and sheep grazing at seedling stage in irrigated areas of D. I. Khan is in practice. The chickpea crop utilization as grazing fields returns at least Rs. 1 per goat or sheep per day to the farmers. Chickpea green fleshy leaves and stem at pre-flowering stage is one of the most popular winter vegetables amongst people living in southern districts of NWFP, which also returns reasonable amount and provide employment opportunities to the growers.

The research work for the improvement of chickpea is being carried out at Agricultural Research Station (ARS), Karak, Agricultural Research Institute (ARI), D. I. Khan and Nuclear Institute for Food and Agriculture (NIFA), Peshawar in NWFP. ARS, Karak has evolved a number of chickpea varieties, which are being successfully cultivated in major chickpea growing areas in the province. Two desi mutant varieties, NIFA-88 approved in 1990, NIFA-95 approved in 1996 and one kabuli mutant variety, Hassan-2k approved in 2000 have been evolved by NIFA, Peshawar. NIFA's breeders have an advantage to select and evaluate chickpea breeding material on clay soil with high water table. Thus the breeding material developed at NIFA has the capability to resist iron deficiency and responsive to high inputs, which cannot be achieved by developing chickpea breeding material on sandy soil.

The new chickpea variety "NIFA-2005" has large seed size and stiff stem along with high yield potential compared to the earlier varieties developed/evolved by NIFA i.e. NIFA-88 and NIFA-95. NIFA-2005 will replace NIFA-88 and NIFA-95. The proposed chickpea variety will also be the inclusion of new genetic makeup in the existing gene pool available in the form of desi chickpea varieties in the province. This variety is very suitable for D. I. Khan environmental conditions particularly irrigated areas. Development and evolution of the new desi chickpea variety "NIFA-2005" is described herein.

Materials and Methods

The seeds of a local chickpea variety Pb-91 were irradiated at 0.30 KGy doses of gamma rays using ^{60}Co gamma cell and raised M_1 generation at Nuclear Institute for Food and Agriculture (NIFA) during 1994-95. All M_1 plants were harvested individually and planted as plant progeny rows in M_2 population along with parent and standard varieties during 1995-1996. Selections as single plant progeny rows were made in M_2 populations on the basis of more pods and branches per plant, large seed size and good plant type. M_3 , M_4 , M_5 and M_6 generations of high yielding mutants were raised as line progeny rows along with parent and standard varieties to confirm the desired breeding behaviour of the selected mutants from 1996-2000. Performance of "NIFA-2005" along with standard varieties was evaluated in various replicated yield trials and screened for diseases during 2000-2004. Breeding history of chickpea variety "NIFA-2005" is presented in chronological order in Table 1. All replicated yield trials were conducted using Randomized Complete Block Design (RCBD) with plant-to-plant and row-to-row spacing of 10 and 30 cm, respectively. The row was 4m long and numbers of rows in PYT were 4, and in all other trials, 6 rows per plot per replication. The yield trials data were analyzed according to Steel & Torrie (1980).

Results

Results of the preliminary yield trial conducted at NIFA during 2000-01 and advanced lines yield trial conducted during 2001-02 are presented in Table 2 and 3. CMN-257 produced the highest yield of 3250 kg ha^{-1} as compared to NIFA-88 (Standard check) with a yield of 2604 kg ha^{-1} in preliminary yield trial. In advanced lines yield trial, CMN-257 produced seed yield of 1253 kg ha^{-1} as compared to the two standards check varieties i.e., NIFA-88 and NIFA-95 with yields of 490 kg ha^{-1} and 431 kg ha^{-1} , respectively.

Table 1. Breeding history of the proposed chickpea variety “NIFA-2005” is described in chronological order.

S. No.	Year	F. Gen./ Trial	Remarks
1.	1994-95	M ₁	Planted M ₁ and harvested all plants individually
2.	1995-96	M ₂	Selected single plants for high yield
3.	1996-97	M ₃	Confirmation of breeding behavior and single lines selection
4.	1997-2000	M ₄ -M ₆	Generation advancement and confirmation of breeding behavior as line progeny rows
5.	2000-2001	Evaluation in trials	Evaluated CMN-257 in PYT at NIFA and screened for diseases
6.	2001-2002	Evaluation in trials	Evaluated CMN-257 in ALYT and AYT
7.	2002-2003	Evaluation in trials	Evaluated CMN-257 in AYT and NUYT
8.	2003-2004	Evaluation in trials	Evaluated CMN-257 in AYT and NUYT, and screened for diseases

Table 2. Yield performance of CMN-257 in Preliminary yield trial (PYT) conducted during 2000-01 at NIFA, Peshawar.

Entry	Parentage	Yield kg ha ⁻¹
CMN-218-2	Mutant derived from K850	2083
CMN-224-4-2	-do-	1854
CMN-227-1	-do-	2896
CMN-220-1	-do-	2021
CMN-213-3	-do-	3011
CMN-204-1	-do-	2604
CMN-228-1	-do-	2573
CMN-239-2	Mutant derived from NEC138-2	2896
CMN-257	Mutant derived from Pb-91	3250
CMN-251	-do-	2511
NIFA-88	Mutant derived from 6153	2604
SE	-	31.5
LSD 5%	-	210

Table 3. Yield performance of CMN-257 in advanced lines yield trial (ALYT) conducted during 2001-02 at NIFA, Peshawar.

Entry	Parentage	Yield kg ha ⁻¹
CMN-210-3	Mutant derived from K850	328
CMN-227-1	-do-	592
CMN-227-2	-do-	414
CMN-213-3	-do-	499
CMN-231-1	Mutant derived from NEC138-2	528
CPSI-19/99	ICARDA-Selection	832
CPSI-21/99	-do-	606
CPSI-22/99	-do-	707
CMN-257	Mutant derived from Pb-91	1253
NIFA-88	Mutant derived from 6153	490
NIFA-95	-do-	431
SE	-	25.6
LSD 5%	-	145

Table 4. Yield performance and % increase in seed yield of CMN-257 in adaptation yield trial conducted at various locations in NWFP during 2002-03.

Entry	Parentage	Yield Kg ha ⁻¹			% Increase
		NIFA	Karak	Ave.	
CMN-727	Mutant derived from C-44	1413	850	1132	4.6
CMN-782-5	-do-	983	783	883	25.6
CMN-730-2	-do-	1480	650	1065	10.0
CMN-561-7	-do-	833	750	792	33.3
CMN-257	Mutant derived from Pb-91	1607	767	1187	-
Sheenghar-2000	Standard check variety	743	750	747	37.1
NIFA-95	Standard check variety	990	667	829	30.2
SE	-	28.4	38.4	-	-
LSD (5%)	-	130	185	-	-

Table 5. Yield performance and % increase in seed yield of CMN-257 in adaptation yield trial conducted at various locations in NWFP during 2003-04.

Entry	Parentage	Yield Kg ha ⁻¹				% Increase
		NIFA	D.I.Khan	Karak	Ave.	
CMN-727	Mutant derived from C-44	2167	2431	868	1822	6.5
CMN-782-5	-do-	2234	1910	683	1609	17.4
CMN-730-2	-do-	2083	2517	880	1827	6.3
CMN-561-7	-do-	2094	1646	1238	1659	14.9
CMN-257	Mutant derived from Pb-91	2380	2299	1169	1949	-
NIFA-88	Standard check variety	1883	1865	1111	1620	16.9
NIFA-95	Standard check variety	1686	1517	1042	1415	27.4
SE	-	25	38.5	-	-	-
LSD (5%)	-	84	288	-	-	-

CMN-257 produced higher average seed yield of 1187 kg ha⁻¹ compared to Sheenghar-2000 (747 kg ha⁻¹) and NIFA-95 (829 kg ha⁻¹) in adaptation yield trial conducted at NIFA, Peshawar and ARS, Karak during 2002-03 (Table 4). The % increase shown by CMN-257 over Sheenghar-2000 and NIFA-95 was 37% and 30%, respectively. Similarly in adaptation yield trial conducted during 2003-04, CMN-257 was the highest yielding genotype with an average yield of 1949 kg ha⁻¹ compared to NIFA-88 (1620 kg ha⁻¹) and NIFA-95 (1415 kg ha⁻¹). The % increase in seed yield of CMN-257 over NIFA-88 and NIFA-95 was 16% and 27%, respectively (Table 5).

The results of NUYTs conducted by Pulses Coordinator, Islamabad across different locations throughout the country during 2002-2003 and 2003-04 are presented in Table 6 and 7. Seed yield of CMN-257 was among the high yielding group of entries in both years. CMN-257 produced 1285 kg ha⁻¹ and 1482 kg ha⁻¹ in NUYTs conducted during 2002-03 and 2003-04, respectively.

Important agronomic, morphological and qualitative characteristics of CMN-257 along with parent and standards are presented in Table 8. CMN-257 showed large seed size, erect, tall and stiff stem plant type, and high harvest index compared to the check varieties NIFA-88 and NIFA-95. CMN-257 showed tolerance to wilt/root rot and chickpea blight (Table 9 and 10).

Table 8. Important agronomic/morphological/qualitative characteristics of CMN-257 as compared to parent (Pb-91) and standards NIFA-88 and NIFA-95. (Average of four years 2000-2004).

Characters	CMN-257	Pb-91	NIFA-88	NIFA-95
Days to flower	117 ± 6	117 ± 7	119 ± 5	117 ± 3
Days to maturity	177 ± 7	175 ± 5	180 ± 8	184 ± 8
Plant height (cm)	81 ± 5	72 ± 6	73 ± 5	71 ± 7
Pods per plant	40 ± 4	37 ± 3	33 ± 3	36 ± 4
Seed per pod	2	2	2	2
Primary branches per plant	5 ± 1	4 ± 1	4 ± 1	4 ± 1
Harvest Index (%)	35.5 ± 3	30.2 ± 4	29.7 ± 4	28.6 ± 3
100 seed weight (g)	24 ± 1	25 ± 1	17 ± 1	17 ± 1
Seed protein (%)	23.8	23.6	23.5	23.7
Seed coat color	Reddish brown	Dark brown	Light brown	Light brown
Anthocyanin pigmentation	Present	Present	Present	Present
Reaction to gram blight	Tolerant	Tolerant	Tolerant	Tolerant
Reaction to wilt	Tolerant	Tolerant	Tolerant	Tolerant

Discussion

The recently evolved desi chickpea variety “NIFA-2005” has been developed through induced mutations (gamma rays). Mutation breeding particularly induced mutation has played an important role in developing many crop varieties in various parts of the world apart from enhancing the desired genetic variability in different traits of plants (Micke, 1988; Haq *et al.*, 2003). Two desi chickpea varieties i.e. NIFA-88, NIFA-95, a kabuli chickpea variety Hassan-2k have been developed through induced mutation and evolved for general cultivation in NWFP on the basis of high yield potential (Hassan & Khan, 1991; Hassan *et al.*, 1997 and 2001). A chickpea variety CM-98 developed through induced mutation and a mungbean variety NM 98 developed through cross breeding have been evolved on the basis of high yielding for general cultivation in Punjab province (Haq *et al.*, 1999; Siddique *et al.*, 1999).

NIFA-2005 manifested improvement in the form of increase in seed size, high harvest index along with more vegetative growth and stiff stem as compared to standard varieties NIFA-88 and NIFA-95. Because of the quick and more vegetative growth, NIFA-2005 crop can be utilized for goat and sheep grazing at seedling stage in irrigated areas of D. I. Khan. The more vegetative growth of “NIFA-2005” will ensure more production of green fleshy leaves and stem at pre-flowering stage, which is one of the most popular winter vegetable amongst people living in southern districts of NWFP. The high yielding, large seed size with desired ideotype chickpea mutants suitable for NWFP chickpea growing areas developed through induced mutation have been reported by many researchers (Hassan & Khan, 1991; Javed & Hassan 1995; Khattak *et al.*, 2003, 2004). The large seed size and high harvest index in chickpea has also been reported by many researchers as an important seed yield component (Waldia *et al.*, 1991, 1996; Mehla *et al.*, 2000, Khattak *et al.*, 2003, 2004).

Table 10. Reaction of CMN-257 to chickpea wilt and blight as compared to the standards at NIAB, Faisalabad during 2001-02.

Line/Entry	Reaction to wilt	Reaction to blight
CMN-7	Tolerant	Tolerant
CMN-122	Highly susceptible	Tolerant
CMN-561-7	Susceptible	Tolerant
CMN-727	Highly susceptible	Tolerant
CMN-728-5	Highly susceptible	Tolerant
CMN-730-2	Susceptible	Tolerant
CMN-96-29	Resistant	Tolerant
CMN-96-59	Resistant	Tolerant
CMN-96-117	Tolerant	Tolerant
CMN-257	Tolerant	Tolerant
NIFA-88	Tolerant	Tolerant
NIFA-95	Tolerant	Tolerant

Chickpea wilt/root rot rating score.

Disease severity	Score	Disease reaction
0 % plants infested	1	Highly resistant (HR)
6-10 % plants infested	3	Resistant (R)
21-40 % plants infested	5	Moderately resistant (MR)
61-80 % plants infested	7	Susceptible (S)
100 % plants infested	9	Highly susceptible (HS)

Chickpea blight rating score.

Disease severity	Score	Disease reaction
No lesions/disease visible on any plant	1	Highly resistant (HR)
Lesions visible on less than 10% of the plants, no stem girdling	3	Resistant (R)
Lesions visible on up to 25% of the plants, stem girdling on less than 10% of the plants but little damage	5	Tolerant (T)
Lesions present on most plants, stem girdling on less than 50% of the plants, resulting in the death of a few plants and causing considerable damage	7	Susceptible (S)
Lesions profuse on all plants, stem girdling present on more than 50% of the plants and death of most plants	9	Highly susceptible (HS)

References

Haq, M.A., M. Saddiq and M. Hassan. 1999. *NIAB, annual report*, p. 15-16.

Haq, M.A., M. Hassan, T.M. Shah, H. Ali, B.M. Atta and G.S.S. Khattak. 2003. Induction of genetic variability for plant type and disease resistance in chickpea, and its utilization in breeding. In: *Sustainable Utilization of Plant Genetic Resources for Agricultural Production: Proceeding of Seminar*, 17-19 December 2002, NARC, Islamabad, Pakistan. (Eds.): R. Anwar, M.S. Bhatti, J. Takahshi and S. Masood. Pakistan Agricultural Research Council, Islamabad, Pakistan. Pages 28-37.

Hassan, S., A.J. Khan, R. Zamir, G.S.S. Khattak and M. Tariq. 2001. Gamma rays induced high yielding Kabuli type chickpea mutant variety "Hassan-2k". *Pakistan Journal of Botany*, 33(special issue): 703-707.

Hassan, S. and I. Khan. 1991. A high yielding chickpea mutant variety NIFA-88 developed through induced mutations. *Sarhad. J. Agri.*, 6: 745-750.

Hassan, S., M.A. Javed, A. Jabbar Khan and M. Tariq. 1997. Induction of high yielding and high protein containing chickpea mutant variety through gamma radiation. *Sci. Int.*, 9(2): 147-149.

Javed, M.A. and S. Hassan. 1995. Screening chickpea mutants for resistance to gram blight (*Ascochyta rabiei*). *International Chickpea and Pigeonpea Newsletter*, 2: 29-30.

Khattak, G.S.S., R. Zamir, M.J. Qureshi and T. Muhammad. 2003. Development of high yielding and disease resistant chickpea (*Cicer arietinum* L.) mutants In: *Sustainable Utilization of Plant Genetic Resources for Agricultural Production: Proceeding of Seminar*, 17-19 December 2002, NARC, Islamabad, Pakistan (Eds.): R. Anwar, M.S. Bhatti, J. Takahshi and S. Masood. Pakistan Agricultural Research Council, Islamabad, Pakistan. Pages 73-77.

Khattak, G.S.S., R. Zamir, T. Muhammad and S. Rehman. 2004. Development of high yielding, bold seeded and disease resistant kabuli chickpea (*Cicer arietinum* L.) mutants through induced mutations. In: *Proceedings of National Executive Symposium on Technologies Developed for Commercialization-Challenges and Opportunities*, 21-22 September 2003, Pearl Continental Hotel, Peshawar, Pakistan (Eds.): Ihsanullah and S. U. Khattak. Nuclear Institute for Food and Agriculture, Peshawar, Pakistan. Pages 52-56.

Mehla, I.S., R.S. Waldia, V.P. Singh, V.S. Lather and S.S. Dahiya. 2000. Association of seed mass groups and seed yield in kabuli chickpea. *International Chickpea. Newsletter*, 7: 7-8.

Micke, A. 1988. Genetic improvement of grain legume using induced mutation. Improvement of grain legume production using induced mutation. IAEA Vienna. PP 1-51.

Siddique, S.M., G. Sarwar, G.S.S. Khattak and M. Saleem. 1999. Development of mungbean variety "NIAB Mung 98" involving induced mutants through conventional breeding. *Mutation Breeding Newsletter*, 44: 11-12.

Steel, R.G.D and J.H. Torrie. 1980. *Principles and procedures of statistics*. Mc Graw Hill, New York.

Waldia, R.S., C. Ram, D.R. Sood, R.C. Punia and A.K. Chobra. 1991. Variation for seed mass, seedling vigour, and quality attributes in desi and kabuli chickpea genotypes. *International Chickpea Newsletter*, 24: 15-17.

Waldia, R.S., V.P. Singh, D.R. Sood, P.K. Sardana and I.S. Mehla. 1996. Association and variation among cooking quality traits in kabuli chickpea (*Cicer arietinum* L.). *J. Food. Sci. Tech.*, 33(5): 397-402.

(Received for publication 30 March 2006)