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Abstract

The effect of root zone salinity on two hexaploid bread wheat (Triticum aestivum L.) cultivars
(S-24, salt-tolerant; MH-97, salt-sensitive) was appraised at different growth stages. Grains of the
two cultivars were sown in Petri-plates at two salt levels (0 and 150 mM of NaCl). After 8 days of
germination, the seedlings were transplanted into plastic tubs containing either 0 or 150 mM of
NaCl in full strength Hoagland’s nutrient solution. Changes in growth, lipid peroxidation and
phenolic contents were examined in the cultivars at different growth stages (vegetative, booting and
reproductive) under salt stress. Higher MDA contents were observed in cv. MH-97 as compared to
that in S-24 under saline regimes at different growth stages. Salt-induced effect in terms of lipid
peroxidation was more pronounced at the booting and reproductive stages as compared with that at
the vegetative stage in both cultivars, however, the accumulation of leaf total phenolics was higher
at the booting stage as compared with that at the other stages. A significant variability in salt
response was found among different growth stages in both cultivars. Correlations among growth
and biochemical parameters showed a significant negative correlation between growth and MDA
content but a positive correlation between growth and phenolic contents, which shows that
phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by
showing enhanced antioxidant activity which resulted in reduced membrane damage and hence
improved growth.

Introduction

Salt tolerance in higher plants is regulated by a number of different physiological and
biochemical processes. There is evidence that high levels of salt cause an unbalance of
the cellular ions leading in both ion toxicity and osmotic stress (Ashraf & Harris, 2004),
leading to the production of active O, species (AOS) such as superoxide (O2’), hydrogen-
peroxide (H20>) and hydroxyl radicals (OH") (Neill et al., 2002). The production of AOS
creates oxidative stress in plants exposed to salinity or other stresses. For example, AOS
have been shown to cause oxidative damage to DNA and proteins and peroxidation of
lipid structures (Neill et al., 2002; Ashraf & Foolad 2007; Ashraf, 2009) as well as
inactivation of antioxidant enzymes (Teisseire & Guy, 2000). Some reports suggest that
resistance to oxidative stress is one of the prominent aspects of plant salt tolerance
(Mittova et al., 2002; Badawi et al., 2004). It has been shown that under stress
conditions, MDA (malondialdehyde) accumulation takes place in plants due to membrane
lipid peroxidation. It is an effective means of assessing oxidative stress induced
membrane damage (Shao et al., 2005) and cell membrane stability has been used an
efficient criterion to discriminate among crop cultivars with respect to degree of salt
tolerance (Meloni et al., 2003; Sairam et al., 2005).
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To reduce AOS-induced damage, plants have evolved an intricate antioxidative
system, involving antioxidative enzymes, as well as low-molecular mass secondary
metabolites such as ascorbate, glutathione, tocopherols, carotenoids and phenolic
compounds (Posmyk et al., 2009). However a lot of research is being conducted these
days to elucidate the role of various antioxidant metabolites in plant stress tolerance.
Biological and antioxidant properties of phenolic compounds among other metabolites
have been studied to a great extent (Tsai et al., 2002; Wang & Lin, 2000; Posmyk et al.,
2009). Higher activity of phenolics could be due to the greater H-donating ability and
radical stabilization than a variety of other antioxidant metabolites (Rice-Evans et al.,
1996).

Different plant species and genotypes within a species respond differently to salt
stress at different growth stages. So, the objective of the present work was to examine the
pattern of accumulation of phenolic and MDA contents in the leaves of two wheat
cultivars at different growth stages under salt stress, and the roles of these phenolic
compounds in plant stress tolerance in terms of membrane lipid peroxidation, because it
is known that different antioxidant compounds may act In vivo through different
mechanisms, in plant stress tolerance.

Materials and Methods

A study was carried out to appraise salt-induced adverse effects on growth and
pattern of accumulation of leaf total phenolics and malondialdehyde, (MDA) as product
of lipid per-oxidation, in two genetically diverse bread wheat cultivars (S-24, salt tolerant
and MH-97, salt sensitive). Seeds of both wheat cultivars were sown on filter paper
placed in Petriplates. The filter papers were moistened with 0 mM NaCl in Hoagland’s
nutrient solution or 150 mmol/L NaCl in nutrient solution. After 8 days of seed
germination, 20 seedlings per replicate of each treatment were subjected to two salt levels
(0 and 150 mM NaCl). The solution was consistently aerated daily for 8 h. The
experiment was conducted under natural environmental conditions, in the net-house of
the Botanical Garden of Department of Botany, University of Agriculture, Faisalabad.
During the whole experimentation the average photosynthetically available radiation
(PAR) measured at noon ranged from 794 to 1154 pmol m=2.s?, average day/night R.H
35.1/75.1% and average day and night temperatures were 28.28 + 3 °C and 15.82 + 2.6
°C, respectively).The plants were harvested at different growth stages (vegetative,
booting and reproductive) during the course of experimentation for the estimation of
plant biomass, leaf MDA and total phenolic contents.

Estimation of MDA contents: MDA in the leaves was analyzed following Carmak &
Horst (1991). This method is based on the reaction with thiobarbituric acid. Fresh leaves
(1.0 g) were ground properly in 20 ml of 0.1% tri-chloroacetic acid solution and
centrifuged for 10 min at 12000 g. One ml of the supernatant was reacted with 4 ml of
20% TCA solution comprising 0.5% thiobarbituric acid and then it was heated for 30
min., at 95°C in a water bath and then immediately cooled on ice. After centrifugation for
10 min., at 12000 g, the absorbance of the supernatant was read at 532 and 600 nm. The
contents of MDA were worked out using the extinction coefficient of 155/ (mM/cm)
using the formula:

MDA level (nmol) = A (A 532nm-A 600nm)/1.56x10°
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Total phenolics: Total phenolics were estimated following the method of Julkenen-Titto
(1985). Fresh leaf samples (50 mg) were homogenized by adding 80% acetone. After
centrifugation for 10 min at 10,000 g, the supernatant was separated. To 100 ul of the
supernatant 2.0 ml of water and 1ml of Folin—Ciocalteau’s phenol reagent was added.
Then 5.0 ml of 20% Na,COs solution were added to the solution. Then the final volume
was raised to 10 ml by adding distilled H,O. After mixing thoroughly, the absorbance
was read using a spectrophotometer (IRMECO U2020) at 750 nm.

Experimental design and statistical analysis: All the experimental units were in a
completely randomized design (CRD) with three factor factorial arrangement and four
replicates. ANOVA of the data for all vaiables was computed using the CoStat computer
program (Version 6.303, PMB 320, Monterey, CA, 93940 USA). The LSD values were
computed at 5% level of probability following Steel & Torrie (1986).

Results and Discussion

Of different indices of salt stress tolerance of crop plants, reduction in growth is one
of the potential criteria, as indicated in some earlier reports (Munns 2002; Ruiz et al.,
2005; Hichem et al., 2009). In the present invesigation, the effects of salinity on biomass
production and changes in some bio-chemical attributes were recorded in two wheat
cultivars differing in salt tolerance at different growth stages. Data show that imposition
of salt stress to the growing medium significantly reduced the shoot fresh weight of both
wheat cultivars measured at different growth stages Fig. 1. More reduction in shoot fresh
weight due to salt stress was observed in cv. MH-97 as compared with that in cv. S-24 at
all growth stages. On comparing the effects of salt stress at different growth stages it was
observed that more reduction in shoot fresh weight of both cultivars took place at the
reproductive stage as compared with that at the other growth stages, but this reduction
was significantly more in cv. MH-97 as compared with that in S-24 (Fig. 1 and Table 1).
Such growth reducing effects of salt stress have also been reported by Hichem et al.,
(2009) in different maize cultivars at different growth stages. Furthermore, growth
reducing effects of different saline regimes in hydroponic culture system were also
observed by Chen et al., (2007) in different bean cultivars and they reported that different
cultivars showed differential response to salt stress.

Table 1. Mean squares from analyses of variance of the data for shoot fresh weight,
leaf MDA contents and leaf phenolics when recorded at different growth stages
of two wheat cultivar plants grown in salinized hydroponic system.

SOV df  Shoot F.wt. MDA Leaf Phenolics
Main effects

Salt (S) 1 1150.32 *** 480.72 *** 342.93 ***
Variety (V) 1 258.45 *** 6.98 ns 37.81 **
Growth Stage (GS) 2 1068.49 *** 13.06 ** 2062.36 ***
Interaction

SxV 1 70.85 *** 24.30 ** 26.55 **
SxGS 2 203.90 *** 69.70 *** 364.06 ***
V x GS 2 66.19 *** 41.26 *** 42.85 ***
SxVxGS 2 21.17 * 0.13 ns 18.55 **
Error 36 5.369 2.08 3.38
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Fig. 1. Shoot fresh weight, leaf phenolic and MDA contents of two wheat cultivars when

grown in salinized hydroponics system (n=4 + S.E).
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Table 2. Correlation coefficient (r) between different growths and biochemical attributes.

Fresh weight MDA Phenolics
Fresh weight 1
MDA -0.356** 1
Phenolics 0.242** -0.138* 1

Leaf malondialdehyde (MDA) content, the product of lipid peroxidation, is a
prominent indicator of membrane impairment in plants exposed to saline regimes
(Katsuhara et al., 2005). It increased in both wheat cultivars due to root zone salinity.
Both cultivars responded differently to leaf MDA contents under salt stress. For example,
more increase in leaf MDA contents due to salinity was observed in cv. MH-97 as
compared with that in cv. S-24. A significant difference among growth stages was
observed with respect to leaf MDA contents under salt stress, which, in fact, increased
with increase in plant age. Maximum production of MDA contents in leaves was
observed at the reproductive stage in both wheat cultivars as compared to that at other
growth stages (Fig. 1; Table 1). Furthermore, a negative correlation (-0.356**) was
observed in plant biomass production and leaf MDA contents in both wheat cultivars
under salt stress (Table 2), indicating that low lipid peroxidation resulted in increased
biomass production i.e., growth. Such accumulation of MDA contents coupled with
reduced plant growth under salt stress is strongly in agreement with the studies of Li
(2009) and Koca et al., (2007) in tomato and sesame, respectively. They reported that
growth reduction under salt stress in different cultivars is closely associated with
increased lipid peroxidation levels. Furthermore, they also reported that salt tolerant
cultivars accumulated less MDA as compared with salt sensitive cultivars at high salinity
levels. Reduced contents of MDA is an important indicator of stress tolerance as shown
in some earlier studies e.g., in salt tolerant cultivars of barley (Liang et al., 2003),
sorghum (Brankova et al., 2005) and tobacco (Ruiz et al., 2005).

Leaf phenolic contents are important protective components of plant cells. The
potential of phenolics to act as an antioxidant is mainly due to their properties to act as
hydrogen donators, reducing agents and quenchers of singlet O, (Rice-Evans et al., 1997).
The synthesis of phenolics is generally affected in response to different biotic/ abiotic
stresses including salinity (Parida et al., 2004) and reduced phenolic contents were
observed in Cynara cardunculus leaves under saline conditions (Falleh et al., 2008).
Similarly, in the present, study the phenolic contents were also affected significantly due to
salt stress. Although root zone salinity significantly decreased the leaf phenolic contents in
both wheat cultivars, this reduction in phenolic contents was only observed at the booting
stage. At the other growth stages, such inhibitory effect of salt stress on leaf phenolic
contents was not observed in both cultivars. Such differential response of plants in phenolic
accumulation at different growth stages may have been due to the reason that the
accumulation of phenolics depends on plant growth stage (Choi et al., 2006; Barros et al.,
2007). Perhaps high accumulation of phenolics at the reproductive stage occurs due to their
putative role in reproduction (Bravo, 1998). Furthermore, Hichem et al., (2009) reported
that such variation in concentration of leaf phenolics within a plant under salt stress in
relation to leaf age, may be due to the reflection of different requirements for counteracting
abiotic stresses at different growth stages.

Correlation coefficients presented in Table 2 show that a significant positive
correlation (0.242**) was observed between plant growth and leaf phenolic contents and
a significant negative correlation (-0.138*) between leaf MDA and phenolic contents in
both wheat cultivars under salt stress.
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From the results, it can be concluded that high salt tolerance of cv. S-24 in terms of
high biomass production may be due to low production of MDA content. This reduction
in MDA contents may be due to reduced production of AOS hence decreased oxidative
stress. A negative correlation in MDA and phenolic contents indicates the role of
phenolics as antioxidant in scavenging AOS and there by decreasing MDA contents.
Furthermore, different growth stages of the crop shows differential response to salt stress
in different wheat cultivars in terms of production of MDA and phenolic contents.
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